US3478987A - Jet flaps - Google Patents

Jet flaps Download PDF

Info

Publication number
US3478987A
US3478987A US647513A US3478987DA US3478987A US 3478987 A US3478987 A US 3478987A US 647513 A US647513 A US 647513A US 3478987D A US3478987D A US 3478987DA US 3478987 A US3478987 A US 3478987A
Authority
US
United States
Prior art keywords
jet
flap
strip
edge
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US647513A
Inventor
Pierre Rene Leon Bernar Dorand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3478987A publication Critical patent/US3478987A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds

Definitions

  • the invention resides in means for controllably varying the curvature of a flexible aerodynamic surface which is mounted as a continuation of one lip or wall of the jet slit, so that the surface can be flexed up or down (concavely or convexly as seen from the jet), the means 1ncluding a rigid flap structure which is hingedly attached to the main aerofoil, the trailing edge of which has the jet slit, the surface being attached to the main aerofoil at its leading edge, and to the hinged structure at its trailing edge, in such a manner that it assumes the required concave or convex contour when the structure is swung up or down.
  • a device capable of varying the sense of vertical direction of such a jet which consists of a variable profile flap attached to the lower edge of the jet slit and which, when curved downwardly and rearwardly, deflects the jet downward by Coanda effect by which a jet of fluid tends to cling to a convex surface provided the radius of curvature of such a surface is sufficiently great in relation to the dimensions of the jet normal to such surface.
  • a flap when such a flap is curved upward, it simply acts as a vane and deflects the jet upward.
  • the present invention relates to a simple and effective means of obtaining the upward and downward deflection with a variable profile flap of this type. It also enables the flap to be used in the event of failure of the supply of jet fluid under pressure, e.g., when the aircraft is in gliding flight.
  • the device is characterised by the fact that it consists of a flap structure which can be moved upward or downward and which the an upper effective surface which will vary in contour in accordance with this movement.
  • This upper surface may be of a flexible material such as sheet steel, or be made up of a series of articulated sections, whilst the underside of the flap comprises a rigid flap structure which is pivotally mounted on the aerofoil, the upper surface being attached to the flap structure at or near its trailing edge; such attachment may be direct, or it may be through the medium of a secondary flap or tab constituted by a freely hinged trailing edge element to which the upper surface is attached.
  • the upper surface consists of a flexible strip (e.g. of sheet metal) attached by its leading edge to the lower edge of the jet slit, whilst the rigid flap structure is hinged at or near its leading edge about an axis situated aft of the jet slit and in line or nearly in line with the lower edge of the slit with which it is parallel.
  • the trailing edge of the flexible strip is preferably attached to a small tab-like element which is freely hinged to the trailing part of the flap structure.
  • FIGURES 1, 2 and 3 show the variable flap assembly according to one form of the invention, in vertical section, in three different positions.
  • FIGURE 4 is a plan view of part of the control system proposed to be used in this first example.
  • FIGURE 5 is a vertical section of another construction, by way of example, of the invention.
  • FIGURE 6 is an exploded view, in perspective, of a further form of construction of the flap assembly.
  • variable shape flap designed to deflect a jet emitted through a jet slit 1 in the trailing edge of a wing or helicopter rotor blade, consists of a metallic strip 2, thin enough to be flexible, with its leading edge fixed at 3 to the lower edge of the jet slit 1, this strip 2 forming the upper surface of the flap.
  • the underside of the flap consists of a rigid flap structure 4, on the upper side of which are attached hinge fittings such as 5 near the leading edge of the flap assembly which is attached by a hinge pin 6 to lugs 7 fixed to the wing or rotor blade and extending aft therefrom.
  • the hinge pin 6 is situated in line or nearly in line with the lower edge of the jet slit, i.e., in line with the strip 2 when it is not flexed (or a little above this line as indicated in FIGURE 5).
  • the flap is intended to be made up of relatively short separate spanwise sections in order to avoid being subjected to the flexure of the wing or rotor blade; also the hinge elements 5, 7 would be situated in fore-and-aft line with wing ribs, the lugs 7 may be forming part of such ribs.
  • a connecting rod 9, which forms part of the flap control system described below, is articulated at 8 to the rigid structure 4.
  • a tapered section tab-like element 11 is hinged at 10 to the rear edge of the rigid structure 4 and to this element is attached the flexible strip 2, for example in the manner shown in FIGURE 5 where the trailing edge of the strip 2 is folded around flap 11 and welded to this latter in such a way as to remain firmly fixed to it when the strip 2 is flexed.
  • the minimum radius of the curve must, according to experimental data, be greater than ten times the height of the jet (is. the vertical dimension of jet slit 1); under these conditions, in order to obtain maximum downward deflection of the streamline, all that is required is that the strip 2 should be moved downward to obtain the desired degree of deflection a (see FIGURE 5) with a curvature within the criterion mentioned above.
  • the flap When the flap is deflected upward (FIG- URE 3), the positive pressure exerted by the jet on strip 2 tends to press it against the rigid structure 4, the profile of which can be designed to allow the strip 2 to flex to an optimum curvature; as shown in FIGURE 5, the upper profile 4' of structure 4 may be made concave for this purpose.
  • the strip 2 In the neutral position shown in FIGURE 2, in which the jet exerts no pressure on the strip 2, the upper surface of which is parallel to the jet, the strip 2, not now flexed and therefore not in chordwise stress, may tend to flutter, disturbing the jet flow and perhaps doing other mischief.
  • the strip 2 is proposed to be supported by a mushroom shaped component 12, the stem 13 of which passes through an aperture 14 in the structure 4 and is pressed upward by a leaf spring 15, the other extremity of which is attached to the underside of the wing or rotor blade.
  • each variable shape flap section which are housed within the rotor blade at 16 (FIGURES 1, 2 and 3), comprise a bellcrank 18 pivoted on a vertical axis.
  • One arm of the bellcrank is articulated to a rod 19 which runs parallel to the span of the rotor blade and constitutes a control rod, whilst the other arm is articulated to the previously described connecting rod 9.
  • the extremity of this latter arm of the bellcrank 18 carries a balance-mass 20; centrifugal force acting upon this mass, when the blade is in rotation, acts upon connecting rod 9 in the opposite direction to that of force T, in such a way that the effort required to move the control is reduced; the control system being, so to speak, assisted by the centrifugal force acting upon the balance mass 20.
  • FIGURE 6 shows one construction of flap assembly in which the efficiency of the flap is improved by a spring loaded telescopic arrangement.
  • the structure 4 is made in two parts; the leading edge is formed by a U-sectioned portion 21 which has the fittings 5 hinged to the lugs 7 of the rotor blade (as previously described) and, on its underside, lugs 22, 22' comprising openings 23, 23 to allow for the passage of a spanwise cable which is used to anchor it to the rotor blade or its root fitting in order to resist the action of centrifugal force; the cable may be replaced by a torsion bar.
  • the complementary edge part 25 of the structure 4 slides into the U-sectioned portion 21, and one or more springs, for example a sinuous leaf spring 27 is inserted between the edge 25 and the portion 21 in order to urge the main flat part 26 of structure 4 toward the rear, thus tensing strip 2.
  • the edge of the part 26 of the structure 4 is pierced so that the structure may be anchored by spanwise cable to the rotor blade or its root in order to resist the action of centrifugal force.
  • the adjacent sections of a flap assembly may be interconnected by articulated connecting links 29.
  • Arrangement according to claim 1 further including a trailing edge tab-like element freely hinged to said flap structure and inter-attaching said surface member and said flap structure.
  • Arrangement according to claim 1 including hinge arrangements such as to accommodate differential thermal expansion as between the aerofoil and the hinged structure.
  • the flexible member is an assembly of inter-articulated elements.
  • the flap structure comprises portions which interengage telescopically chordwise and are spring-urged towards telescopicextension so that the flexible member is tensed resiliently.
  • a controllably variable jet flap arrangement comprising a flexible surface member made of a thin sheet of metal attached to the inner surface of the lower wall of the jet slit in rearward continuation thereof, and a rigid flap structure made of a plate arranged below said flexible surface member, means for hinging said plate on a spanwise axis located aft of the jet slit and above the upper surface of the plate, whereas the operating means to swing the structure comprise at least one push-pull rod articulated to the plate on an axis located near its lower forward edge below said spanwise axis, said plate further having a trailing edge tab-like element freely hinged to the rear edge of said plate, the trailing edge of said flexible surface member being attached to said tab-like element in such a manner that the tab-like element takes up a position determined by the flexure of the said flexible member and tangential thereto.
  • a controllably variable jet flap arrangement wherein the aerofoil is a helicopter rotating blade and wherein the articulated push-pull rods are arranged in a hollowed lower part Of the aerofoil also containing crank levers arranged in a plane parallel to the plane of symmetry of the slit and pivoted on an axis normal to said plane, a control rod parallel to the trailing edge of the aerofoil and articulated to one-end of each of said crank levers, and a balance mass attached to the other end of said levers to compensate the reaction forces transmitted to the operating mechanism by the hinged flap arrangement due to the action of the jet on said flap.
  • a controllably variable jet flap arrangement comprising a flexible surface member made of a thin sheet of metal attached to the inner surface of the lower wall of the jet slit in rearward continuation thereof, and a rigid flap structure made of a plate arranged below said flexible surface member and having an upper concave surface to accommodate said member when flexed upwardly, brackets arranged on the rear edge of the aerofoil and projecting rearwardly therefrom, said brackets provided with ball and socket type articulations for hingedly connecting the forward edge of the rigid plate with said brackets, said articulations being offset upwardly with respect to the said upper surface of the plate and located approximately in the plane of the Inner surface of the lower wall of the slit, the
  • operating means comprising push-pull rods located in a hollowed lower part of the aerofoil and articulated to the plate on an axis located near its lower forward edge, said plate having a trailing edge tab-like element freely hinged to the rear edge of said plate, the rear edge of the flexible metal sheet surface member being folded around the rear edge of said tab-like member and attached to the upper and lower surface thereof whereby the tablike element takes up a position determined by the flexure of the flexible member and tangential thereto.

Description

Nov. 18, 1969 P. R. L. BIDORAND 3,478,987
JET FLAPS Filed June 20, 1967 V 5 Sheets-Sheet 1 1 3 7 Pie-1 Nov. 18, 1969 P. R. L. B. DORAND JET FLAPS 3 Sheets-Sheet 2 Filed June 20, 1967 Nov. 18, 1969 P. R. L. B. DORAND JET FLAPS 3 Sheets-Sheet 3 Filed June 20, 1967 United States Patent 3,478,987 JET FLAPS Pierre Ren Lon Bernard Dorand, Paris, France, assignor to Giravions Dorand, Suresnes, France, a French company Filed June 20, 1967, Ser. No. 647,513 Claims priority, applicggitirslirance, June 20, 1966,
Int. Cl. ism 9/38 US. Cl. 244-42 14 Claims ABSTRACT OF THE DISCLOSURE SUMMARY OF INVENTION The invention resides in means for controllably varying the curvature of a flexible aerodynamic surface which is mounted as a continuation of one lip or wall of the jet slit, so that the surface can be flexed up or down (concavely or convexly as seen from the jet), the means 1ncluding a rigid flap structure which is hingedly attached to the main aerofoil, the trailing edge of which has the jet slit, the surface being attached to the main aerofoil at its leading edge, and to the hinged structure at its trailing edge, in such a manner that it assumes the required concave or convex contour when the structure is swung up or down.
There is already known a device capable of varying the sense of vertical direction of such a jet which consists of a variable profile flap attached to the lower edge of the jet slit and which, when curved downwardly and rearwardly, deflects the jet downward by Coanda effect by which a jet of fluid tends to cling to a convex surface provided the radius of curvature of such a surface is sufficiently great in relation to the dimensions of the jet normal to such surface. On the other hand, when such a flap is curved upward, it simply acts as a vane and deflects the jet upward.
The present invention relates to a simple and effective means of obtaining the upward and downward deflection with a variable profile flap of this type. It also enables the flap to be used in the event of failure of the supply of jet fluid under pressure, e.g., when the aircraft is in gliding flight. The device is characterised by the fact that it consists of a flap structure which can be moved upward or downward and which the an upper effective surface which will vary in contour in accordance with this movement. This upper surface may be of a flexible material such as sheet steel, or be made up of a series of articulated sections, whilst the underside of the flap comprises a rigid flap structure which is pivotally mounted on the aerofoil, the upper surface being attached to the flap structure at or near its trailing edge; such attachment may be direct, or it may be through the medium of a secondary flap or tab constituted by a freely hinged trailing edge element to which the upper surface is attached.
In one form of the invention, the upper surface consists of a flexible strip (e.g. of sheet metal) attached by its leading edge to the lower edge of the jet slit, whilst the rigid flap structure is hinged at or near its leading edge about an axis situated aft of the jet slit and in line or nearly in line with the lower edge of the slit with which it is parallel. Also, the trailing edge of the flexible strip is preferably attached to a small tab-like element which is freely hinged to the trailing part of the flap structure.
By way of examples, the following description and attached drawings represent the device according to the invention.
FIGURES 1, 2 and 3 show the variable flap assembly according to one form of the invention, in vertical section, in three different positions.
FIGURE 4 is a plan view of part of the control system proposed to be used in this first example.
FIGURE 5 is a vertical section of another construction, by way of example, of the invention.
FIGURE 6 is an exploded view, in perspective, of a further form of construction of the flap assembly.
As shown in FIGURES 1 to 3, the variable shape flap, designed to deflect a jet emitted through a jet slit 1 in the trailing edge of a wing or helicopter rotor blade, consists of a metallic strip 2, thin enough to be flexible, with its leading edge fixed at 3 to the lower edge of the jet slit 1, this strip 2 forming the upper surface of the flap. The underside of the flap consists of a rigid flap structure 4, on the upper side of which are attached hinge fittings such as 5 near the leading edge of the flap assembly which is attached by a hinge pin 6 to lugs 7 fixed to the wing or rotor blade and extending aft therefrom. The hinge pin 6 is situated in line or nearly in line with the lower edge of the jet slit, i.e., in line with the strip 2 when it is not flexed (or a little above this line as indicated in FIGURE 5). Generally speaking, the flap is intended to be made up of relatively short separate spanwise sections in order to avoid being subjected to the flexure of the wing or rotor blade; also the hinge elements 5, 7 would be situated in fore-and-aft line with wing ribs, the lugs 7 may be forming part of such ribs. A connecting rod 9, which forms part of the flap control system described below, is articulated at 8 to the rigid structure 4.
A tapered section tab-like element 11 is hinged at 10 to the rear edge of the rigid structure 4 and to this element is attached the flexible strip 2, for example in the manner shown in FIGURE 5 where the trailing edge of the strip 2 is folded around flap 11 and welded to this latter in such a way as to remain firmly fixed to it when the strip 2 is flexed. By this arrangement, When the connecting rod 9 is moved forward or backward (as in FIG- URES l and 3 respectively), the strip 2 is flexed and the element 11 assumes a position, under the effect of the stress in the strip 2, in which the upper surface of the element 11 is at a tangent to the curve of the strip at its trailing edge. In order to make the jet flow follow the contour of the curved strip 2 when it is directed downward (FIGURE 1), the minimum radius of the curve must, according to experimental data, be greater than ten times the height of the jet (is. the vertical dimension of jet slit 1); under these conditions, in order to obtain maximum downward deflection of the streamline, all that is required is that the strip 2 should be moved downward to obtain the desired degree of deflection a (see FIGURE 5) with a curvature within the criterion mentioned above. When the flap is deflected upward (FIG- URE 3), the positive pressure exerted by the jet on strip 2 tends to press it against the rigid structure 4, the profile of which can be designed to allow the strip 2 to flex to an optimum curvature; as shown in FIGURE 5, the upper profile 4' of structure 4 may be made concave for this purpose.
In the neutral position shown in FIGURE 2, in which the jet exerts no pressure on the strip 2, the upper surface of which is parallel to the jet, the strip 2, not now flexed and therefore not in chordwise stress, may tend to flutter, disturbing the jet flow and perhaps doing other mischief. To obviate flutter, the strip 2 is proposed to be supported by a mushroom shaped component 12, the stem 13 of which passes through an aperture 14 in the structure 4 and is pressed upward by a leaf spring 15, the other extremity of which is attached to the underside of the wing or rotor blade.
When strip 2 is flexed downward (FIGURE 1), it is no longer in contact with the head of the component 12 owing to its natural curvature, which is thus not affected. On the other hand, when the flexure is upward (FIG- URE 3), the load on the spring 15 is released and the component 12 falls back through the aperture 14 and does not affect the curvature of strip 2.
In the case where hot gas, for example from a jet engine, is supplied to jet slit 1, its temperature will exceed that of the flap structure. In order to allow for spanwise thermal expansion of the jet slit, suflicient lateral play is provided in the hinge elements 5-7. According to the example represented in FIGURE 5, the simple hinge articulation in FIGURES 1 to 3 is replaced by ball and socket type articulations which provide for this spanwise accommodation.
It will be noticed that, when the strip 2 is flexed, it exercises forces which give rise to a tangential component T (FIGURE 5) producing a couple which reacts 0n the control system and tends to pull the connecting rod 9 back to its original position. In the case of helicopter blades, the control mechanism shown in FIGURE 4 compensates this reaction on the controls by centrifugal force. To achieve this, the control mechanisms of each variable shape flap section, which are housed within the rotor blade at 16 (FIGURES 1, 2 and 3), comprise a bellcrank 18 pivoted on a vertical axis. One arm of the bellcrank is articulated to a rod 19 which runs parallel to the span of the rotor blade and constitutes a control rod, whilst the other arm is articulated to the previously described connecting rod 9. The extremity of this latter arm of the bellcrank 18 carries a balance-mass 20; centrifugal force acting upon this mass, when the blade is in rotation, acts upon connecting rod 9 in the opposite direction to that of force T, in such a way that the effort required to move the control is reduced; the control system being, so to speak, assisted by the centrifugal force acting upon the balance mass 20.
FIGURE 6 shows one construction of flap assembly in which the efficiency of the flap is improved by a spring loaded telescopic arrangement. In this example, the structure 4 is made in two parts; the leading edge is formed by a U-sectioned portion 21 which has the fittings 5 hinged to the lugs 7 of the rotor blade (as previously described) and, on its underside, lugs 22, 22' comprising openings 23, 23 to allow for the passage of a spanwise cable which is used to anchor it to the rotor blade or its root fitting in order to resist the action of centrifugal force; the cable may be replaced by a torsion bar. The complementary edge part 25 of the structure 4 slides into the U-sectioned portion 21, and one or more springs, for example a sinuous leaf spring 27 is inserted between the edge 25 and the portion 21 in order to urge the main flat part 26 of structure 4 toward the rear, thus tensing strip 2. The edge of the part 26 of the structure 4 is pierced so that the structure may be anchored by spanwise cable to the rotor blade or its root in order to resist the action of centrifugal force. The adjacent sections of a flap assembly may be interconnected by articulated connecting links 29.
I claim:
1. A controllably variable jet flap arrangement of the kind in which an aerofoil is provided with a jet slit at its trailing edge, comprising:
a rigid flap structure hinged to the aerofoil on a spanwise axis which is located aft of the slit a flexible surface member attached at it leading edge in continuation of a wall of the jet slit and at its trailing edge to the trailing edge of the flap structure operating means to swing the flap structure on its hinge up or down from a neutral position in which said surface member is in a plane parallel with the direc tiOn of the jet stream, such swinging causing said surface member to flex respectively concavely or convexly as viewed from the jet stream whereby the stream is deflected either up or down.
2. Arrangement according to claim 1 further including a trailing edge tab-like element freely hinged to said flap structure and inter-attaching said surface member and said flap structure.
3. Arrangement according to claim 1, in which the said flap structure is profiled concavely on that side thereof to which lies the flexible member whereby to accommodate said member when it is correspondingly flexed.
4. Arrangement according to claim 1 in which, in its neutral position, said flexible member extends out of contact-with said flap structure between its leading and trailing margins, further comprising:
a component movably supported by the rigid flap structure and adapted to be resiliently pressed against said flexible member in its neutral position to check flutter of said member.
5. Arrangement according to claim 1, in which there is a plurality of sections, each comprising flap structure and flexible member, such sections being coaxially hinged 111 a spanwise axls.
6. Arrangement according to claim 1, including hinge arrangements such as to accommodate differential thermal expansion as between the aerofoil and the hinged structure.
7. Arrangement according to claim 1, combined with a helicopter rotor blade, further comprising:
operating means for the controlled swinging of the hinged structure and a balance mass susceptible to centrifugal force in rotation of the rotor and arranged to im ose load on said operating means in opposition to reactive loads set up by the jet deflectors.
8. Arrangement according to claim 1, in which the flexible member is a sheet of metal.
9. Arrangement according to claim 8, in which said sheet of metal is attached to the aerofoil in rearward continuation of the lower wall of the jet slit.
10. Arrangement according to claim 1, in which the flexible member is an assembly of inter-articulated elements.
11. Arrangement according to claim 1, in which the flap structure comprises portions which interengage telescopically chordwise and are spring-urged towards telescopicextension so that the flexible member is tensed resiliently.
12. A controllably variable jet flap arrangement according to claim 1 comprising a flexible surface member made of a thin sheet of metal attached to the inner surface of the lower wall of the jet slit in rearward continuation thereof, and a rigid flap structure made of a plate arranged below said flexible surface member, means for hinging said plate on a spanwise axis located aft of the jet slit and above the upper surface of the plate, whereas the operating means to swing the structure comprise at least one push-pull rod articulated to the plate on an axis located near its lower forward edge below said spanwise axis, said plate further having a trailing edge tab-like element freely hinged to the rear edge of said plate, the trailing edge of said flexible surface member being attached to said tab-like element in such a manner that the tab-like element takes up a position determined by the flexure of the said flexible member and tangential thereto.
13. A controllably variable jet flap arrangement according to claim 12 wherein the aerofoil is a helicopter rotating blade and wherein the articulated push-pull rods are arranged in a hollowed lower part Of the aerofoil also containing crank levers arranged in a plane parallel to the plane of symmetry of the slit and pivoted on an axis normal to said plane, a control rod parallel to the trailing edge of the aerofoil and articulated to one-end of each of said crank levers, and a balance mass attached to the other end of said levers to compensate the reaction forces transmitted to the operating mechanism by the hinged flap arrangement due to the action of the jet on said flap.
14. A controllably variable jet flap arrangement according to claim 1 comprising a flexible surface member made of a thin sheet of metal attached to the inner surface of the lower wall of the jet slit in rearward continuation thereof, and a rigid flap structure made of a plate arranged below said flexible surface member and having an upper concave surface to accommodate said member when flexed upwardly, brackets arranged on the rear edge of the aerofoil and projecting rearwardly therefrom, said brackets provided with ball and socket type articulations for hingedly connecting the forward edge of the rigid plate with said brackets, said articulations being offset upwardly with respect to the said upper surface of the plate and located approximately in the plane of the Inner surface of the lower wall of the slit, the
operating means comprising push-pull rods located in a hollowed lower part of the aerofoil and articulated to the plate on an axis located near its lower forward edge, said plate having a trailing edge tab-like element freely hinged to the rear edge of said plate, the rear edge of the flexible metal sheet surface member being folded around the rear edge of said tab-like member and attached to the upper and lower surface thereof whereby the tablike element takes up a position determined by the flexure of the flexible member and tangential thereto.
References Cited UNITED STATES PATENTS 7/ 1966 Steidl 24442 l/ 1968 Smith 24442 X US. Cl. X.R. 244l7.25
US647513A 1966-06-20 1967-06-20 Jet flaps Expired - Lifetime US3478987A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR66165A FR1496151A (en) 1966-06-20 1966-06-20 Diverter flap for fluid jet

Publications (1)

Publication Number Publication Date
US3478987A true US3478987A (en) 1969-11-18

Family

ID=8611343

Family Applications (1)

Application Number Title Priority Date Filing Date
US647513A Expired - Lifetime US3478987A (en) 1966-06-20 1967-06-20 Jet flaps

Country Status (4)

Country Link
US (1) US3478987A (en)
DE (1) DE1506589B1 (en)
FR (1) FR1496151A (en)
GB (1) GB1174497A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039121A1 (en) * 1979-10-19 1981-04-30 British Aerospace, Weybridge, Surrey WING WITH CHANGEABLE BOWL
US5207558A (en) * 1991-10-30 1993-05-04 The United States Of America As Represented By The Secretary Of The Air Force Thermally actuated vane flow control
US5527151A (en) * 1992-03-04 1996-06-18 Northern Power Systems, Inc. Advanced wind turbine with lift-destroying aileron for shutdown
US5527152A (en) * 1994-03-04 1996-06-18 Northern Power Systems, Inc. Advanced wind turbine with lift cancelling aileron for shutdown
US5531406A (en) * 1994-05-16 1996-07-02 University Of Southern California Flow-vectored trailing-edge for airfoils and jets
US6076775A (en) * 1997-07-31 2000-06-20 Daimlerchrysler Ag Airfoil with a landing flap having a flexible trailing edge
US20060022085A1 (en) * 2004-07-30 2006-02-02 Ferman Marty A Device and method of control of fixed and variable geometry rhomboid wings
US20100327121A1 (en) * 2009-06-25 2010-12-30 Airbus Operations Limited Cross-bleed dam
US20110052381A1 (en) * 2009-08-28 2011-03-03 Hoke James B Combustor turbine interface for a gas turbine engine
US20160258385A1 (en) * 2015-03-02 2016-09-08 The Boeing Company Dual-Cam Bellcrank Mechanism
EP2604509A3 (en) * 2011-12-12 2017-04-05 The Boeing Company Wing variable camber trailing edge tip
US20170167610A1 (en) * 2015-12-15 2017-06-15 Airbus Operations Limited Seal
WO2017185121A1 (en) * 2016-04-29 2017-11-02 Facc Ag Aerodynamic profiled body for an aircraft
WO2021257271A1 (en) * 2020-06-17 2021-12-23 Coflow Jet, LLC Fluid systems having a variable configuration
US11485472B2 (en) 2017-10-31 2022-11-01 Coflow Jet, LLC Fluid systems that include a co-flow jet
US11920617B2 (en) 2019-07-23 2024-03-05 Coflow Jet, LLC Fluid systems and methods that address flow separation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2159184C2 (en) * 1971-11-29 1983-12-08 Eduard 8011 Brunnthal Weinert Stol aircraft with wing tip gas outlet - has orifices all along wing tips, ailerons and flaps and has single lever flap setting and nozzle tilting
CN115520405B (en) * 2022-11-29 2023-04-14 四川腾盾科技有限公司 Design method and structure of trailing edge fullerene flap sliding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259341A (en) * 1964-05-07 1966-07-05 Boeing Co Blown movable airfoil
US3361386A (en) * 1965-08-09 1968-01-02 Gene W. Smith Vertical or short take-off and landing aircraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259341A (en) * 1964-05-07 1966-07-05 Boeing Co Blown movable airfoil
US3361386A (en) * 1965-08-09 1968-01-02 Gene W. Smith Vertical or short take-off and landing aircraft

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039121A1 (en) * 1979-10-19 1981-04-30 British Aerospace, Weybridge, Surrey WING WITH CHANGEABLE BOWL
US4361299A (en) * 1979-10-19 1982-11-30 British Aerospace Public Limited Company Variable camber wings
US5207558A (en) * 1991-10-30 1993-05-04 The United States Of America As Represented By The Secretary Of The Air Force Thermally actuated vane flow control
US5527151A (en) * 1992-03-04 1996-06-18 Northern Power Systems, Inc. Advanced wind turbine with lift-destroying aileron for shutdown
US5527152A (en) * 1994-03-04 1996-06-18 Northern Power Systems, Inc. Advanced wind turbine with lift cancelling aileron for shutdown
US5531406A (en) * 1994-05-16 1996-07-02 University Of Southern California Flow-vectored trailing-edge for airfoils and jets
US6076775A (en) * 1997-07-31 2000-06-20 Daimlerchrysler Ag Airfoil with a landing flap having a flexible trailing edge
US20060022085A1 (en) * 2004-07-30 2006-02-02 Ferman Marty A Device and method of control of fixed and variable geometry rhomboid wings
US7131611B2 (en) * 2004-07-30 2006-11-07 Saint Louis University Device and method of control of fixed and variable geometry rhomboid wings
US20100327121A1 (en) * 2009-06-25 2010-12-30 Airbus Operations Limited Cross-bleed dam
US8556214B2 (en) * 2009-06-25 2013-10-15 Airbus Operations Limited Cross-bleed dam
US20110052381A1 (en) * 2009-08-28 2011-03-03 Hoke James B Combustor turbine interface for a gas turbine engine
US9650903B2 (en) 2009-08-28 2017-05-16 United Technologies Corporation Combustor turbine interface for a gas turbine engine
EP2604509A3 (en) * 2011-12-12 2017-04-05 The Boeing Company Wing variable camber trailing edge tip
US20160258385A1 (en) * 2015-03-02 2016-09-08 The Boeing Company Dual-Cam Bellcrank Mechanism
US9885314B2 (en) * 2015-03-02 2018-02-06 The Boeing Company Dual-cam bellcrank mechanism
US20170167610A1 (en) * 2015-12-15 2017-06-15 Airbus Operations Limited Seal
US10480653B2 (en) * 2015-12-15 2019-11-19 Airbus Operations Limited Seal for aircraft wing
US11346446B2 (en) 2015-12-15 2022-05-31 Airbus Operations Limited Seal
WO2017185121A1 (en) * 2016-04-29 2017-11-02 Facc Ag Aerodynamic profiled body for an aircraft
RU2698600C1 (en) * 2016-04-29 2019-08-28 Фасс Аг Aircraft with a winglet or a plane control element
US11186355B2 (en) 2016-04-29 2021-11-30 Facc Ag Morphing control surface
US11485472B2 (en) 2017-10-31 2022-11-01 Coflow Jet, LLC Fluid systems that include a co-flow jet
US11920617B2 (en) 2019-07-23 2024-03-05 Coflow Jet, LLC Fluid systems and methods that address flow separation
WO2021257271A1 (en) * 2020-06-17 2021-12-23 Coflow Jet, LLC Fluid systems having a variable configuration

Also Published As

Publication number Publication date
FR1496151A (en) 1967-09-29
GB1174497A (en) 1969-12-17
DE1506589B1 (en) 1969-10-02

Similar Documents

Publication Publication Date Title
US3478987A (en) Jet flaps
US4200253A (en) Aircraft wing drooping leading edge device
US4015787A (en) Aircraft wing
EP0130983B1 (en) Variable-camber airfoil
US3743219A (en) High lift leading edge device
US2289704A (en) Aircraft wing
US5158252A (en) Three-position variable camber Krueger leading edge flap
JPS647920B2 (en)
US4351502A (en) Continuous skin, variable camber airfoil edge actuating mechanism
US4120470A (en) Efficient trailing edge system for an aircraft wing
US4605187A (en) Wing flap mechanism
US4053124A (en) Variable camber airfoil
US2169416A (en) Slotted deflector flap
US3954230A (en) Flow elements for influencing flowing media
US3968946A (en) Extendable aerodynamic fairing
US2650047A (en) Variable camber wing
JPS62157896A (en) Movable blade with variable camber
US2261363A (en) Spoiler
US2734698A (en) Aikplane control surface and jet
US6164599A (en) Aerofoil profile with variable profile adaptation
JPS6324878B2 (en)
US2549760A (en) Aerodynamic flap balance and auxiliary airfoil
US2557829A (en) Aircraft control means
US9731812B2 (en) Flap mechanism and associated method
US3525576A (en) Jet flap control