US3504207A - Rotor cooling means for water-cooled turbogenerators - Google Patents

Rotor cooling means for water-cooled turbogenerators Download PDF

Info

Publication number
US3504207A
US3504207A US831692A US3504207DA US3504207A US 3504207 A US3504207 A US 3504207A US 831692 A US831692 A US 831692A US 3504207D A US3504207D A US 3504207DA US 3504207 A US3504207 A US 3504207A
Authority
US
United States
Prior art keywords
rotor
ring
sleeve
water
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US831692A
Inventor
Ove Tjernstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Norden Holding AB
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA AB filed Critical ASEA AB
Application granted granted Critical
Publication of US3504207A publication Critical patent/US3504207A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/22Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of hollow conductors

Definitions

  • a rotor cooling system for a water-cooled turbogenerator has a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the winding. These coolant tubes have parts extending radially inward into an annular metallic distribution vessel arranged axially outside the coil ends. Individual electrically insulating intermediate sleeves form a connection between the coolant tubes and the distribution vessel.
  • the present invention relates to a rotor cooling system for water-cooled turbogenerators, which system comprises a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the rotor winding, the coolant tubes forming by means of their individual electrically insulating intermediate members a hydraulic connection between the coil ends and an annular distribution vessel of metal arranged axially outside the coil ends.
  • a cooling system which, in certain respects, resembles the object of the application is known from German Patent No. 1,014,215. According to that patent glass bodies are melted around the ends of individual cooling tubes at their insertion point into the annular distribution chamber, and thus operate as electrical insulators. The glass melting causes considerable complications in the manufacture and, furthermore, it is questionable whether the risk of cracks occurring in the glass when subjected to temperature variations is impermissibly high.
  • a construction according to the invention presupposes the use of so-called selfsealing jointing rings.
  • sealings rings in which the required deformation for scaling is efiected by certain parts of the ring surface being subjected to direct contact with the pressure medium.
  • centrifugal forces operate perpendicularly to the centre line of the ring, the centrifugal forces operating on the ring in the direction of the component. In a construction according to the invention, this is avoided since the centre line of all the sealing rings is directed radially in relation to the rotor shaft.
  • a rotor cooling means is characterised in that said insulating intermediate member consists of a sleeve directed radially in relation to the rotor shaft, one end of which is inserted in the distribution vessel and the other end of which surrounds the end of the coolant tube at a certain distance from the distribution vessel, each end of the sleeve being provided with a number of annular grooves each containing a selfsealing jointing ring of elastic material, said distribution vessel being arranged at an annular end surface of the rotor core and said sleeve being retained between said end surface and a fixing means arranged outside this end surface.
  • FIGURE 1 partly in axial section, partly in partial radial view, shows a turborotor provided with a cooling system according to the invention
  • FIG- URE 2 shows in axial section a detail of the means shown in FIGURE 1.
  • FIGURE 3 shows a partial cross section along the line AA in FIGURE 1.
  • FIG. 1 designates the rotor core and 2 the center line of a rotor of radial slot type intended for a turbogenerator.
  • the line 3 indicates the bottom of a winding slot.
  • the coil ends of the rotor Winding are designated 4, the retaining ring 5 and the end ring 6.
  • the rotor winding is directly cooled by means of thinwalled cooling tubes 7a embedded in the conductors and interconnected to communicate with each other in conventional manner.
  • the system of communicating cooling tubes is, at the'rotor end shown in the figure, directly connected to a plurality of coolant inlet tubes 7 and at the other end to similar'coolant outlet tubes.
  • the coolant inlet tubes 7 are led from the coil ends 4 through axial channels in an annular-support member 8 of insulating material surrounding the rotor body.
  • the coolant tubes are bent at right angles and directed radially inwards along the end surface of the rotor core'being electrically insulated from the rotor iron and each other and held by means of an annular support means arranged at the flank surface of the rootr body and having radial slots, said support means containing a metallic pressure .ring 9 which is pressed axially inwards with the help of bolts which are indicated in the drawings by the center lines 21 and 22.
  • the ends of the coolant inlet tubes are connected to a distribution chamber 10 formed by an annular, metallic distribution vessel 11, the radially outer wall of which is provided with radially directed recesses for hydraulic connections with the coil ends 4.
  • the distribution vessel 11 is attached to an annular end surface 30 of the rotor core by means of stop surfaces 12 and 13 and also with the help of the pressure ring 9 which with its outer edge abuts the end ring 6.
  • the radially inner wall of the distribution ring is provided with recesses for a number of feeding tubes 24 which are in communication with a centrally arranged axial inlet channel for cooling liquid 26.
  • the rotor body is designed with a removable part 23.
  • the end of the rotor not shown in the drawings is constructed in the same way as the end shown in FIGURE 1, with the difference that the part corresponding to the annular distribution vessel 11 is connected to the outlet channel 29 instead of the inlet channel 216.
  • a water-tight connection between the coolant tubes 7 and the distribution ring 11 is effected with the help of self-sealing elastic jointing rings 14 and 15.
  • the ends of the coolant tubes are not inserted completely into the distribution ring, but instead the cooling liquid is led through an electrically insulating sleeve 16 across a gap between the end 28 of the coolant tube and the distribution ring.
  • the sleeve 1'6 is provided with a tightly surrounding hose 17 of very elastic insulating material, which also surrounds an adjacent part of the cooling water tube 7.
  • the sleeve 16 is inserted in a radial recess in the distribution vessel recess in the distribution vessel and sealed to the walls of the recess by means of the elastic sealing rings 15 which permit the sleeve 16 to move in radial direction in relation to the rotor shaft.
  • the radial freedom of movement is limited, however, since the sleeve 16 and the insulating hose 17 are surrounded by a support sleeve 18 which is porting sleeve which comprises two halves arranged toin two parts, divided by a cut 31 in its longitudinal direction and shaped a stop surface 19 to take up centrifugal forces operating on the sleeve 16.
  • the support sleeve 18 is arranged in a radial channel 27 which is symmetrical in relation to the contact surface 20 between the pressure ring 9 and the rotor part 23.
  • the support sleeve is securied against centrifugal forces since its end abuts contact surfaces in the channel 27.
  • the end of the cooling water tube 7 is inserted into the radially outer end of the sleeve 16 and surrounded by the self-sealing elastic jointing rings 14.
  • Rotor cooling system for water-cooled turbogenerators which comprises a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the rotor winding and including parts extending radially inward, an annular metallic distribution vessel arranged axially outside, the coil ends, individual electrically insulating intermediate members forming a hydraulic connection between the coil ends and the annular distribution vessel, said insulating intermediate members each comprising a sleeve directed radially in relation to the rotor shaft, one end of which is inserted in the distribution yessel and the other end of which surrounds the end of a radial coolant tube part at a distance from the distribution vessel, each end of the sleeve being provided with at least one annular groove, said grooves each containing a self-sealing jointing ring of elastic material, said distribution vessel being arranged at an end'surface of the rotor core and a fixing means arranged outside said end surface, said s
  • said fixing means comprises a fixing ring and means to press the fixing ring against the end surface of the rotor core, and in which members forming channels for radial tube parts are arranged substantially so that they are halved by planes through adjacent contact surfaces between the support ring and the rotor core, each channel having a radially outer part which tightly surrounds a radially directed tube part surrounded by insulating material and a wider, radially inner part which also surrounds said sleeve.
  • Cooling system in which a flexible, insulating hose surrounds said sleeve and a part of the tube which lies immediately radially outside the sleeve.
  • Cooling system in which a supgether. and divided symmetrically to a plane perpendicular to the rotor shaft surrounds said insulating base.

Description

March 31,1970 'o. TJERNSTROM w 3,504,207
ROTOR COOLING MEANS FOR WATER-COOLED TURBOGENERATORS Filed June 9, 1969 V 2 Sheets-Shea 1 INVENTDR. ova Tnaeusran United States Patent O 3,504,207 ROTOR COOLING MEANS FOR WATER-COOLED TURBOGENERATORS Ove Tjernstrt'im, Irsta, Sweden, assignor to Allmiinna Svenska Elektriska Aktiebolaget, Vasteras, Sweden, a corporation of Sweden Filed June 9, 1969, Ser. No. 831,692 Claims priority, application Sweden, June 17, 1968, 8,143/ 68 Int. Cl. H02k 9/16 U.S. Cl. 310-54 4 Claims ABSTRACT OF THE DISCLOSURE A rotor cooling system for a water-cooled turbogenerator has a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the winding. These coolant tubes have parts extending radially inward into an annular metallic distribution vessel arranged axially outside the coil ends. Individual electrically insulating intermediate sleeves form a connection between the coolant tubes and the distribution vessel.
BACKGROUND OF THE INVENTION Field of the invention The present invention relates to a rotor cooling system for water-cooled turbogenerators, which system comprises a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the rotor winding, the coolant tubes forming by means of their individual electrically insulating intermediate members a hydraulic connection between the coil ends and an annular distribution vessel of metal arranged axially outside the coil ends.
The prior art In a rotor cooling system of this type an extremely high liquid pressure arises in the cooling system due to the centrifugal forces. The high pressure makes considerable demands on the arrangements used to connect the various parts of the system to each other, which means, inter alia, that said distribution vessel must be made of metal, which in turn means that precautions must be taken to prevent electrical connection between the coolant tubes and the walls of the distribution vessel. It is also necessary to ensure that stretches of water between metal parts of different potentials are so long that no current to speak of can be conducted as a creepage current along moist surfaces of intermediate insulating parts. Since the annular distribution vessel expands to to the influence of the centrifugal forces, the mechanical connection between distribution vessel and coolant tubes must be of such a type that corresponding deformations in the coolant tubes are avoided.
A cooling system which, in certain respects, resembles the object of the application is known from German Patent No. 1,014,215. According to that patent glass bodies are melted around the ends of individual cooling tubes at their insertion point into the annular distribution chamber, and thus operate as electrical insulators. The glass melting causes considerable complications in the manufacture and, furthermore, it is questionable whether the risk of cracks occurring in the glass when subjected to temperature variations is impermissibly high.
A similar cooling system is shown in the British Patent No. 977,070 which shows a cooling system having hollow conductors instead of coolant tubes so that the connection with the annular distribution vessel is done with the help of tubes having such thick walls that they can be threaded and joined by means of sockets screwed on. The necessary r 3,504,207 1C Patented Mar. 31, 1970 With a rotor cooling system according to the invention the aim has been to fulfil the requirements of a hydraulic connection between the coil ends and the water-distributing ring, and a construction has been achieved which, in comparison with conventional solutions, allows a considerable reduction in manufacturing and assembly costs. Furthermore, it has the advantage that the connection elements which require inspection and/or repair are very easily accessible. 7
A construction according to the invention presupposes the use of so-called selfsealing jointing rings. By this is meant sealings rings in which the required deformation for scaling is efiected by certain parts of the ring surface being subjected to direct contact with the pressure medium.
Experiments carried out in connection with the development work leading up to the invention have shown that such sealing rings are not always completely reliable as sealing members in machines having a high speed of rotation, for example turbogenerators. It was found'that the reason for this does not lie principally with the high liquid pressure arising at high rotation speed, but with the fact that centrifugal forces deriving from the weight of the ring itself influence the deformation of the ring in an unfavorable manner. With this in mind, a cooling system according to the invention has been arranged with coolant tubes and distribution rings in such a way that the centrifugal forces operating directly on the sealing ring, instead of being a negative factor, contribute considerably to increased sealing. If some substantial part of these centrifugal forces operates perpendicularly to the centre line of the ring, the centrifugal forces operating on the ring in the direction of the component. In a construction according to the invention, this is avoided since the centre line of all the sealing rings is directed radially in relation to the rotor shaft.
A rotor cooling means according to the invention is characterised in that said insulating intermediate member consists of a sleeve directed radially in relation to the rotor shaft, one end of which is inserted in the distribution vessel and the other end of which surrounds the end of the coolant tube at a certain distance from the distribution vessel, each end of the sleeve being provided with a number of annular grooves each containing a selfsealing jointing ring of elastic material, said distribution vessel being arranged at an annular end surface of the rotor core and said sleeve being retained between said end surface and a fixing means arranged outside this end surface.
BRIEF DESCRIPTION OF THE DRAWINGS In the following the invention will be described with reference to the accompanying schematically drawings where FIGURE 1, partly in axial section, partly in partial radial view, shows a turborotor provided with a cooling system according to the invention, while FIG- URE 2 shows in axial section a detail of the means shown in FIGURE 1. FIGURE 3 shows a partial cross section along the line AA in FIGURE 1.
3 DESCRIPTION OF THE PREFERRED EMBODIMENTS In the drawings 1 designates the rotor core and 2 the center line of a rotor of radial slot type intended for a turbogenerator. The line 3 indicates the bottom of a winding slot. The coil ends of the rotor Winding are designated 4, the retaining ring 5 and the end ring 6.
The rotor winding is directly cooled by means of thinwalled cooling tubes 7a embedded in the conductors and interconnected to communicate with each other in conventional manner. The system of communicating cooling tubes is, at the'rotor end shown in the figure, directly connected to a plurality of coolant inlet tubes 7 and at the other end to similar'coolant outlet tubes. The coolant inlet tubes 7 are led from the coil ends 4 through axial channels in an annular-support member 8 of insulating material surrounding the rotor body. Radially inside the casing support ring 6 the coolant tubes are bent at right angles and directed radially inwards along the end surface of the rotor core'being electrically insulated from the rotor iron and each other and held by means of an annular support means arranged at the flank surface of the rootr body and having radial slots, said support means containing a metallic pressure .ring 9 which is pressed axially inwards with the help of bolts which are indicated in the drawings by the center lines 21 and 22. The ends of the coolant inlet tubes are connected to a distribution chamber 10 formed by an annular, metallic distribution vessel 11, the radially outer wall of which is provided with radially directed recesses for hydraulic connections with the coil ends 4. The distribution vessel 11 is attached to an annular end surface 30 of the rotor core by means of stop surfaces 12 and 13 and also with the help of the pressure ring 9 which with its outer edge abuts the end ring 6. The radially inner wall of the distribution ring is provided with recesses for a number of feeding tubes 24 which are in communication with a centrally arranged axial inlet channel for cooling liquid 26. For manufacturing reasons the rotor body is designed with a removable part 23. The end of the rotor not shown in the drawings is constructed in the same way as the end shown in FIGURE 1, with the difference that the part corresponding to the annular distribution vessel 11 is connected to the outlet channel 29 instead of the inlet channel 216.
A water-tight connection between the coolant tubes 7 and the distribution ring 11 is effected with the help of self-sealing elastic jointing rings 14 and 15. With the intention of enabling the exchange of sealing rings without having to dismantle the distribution ring 11 or the ends of the coolant tubes, and with a view to obtaining reliable electrical insulation between coolant tubes 7 and distribution ring 11, the ends of the coolant tubes are not inserted completely into the distribution ring, but instead the cooling liquid is led through an electrically insulating sleeve 16 across a gap between the end 28 of the coolant tube and the distribution ring. In order to achieve increased insurance against creepage currents, the sleeve 1'6 is provided with a tightly surrounding hose 17 of very elastic insulating material, which also surrounds an adjacent part of the cooling water tube 7. The sleeve 16 is inserted in a radial recess in the distribution vessel recess in the distribution vessel and sealed to the walls of the recess by means of the elastic sealing rings 15 which permit the sleeve 16 to move in radial direction in relation to the rotor shaft. The radial freedom of movement is limited, however, since the sleeve 16 and the insulating hose 17 are surrounded by a support sleeve 18 which is porting sleeve which comprises two halves arranged toin two parts, divided by a cut 31 in its longitudinal direction and shaped a stop surface 19 to take up centrifugal forces operating on the sleeve 16. The support sleeve 18 is arranged in a radial channel 27 which is symmetrical in relation to the contact surface 20 between the pressure ring 9 and the rotor part 23. The support sleeve is securied against centrifugal forces since its end abuts contact surfaces in the channel 27. The end of the cooling water tube 7 is inserted into the radially outer end of the sleeve 16 and surrounded by the self-sealing elastic jointing rings 14.
If the jointing rings 14 and 15 must be changed, the pressure ring '9, the two halves of the support sleeve 18 and the locking ring 25 are removed. The elastic insulating hose 17 is peeledupwardly to the space radially outside the sleeve 16, which is then displaced radially inward or outward so that the sealing rings 14 or 15, respectively, become "accessible.
What is claimed is:
1. Rotor cooling system for water-cooled turbogenerators, which comprises a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the rotor winding and including parts extending radially inward, an annular metallic distribution vessel arranged axially outside, the coil ends, individual electrically insulating intermediate members forming a hydraulic connection between the coil ends and the annular distribution vessel, said insulating intermediate members each comprising a sleeve directed radially in relation to the rotor shaft, one end of which is inserted in the distribution yessel and the other end of which surrounds the end of a radial coolant tube part at a distance from the distribution vessel, each end of the sleeve being provided with at least one annular groove, said grooves each containing a self-sealing jointing ring of elastic material, said distribution vessel being arranged at an end'surface of the rotor core and a fixing means arranged outside said end surface, said sleeve being retained between said end surface and said fixing means.
2. Cooling system according to claim 1, in which said fixing means comprises a fixing ring and means to press the fixing ring against the end surface of the rotor core, and in which members forming channels for radial tube parts are arranged substantially so that they are halved by planes through adjacent contact surfaces between the support ring and the rotor core, each channel having a radially outer part which tightly surrounds a radially directed tube part surrounded by insulating material and a wider, radially inner part which also surrounds said sleeve.
3. Cooling system according to claim 2, in which a flexible, insulating hose surrounds said sleeve and a part of the tube which lies immediately radially outside the sleeve.
4. Cooling system according to claim 3, in which a supgether. and divided symmetrically to a plane perpendicular to the rotor shaft surrounds said insulating base.
References Cited UNITED STATES PATENTS 2,950,403 8/1960 Kilne et al. 310-61 X 3,034,003 5/1962 Seidmer 310-61 3,131,321 4/1964 Gibbs et al. 1054 3,296,470 1/ 1967 Barbashev et al. 3l054 3,340,412 9/1967 Wiedemann 310-61 X DONOVAN F. DUGGAN, Primary Examiner US. Cl. X.R. 310-59, 61
US831692A 1968-06-17 1969-06-09 Rotor cooling means for water-cooled turbogenerators Expired - Lifetime US3504207A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE08143/68A SE332223B (en) 1968-06-17 1968-06-17

Publications (1)

Publication Number Publication Date
US3504207A true US3504207A (en) 1970-03-31

Family

ID=20273253

Family Applications (1)

Application Number Title Priority Date Filing Date
US831692A Expired - Lifetime US3504207A (en) 1968-06-17 1969-06-09 Rotor cooling means for water-cooled turbogenerators

Country Status (4)

Country Link
US (1) US3504207A (en)
CH (1) CH493956A (en)
DE (1) DE1930508B2 (en)
SE (1) SE332223B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569752A (en) * 1968-08-21 1971-03-09 English Electric Co Ltd Liquid-cooled dynamoelectric machine rotor
US3814959A (en) * 1971-06-23 1974-06-04 Alsthom Cgee Cooling arrangement for rotary electric machines
US3868520A (en) * 1974-01-18 1975-02-25 Westinghouse Electric Corp Turbine-generator water-cooled rotor shaft liner restraint
US3878413A (en) * 1973-02-23 1975-04-15 Asea Ab Turbo-generator, the rotor of which has a direct liquid-cooled winding
US3962594A (en) * 1973-12-28 1976-06-08 Boris Leonidovich Konovalov Rotor winding of electric machines
US4149100A (en) * 1974-02-01 1979-04-10 Siemens Aktiengesellschaft Excitation winding arrangement for a synchronous electric machine having a rotor with salient poles
US4350908A (en) * 1980-12-04 1982-09-21 Westinghouse Electric Corp. Cooling system for rotor of a dynamoelectric machine
EP0035071B1 (en) * 1980-03-03 1985-02-06 BBC Aktiengesellschaft Brown, Boveri & Cie. Flexible electrically insulating pipe coupling
US5859482A (en) * 1997-02-14 1999-01-12 General Electric Company Liquid cooled electric motor frame
US20080197724A1 (en) * 2007-02-16 2008-08-21 Rolls-Royce Plc Cooling arrangement of an electrical machine
US11876418B2 (en) 2018-09-27 2024-01-16 Siemens Energy Global GmbH & Co. KG Blocking element for rotor winding heads on turbogenerators with rotor cap with radial ventilation bores

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950403A (en) * 1956-09-04 1960-08-23 Vickers Electrical Co Ltd Electrical turbo generators
US3034003A (en) * 1958-10-11 1962-05-08 Seidner Mihaly Liquid cooled rotors for turbo-alternators
US3131321A (en) * 1962-04-23 1964-04-28 Gen Electric Liquid-cooled rotor for a dynamoelectric machine
US3296470A (en) * 1964-02-03 1967-01-03 Vsesouzny Nii Elecktromekhanik Liquid cooling of generator rotor windings
US3340412A (en) * 1964-08-28 1967-09-05 Bbc Brown Boveri & Cie Arrangement for the direct liquid cooling of a turbogenerator provided with end turnretaining rings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950403A (en) * 1956-09-04 1960-08-23 Vickers Electrical Co Ltd Electrical turbo generators
US3034003A (en) * 1958-10-11 1962-05-08 Seidner Mihaly Liquid cooled rotors for turbo-alternators
US3131321A (en) * 1962-04-23 1964-04-28 Gen Electric Liquid-cooled rotor for a dynamoelectric machine
US3296470A (en) * 1964-02-03 1967-01-03 Vsesouzny Nii Elecktromekhanik Liquid cooling of generator rotor windings
US3340412A (en) * 1964-08-28 1967-09-05 Bbc Brown Boveri & Cie Arrangement for the direct liquid cooling of a turbogenerator provided with end turnretaining rings

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569752A (en) * 1968-08-21 1971-03-09 English Electric Co Ltd Liquid-cooled dynamoelectric machine rotor
US3814959A (en) * 1971-06-23 1974-06-04 Alsthom Cgee Cooling arrangement for rotary electric machines
US3878413A (en) * 1973-02-23 1975-04-15 Asea Ab Turbo-generator, the rotor of which has a direct liquid-cooled winding
US3962594A (en) * 1973-12-28 1976-06-08 Boris Leonidovich Konovalov Rotor winding of electric machines
US3868520A (en) * 1974-01-18 1975-02-25 Westinghouse Electric Corp Turbine-generator water-cooled rotor shaft liner restraint
US4149100A (en) * 1974-02-01 1979-04-10 Siemens Aktiengesellschaft Excitation winding arrangement for a synchronous electric machine having a rotor with salient poles
EP0035071B1 (en) * 1980-03-03 1985-02-06 BBC Aktiengesellschaft Brown, Boveri & Cie. Flexible electrically insulating pipe coupling
US4350908A (en) * 1980-12-04 1982-09-21 Westinghouse Electric Corp. Cooling system for rotor of a dynamoelectric machine
US5859482A (en) * 1997-02-14 1999-01-12 General Electric Company Liquid cooled electric motor frame
US20080197724A1 (en) * 2007-02-16 2008-08-21 Rolls-Royce Plc Cooling arrangement of an electrical machine
US8487500B2 (en) * 2007-02-16 2013-07-16 Rolls-Royce Plc Cooling arrangement of an electrical machine
US11876418B2 (en) 2018-09-27 2024-01-16 Siemens Energy Global GmbH & Co. KG Blocking element for rotor winding heads on turbogenerators with rotor cap with radial ventilation bores

Also Published As

Publication number Publication date
CH493956A (en) 1970-07-15
DE1930508A1 (en) 1970-08-27
DE1930508B2 (en) 1971-12-02
SE332223B (en) 1971-02-01

Similar Documents

Publication Publication Date Title
US3504207A (en) Rotor cooling means for water-cooled turbogenerators
US3733502A (en) Liquid cooled rotor for dynamoelectric machines
US3447002A (en) Rotating electrical machine with liquid-cooled laminated stator core
US3229130A (en) Motors having an air-gap jacket in particular for central heating accelerators and other like applications
US5777408A (en) Exciter current line in the rotor of an electric machine
US3634705A (en) Cooling system for dynamoelectric machines
US3497737A (en) Connecting means for dynamoelectric machine cooling system
US2950403A (en) Electrical turbo generators
JPS62501048A (en) rectifier assembly
US3916230A (en) Liquid-cooled rotor for dynamoelectric machines
US3457440A (en) Cooling arrangement for dynamo-electric machine rotor windings and shaft mounted exciter
US3497736A (en) Turbogenerator with directly liquid-cooling rotor winding
US3363122A (en) High current transmitting shaft coupling
US2706260A (en) Liquid cooled dynamo-electric machine
US3894253A (en) Very high current field winding for dynamoelectric machine rotor
US3621315A (en) Damping winding for rotating pole system
US3740595A (en) Water cooled rotor for dynamoelectric machines
US5055729A (en) Integral water-cooled circuit ring/bus bar assembly for high frequency generators
US3908140A (en) Liquid-cooled rotor for dynamoelectric machines
US3218490A (en) Liquid cooled motor
GB1432552A (en) Liquid-cooled rotor assembly for an electrical machine
US3271600A (en) Dynamoelectric machine
US3878413A (en) Turbo-generator, the rotor of which has a direct liquid-cooled winding
US3254246A (en) Dynamoelectric machines
US3968389A (en) Dynamoelectric machine with water-cooled rotor