US3491178A - Method for spinning bicomponent polypropylene filaments - Google Patents
Method for spinning bicomponent polypropylene filaments Download PDFInfo
- Publication number
- US3491178A US3491178A US774541A US3491178DA US3491178A US 3491178 A US3491178 A US 3491178A US 774541 A US774541 A US 774541A US 3491178D A US3491178D A US 3491178DA US 3491178 A US3491178 A US 3491178A
- Authority
- US
- United States
- Prior art keywords
- filaments
- crimp
- filament
- percent
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 polypropylene Polymers 0.000 title description 33
- 238000000034 method Methods 0.000 title description 31
- 229920001155 polypropylene Polymers 0.000 title description 29
- 238000009987 spinning Methods 0.000 title description 19
- 239000004743 Polypropylene Substances 0.000 title description 17
- 239000000835 fiber Substances 0.000 description 33
- 239000002131 composite material Substances 0.000 description 30
- 229920000642 polymer Polymers 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 20
- 238000009826 distribution Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- FIDRAVVQGKNYQK-UHFFFAOYSA-N 1,2,3,4-tetrahydrotriazine Chemical compound C1NNNC=C1 FIDRAVVQGKNYQK-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000002788 crimping Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- SMTDFMMXJHYDDE-UHFFFAOYSA-N 2-prop-1-enylpyridine Chemical compound CC=CC1=CC=CC=N1 SMTDFMMXJHYDDE-UHFFFAOYSA-N 0.000 description 2
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- ARVUDIQYNJVQIW-UHFFFAOYSA-N (4-dodecoxy-2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC(OCCCCCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 ARVUDIQYNJVQIW-UHFFFAOYSA-N 0.000 description 1
- UPYPTOCXMIWHSG-UHFFFAOYSA-N 1-dodecylsulfanyldodecane Chemical compound CCCCCCCCCCCCSCCCCCCCCCCCC UPYPTOCXMIWHSG-UHFFFAOYSA-N 0.000 description 1
- IHWDIGHWDQPQMQ-UHFFFAOYSA-N 1-octadecylsulfanyloctadecane Chemical compound CCCCCCCCCCCCCCCCCCSCCCCCCCCCCCCCCCCCC IHWDIGHWDQPQMQ-UHFFFAOYSA-N 0.000 description 1
- IYAZLDLPUNDVAG-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 IYAZLDLPUNDVAG-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- 241000700143 Castor fiber Species 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 241000630665 Hada Species 0.000 description 1
- 241000692885 Nymphalis antiopa Species 0.000 description 1
- WNLGXLRFBUSVPJ-UHFFFAOYSA-N P(OCCCC)(OCC1=CC=CC=C1)=O Chemical group P(OCCCC)(OCC1=CC=CC=C1)=O WNLGXLRFBUSVPJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N para-hydroxytoluene Natural products CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 1
- CNUJLMSKURPSHE-UHFFFAOYSA-N trioctadecyl phosphite Chemical compound CCCCCCCCCCCCCCCCCCOP(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC CNUJLMSKURPSHE-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/22—Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
- D01D5/23—Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool by asymmetrical cooling of filaments, threads, or the like, leaving the spinnerettes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/26—Composite fibers made of two or more materials
Definitions
- This invention relates to composite polypropylene fibers and methods for producing the same. More' particularly this invention relates to composite polypropylene fibers having superior crimp characteristics and methods for producing the same.
- Polypropylene fibers have many advantages such as low specific gravity, high tenacity, high abrasion resistance, high elasticity, small creep and the like, but they are inferior to wool in the point of bulkiness. Excellent bulk of wool is based upon its characteristic crimps. Hence, many attempts have been made to produce polypropylene fibers having wool-like appearance and high bulkiness by crimping the fibers while retaining their well-known advantages.
- Crimped polypropylene fibers have been heretofore produced by means of mechanical crimping process while utilizing their thermoplasticity as in the case of other thermoplastic fibers. Since the mechanical crimping process has various drawbacks, a process which is characterized in producing crimped fibers by providing fibers with potential crimp at the step of spinning and relaxing them at a step after stretching has been developed recently. According to this process, it is possible to omit the mechanical processing step necessary to produce crimped fibers.
- An object of the present invention is to provide polypropylene composite fibers having superior properties and excellent crimp characteristics and to provide methods for producing the same.
- Another object of the present invention is to produce polypropylene composite fibers having high percentage of crimp and high stability of crimp and to provide methods for producing the same.
- a still further object of the present invention is to provide polypropylene composite fibers having good appearance and uniform crimps and to provide methods for producing the same.
- two kinds of propylene type polymers are spun into composite filaments in such a way as at least one kind of polymer possesses more than 0.2 of beta-orientation and more than 1.2 of intrinsic viscosity [1;] and the difference of birefringence of the two polymers is more than 5x10 in the state of unstretched filament, resulting unstretched filaments are stretched at a temperature lower than C. and then relaxed to develop crimps.
- the beta-orientation described here and elsewhere herein is a measure which indicates degree of orientation of microcrystal in fibers.
- the intrinsic viscosity [17L- is that of polymers in fiber state and measured in tetraline at a temperature of C.
- the difference of bircfringence of the two polymers in a composite filament can be found by following procedure. In the case of sideby-side composite filament such as shown in figure, the retardation R and R in A and B parts can be measured individually in both dotted line zones of A and B parts by interference color and diagram of interference.
- the thickness of each part can be calculated by assuming x and y coordinate having its origin at the center of fiber cross-section, measuring x coordinates of parts indicating interference colors at both A and B parts X and X and calculating Y and Y from the equation of circle.
- the thickness of two parts are 2Y and ZY Let ZY be d and 2Y be d then birefringence in both A and B parts can be calculated by equations of Thus the difference of birefringence can be calculated from the following equation,
- propylene polymers having intrinsic viscosities of 0.8 to 3.5 measured at the state of polymer are used.
- a homopolymer of propylene can be used by itself but in general propylene polymer containing various stabilizers, fillers, plasticizers, substances capable to give fluidity and the like are used.
- 2-hydroxy-4-octoxy-benzophenone 2-hydroxy-4-dodecyloxy benzophenone
- 2-[2'- hydroxy-5'-(l,1,3,3 tetramethyl butyl)phenyl]benzotriazole and the like are useful.
- trioctadecyl phosphite didodecyl-3.3'-thiodipropionate, dioctadecyl 3.3- thio dipropionate, diethyl-l1.l1'-thio undecanate, tridodecyl phosphite, dodecyl sulfide, octadecyl sulfide and the like can be used.
- silicon oxide, titanium dioxide, and as plasticizers tricresyl phosphate, dioctyl phthalate and sebacate, decyl dilauryl stearate and the like are used.
- modified propylene polymers are preferably used instead of propylene homopolymer.
- propylene polymers containing 1 to 30 percent of vinyl pyridine polymer or copolymers those containing 1 to 20 percent of polyesters such as polyethylene terephthalate, those containing 1 to 20 percent of metal salt of alkylester of sulfoisophthalic acid, those graft-copolymerized with vinyl pyridine, those graft-copolymerized with vinyl pyridine and styrene, those graft-copolymerized with various vinyl compounds and those containing one or more than one kind of the compounds represented by a general formula of (in which R is an alkyl radical having 7 to 29 carbon atoms, R is an alkyl radical having 1 to 18 carbon atoms, M is Al, Zn, or Mg, m and n are either 1 or 2, m+n is always 2 or 3, R is an alkyl radical having 7 to 29 carbon atoms, M is Zn, Al, Sn or C0, m is 1, 2 or 3, n
- propylene polymers admixed with emulsifiercontaining vinyl pyridine, those admixed with vinyl pyridine copolymer and dyeing assistant, those admixed with sulfophthalic acid alkylester, those containing polyethylene and metal salt of higher fa y a id or normal hydrocarbon having molecular weight of 500 to 3000, those con taining fluid paraffine, kerosene or tetrachloroethane, those containing a compound represented by a formula of (in which R is hydrogen atom, alkyl radical, alkoxy radical or acyl radical, Y is hydrogen atom or hydroxy radi cal, Z is S, SO, S0 CH or CO, M is Co, Ni, Zn or Al) alone or together with metal alcoholate of higher aliphatic acid and/ or basic metal salt of higher fatty acid, are also preferably used.
- composition of two kinds of propylene polymers may be different or the same.
- two kinds of propylene polymers having different intrinsic viscosities at the state just before spinning are preferably used.
- the difference of intrinsic viscosities of polymers in the state of fiber is preferably less than 0.6.
- at least one kind of polymer must possess an intrinsic viscosity [i of at least 1.2.
- Two kinds of propylene polymers are heated to melt at a temperature of 170 C. to 320 C. and spun to form composite filaments.
- the heating temperature of two kinds of polymer can be different. Accordingly the object of the present invention can be attained by heating to melt two kinds of propylene polymers having the same intrinsic viscosity [:1] and the same composition at different temperature and spinning to produce composite filaments. And the object of the present invention can also be achieved by spinning two propylene polymers having the same intrinsic viscosity but different composition.
- Extruded filaments are generally taken up at a velocity of 200 to 1000 m./min. to give unstretched filaments.
- at the state of unstretched filaments at least one kind of polymer possesses more than 0.2 of B-orientation and more than 1.2 of intrinsic viscosity Besides these, it is necessary to select spinning temperature, cooling condition, take-up speed and the like such a way that the difference of birefringence of two polymers becomes more than 5 10 preferably more than 10 10- When these conditions are not satisfied, poly propylene composite fibers having superior properties and crimp characteristics cannot be produced. Unstretched filaments are stretched at a temperature lower than 80 C. and then relaxed to develop crimps. When the stretching temperature is higher than 80 C.
- the stretch ratio is in general, 2 to 4 times. Even when stretched filaments are relaxed at room temperature, it is possible to develop crimps but when stretched filaments are heated by dry hot air, hot water, steam and the like in a relaxed state, it is possible to develop greater amount of crimp and to increase the stability of crimp.
- Heat treatment may be carried out at the state of skein or between two sets of rollers.
- spinning apparatus'lt is also possible to use well-known apparatus in which the arrangement of orifices at the surface of spinneret is improved.
- filaments can be subjected to heat treatment in a relaxed state, but it is also possible to apply heat treatment in a relaxed state to knitted or woven fabrics directly converted from filaments wound up on bobbins or pirns.
- heat treatment can be carried out at various steps. Filaments are cut into suitable length and spun into yarns after being stretched and/or heat-treated. Blend spinning and mixed weaving with other fibers may be possible. Fibers thus obtained possess not only high crimp recovery but also high elasticity.
- these fibers show the function of elastic fibers after finishing the function of crimped fibers.
- the utilities of fibers are exceedingly enlarged.
- they are used as filaments like conventional processed yarns, and are used as staple fibers by controlling the development of crimps. From these staple fibers, fabric cloths having high stretchability can be produced.
- stretched filaments are (d) maintained at the state under tension of less than 3 mg./d., and then heat treated under tension while giving 5 to 50 percent of shrinkage or (e) alternatively, are heat-treated at a temperature of 60 C. to 140 C. while over-feeding 5 to 30 percent. It is preferable to determine various conditions of overfeed amount, heat treatment temperature, and heat treatment time so as to give less than 10 percent of shrinkage of resulting filaments. This heat-treatment for relaxation can be carried out continuously with other step.
- the stretched filaments are first provided with more than 0.1 g./d. of tension, then maintained under tension of less than 0.003 g./d., subsequently subjected to heat treatment under tension while giving 5 to 50 percent of shrinkage.
- heat-treating stretched filaments for relaxation under slight tension it is possible to prevent yarn from forming local clusters of the yarn-constructing filaments.
- clustered filaments are present in yarn, the development of crimps after heat shrinkage treatment is not sufiicient and not uniform and appearance of crimped filaments is not preferable.
- EXAMPLE 1 Two kinds of polypropylene were made into composite filaments at conditions shown in Table 1 by use of spinning apparatus of screw-gear pump type and subjected to stretching. The spinning ratio of two kinds of polypropylenes was 50:50. Spun filaments were in crimped state when they were made into skein after being stretched but for the more sufiicient crimp development, they were heat-treated for 30 minutes by steam of C. in a relaxed state. Properties of resulting filaments are shown an intrinsic viscosity of more than 1.2, and wherein two in Table 1. In this table, Nos. 7 to 10 were control. polymers in said filaments have a difference in blrefrlng- TABLE 1 A component B component Spinning Spinning Spinning temp. at temp. at temp. at Experiment N o. nozzle C.) [1;]0 screw C.) [1 B-orientatlon AnX10 [1;]G screw C.)
- This polymer contained 10 percent by weight of fluid parafline.
- [ 11G means intrinsic viscosity of pelleted polymer.
- b-c Percentage of crimp recovery 100 ex OrimptSstability is the percentage of recovery length at the 10th time to that at the first time after repetition of 10 times of the above-mentioned perimen EXAMPLE 2 ence of more than 5 10 and a difference in intrinsic viscosity of less than 0.6, said producing step including the steps of melting at least one propylene polymer having an intrinsic viscosity of 1.0 to 2.8 at a temperature of 170320 C., composite spinning the polymer to form composite filaments and taking up the filaments at a velocity of 200 to 1000 m./min., stretching the filaments to 2 to 4 times, and relaxing the stretched filaments.
- a method according to claim 1 in which the EXAMPLE 4 stretched filaments are heat-treated at a temperature of The same experiment as in No. 2 of Example 1 w C. to 140 C. while being overfed in a proportion of repeated except that the distribution of the proportion of 5 30Pefent and then aX two kinds of polymers in spun composite filaments is
- a method according to claim 10 in which the stretched filaments are maintained under tension of less than 3 mg./d., the filaments are heat-treated under tension while afforded 5 to 50 percent of shrinkage and then relaxed.
- stretched filaments are afiorded more than 0.1 g./d. of tension, maintained under tension of less than 0.03 g./d., heat-treated under tension while afforded 5 to 50 percent shrinkage and then relaxed.
- a method according to claim 10 in which the stretched filaments are subjected to a first heat-treatment under tension of less than 3 mg./d. at a temperature higher than 50 C. and then to a second heat-treatment at a temperature at least as high as that of the first heattreatment and in such a manner that the filament length is longer than that of the first heat-treated filament and more than 5 percent shorter than that of non-treated filamerits, and then the filaments are relaxed.
- a method according to claim 10 in which the spun unstretched filaments are stretched at a low stretch ratio so as to make the elongation-at-break of filament not lower than 95 percent, heat-treated at a temperature of 70 C. to 160 C., further stretched at a low stretch ratio so as to make the elongation-at-break of filament not lower than percent and then relaxed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP551564 | 1964-02-04 | ||
JP1169264 | 1964-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3491178A true US3491178A (en) | 1970-01-20 |
Family
ID=26339474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US774541A Expired - Lifetime US3491178A (en) | 1964-02-04 | 1968-11-08 | Method for spinning bicomponent polypropylene filaments |
Country Status (5)
Country | Link |
---|---|
US (1) | US3491178A (en, 2012) |
BE (1) | BE657850A (en, 2012) |
DE (1) | DE1494683A1 (en, 2012) |
FR (1) | FR1420793A (en, 2012) |
GB (1) | GB1085808A (en, 2012) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904730A (en) * | 1969-01-28 | 1975-09-09 | Mitsui Petrochemical Ind | Process for the preparation of polypropylene crimped fibers |
US3968196A (en) * | 1971-03-29 | 1976-07-06 | Cosden Oil & Chemical Company | Method of co-extrusion of polyvinylidene fluoride/polystyrene multiple-layered sheeting |
US4051293A (en) * | 1971-03-29 | 1977-09-27 | Cosden Oil & Chemical Company | Co-extrusion of polyvinylidene fluoride/polystyrene multiple-layered sheeting |
US5622772A (en) * | 1994-06-03 | 1997-04-22 | Kimberly-Clark Corporation | Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom |
US5876840A (en) * | 1997-09-30 | 1999-03-02 | Kimberly-Clark Worldwide, Inc. | Crimp enhancement additive for multicomponent filaments |
US6287689B1 (en) | 1999-12-28 | 2001-09-11 | Solutia Inc. | Low surface energy fibers |
US6410138B2 (en) | 1997-09-30 | 2002-06-25 | Kimberly-Clark Worldwide, Inc. | Crimped multicomponent filaments and spunbond webs made therefrom |
US6630087B1 (en) | 2001-11-16 | 2003-10-07 | Solutia Inc. | Process of making low surface energy fibers |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2952033A (en) * | 1957-10-16 | 1960-09-13 | Chemstrand Corp | Apparatus for annealing filamentary tow |
US3093444A (en) * | 1961-07-10 | 1963-06-11 | Du Pont | Process of preparing a helically crimped polypropylene filament |
US3106442A (en) * | 1956-07-17 | 1963-10-08 | Montecantini Societa Generale | Method of producing dimensionally stable polypropylene fibers |
FR1342403A (fr) * | 1961-11-24 | 1963-11-08 | Schweizerische Viscose | Procédé de fabrication de fils de polyoléfines contenant des filaments composites |
US3215486A (en) * | 1962-04-17 | 1965-11-02 | Toyo Spinning Co Ltd | Fixation of polypropylene fibers impregnated with dyestuffs and other treating agents |
US3233023A (en) * | 1962-02-27 | 1966-02-01 | Ici Ltd | Spinning of polypropylene |
US3256258A (en) * | 1961-05-05 | 1966-06-14 | Du Pont | Fibers |
US3323190A (en) * | 1963-06-12 | 1967-06-06 | Hercules Inc | Elastic polypropylene yarn and process for its preparation |
US3399259A (en) * | 1965-04-20 | 1968-08-27 | Ici Ltd | Method for producing bicomponent polypropylene filaments |
US3408433A (en) * | 1965-06-23 | 1968-10-29 | Ici Ltd | Method and apparatus for spinning heterofilaments |
-
1964
- 1964-12-09 GB GB50083/64A patent/GB1085808A/en not_active Expired
- 1964-12-28 DE DE19641494683 patent/DE1494683A1/de active Pending
- 1964-12-30 FR FR392A patent/FR1420793A/fr not_active Expired
- 1964-12-31 BE BE657850D patent/BE657850A/xx unknown
-
1968
- 1968-11-08 US US774541A patent/US3491178A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3106442A (en) * | 1956-07-17 | 1963-10-08 | Montecantini Societa Generale | Method of producing dimensionally stable polypropylene fibers |
US2952033A (en) * | 1957-10-16 | 1960-09-13 | Chemstrand Corp | Apparatus for annealing filamentary tow |
US3256258A (en) * | 1961-05-05 | 1966-06-14 | Du Pont | Fibers |
US3093444A (en) * | 1961-07-10 | 1963-06-11 | Du Pont | Process of preparing a helically crimped polypropylene filament |
FR1342403A (fr) * | 1961-11-24 | 1963-11-08 | Schweizerische Viscose | Procédé de fabrication de fils de polyoléfines contenant des filaments composites |
GB979083A (en) * | 1961-11-24 | 1965-01-01 | Schweizerische Viscose | Process for the manufacture of spontaneously crimping polyolefine filaments |
US3233023A (en) * | 1962-02-27 | 1966-02-01 | Ici Ltd | Spinning of polypropylene |
US3215486A (en) * | 1962-04-17 | 1965-11-02 | Toyo Spinning Co Ltd | Fixation of polypropylene fibers impregnated with dyestuffs and other treating agents |
US3323190A (en) * | 1963-06-12 | 1967-06-06 | Hercules Inc | Elastic polypropylene yarn and process for its preparation |
US3399259A (en) * | 1965-04-20 | 1968-08-27 | Ici Ltd | Method for producing bicomponent polypropylene filaments |
US3408433A (en) * | 1965-06-23 | 1968-10-29 | Ici Ltd | Method and apparatus for spinning heterofilaments |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904730A (en) * | 1969-01-28 | 1975-09-09 | Mitsui Petrochemical Ind | Process for the preparation of polypropylene crimped fibers |
US3968196A (en) * | 1971-03-29 | 1976-07-06 | Cosden Oil & Chemical Company | Method of co-extrusion of polyvinylidene fluoride/polystyrene multiple-layered sheeting |
US4051293A (en) * | 1971-03-29 | 1977-09-27 | Cosden Oil & Chemical Company | Co-extrusion of polyvinylidene fluoride/polystyrene multiple-layered sheeting |
US5622772A (en) * | 1994-06-03 | 1997-04-22 | Kimberly-Clark Corporation | Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom |
US5876840A (en) * | 1997-09-30 | 1999-03-02 | Kimberly-Clark Worldwide, Inc. | Crimp enhancement additive for multicomponent filaments |
US6410138B2 (en) | 1997-09-30 | 2002-06-25 | Kimberly-Clark Worldwide, Inc. | Crimped multicomponent filaments and spunbond webs made therefrom |
US6709996B2 (en) | 1997-09-30 | 2004-03-23 | Kimberly-Clark Worldwide, Inc. | Crimped multicomponent filaments and spunbond webs made therefrom |
US6287689B1 (en) | 1999-12-28 | 2001-09-11 | Solutia Inc. | Low surface energy fibers |
US6630087B1 (en) | 2001-11-16 | 2003-10-07 | Solutia Inc. | Process of making low surface energy fibers |
Also Published As
Publication number | Publication date |
---|---|
FR1420793A (fr) | 1965-12-10 |
DE1494683A1 (de) | 1969-10-30 |
GB1085808A (en) | 1967-10-04 |
BE657850A (en, 2012) | 1965-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3816486A (en) | Two stage drawn and relaxed staple fiber | |
US3259681A (en) | Polyester filaments | |
US3509013A (en) | Composite polypropylene filament | |
EP0013101B1 (en) | A process for producing a latent heat-bulkable polyethylene terephthalate yarn, the so produced yarn and its use in producing a bulked fabric | |
US2734794A (en) | G cm-ton | |
US3513110A (en) | Open-celled low density filamentary material | |
US3399259A (en) | Method for producing bicomponent polypropylene filaments | |
KR102503290B1 (ko) | 면조 폴리에스테르 섬유 및 그 제조 방법 | |
US3533904A (en) | Composite polypropylene filaments having a high degree of crimp | |
DE69420747T2 (de) | Endlosfilamente, faden und kabel | |
US3491178A (en) | Method for spinning bicomponent polypropylene filaments | |
US2515206A (en) | Spinning process and compositions | |
US4205037A (en) | Process for producing acrylic synthetic fibers having anti-pilling properties | |
US4108845A (en) | Highly shrinkable acrylic fibres or filaments | |
US5069847A (en) | Improvements in process for preparing spun yarns | |
US3468996A (en) | Process for producing composite polyester yarn that bulks at elevated temperatures | |
US3404204A (en) | Method of producing high-shrinkage acrylic fibers | |
US2728631A (en) | Process for the production of crinkled polyacrylonitrile yarns | |
US3083071A (en) | Treatment of synthetic fiber tow | |
US3560604A (en) | Process for making textured polypropylene filaments | |
US3895165A (en) | Composite fibres and yarns of acrylonitrile polymers | |
KR20010082770A (ko) | 텍스처 콤바인드 폴리에스테르 멀티필라멘트사 및 이의제조 방법 | |
US3193603A (en) | Production of acrylic fibers by spinning into a high solvent, low temperature spin bath | |
US3128527A (en) | Process for making fabric from bulked yarn | |
US3084070A (en) | Warp size comprising high molecular weight styrene/maleic anhydride copolymer |