US3476686A - Ashless lubricating oil detergents - Google Patents

Ashless lubricating oil detergents Download PDF

Info

Publication number
US3476686A
US3476686A US734210A US3476686DA US3476686A US 3476686 A US3476686 A US 3476686A US 734210 A US734210 A US 734210A US 3476686D A US3476686D A US 3476686DA US 3476686 A US3476686 A US 3476686A
Authority
US
United States
Prior art keywords
acid
amine
carbon atoms
carboxylic acid
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US734210A
Inventor
Joseph A Verdol
Donald J Carrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pony Industries Inc
Sinclair Research Inc
Original Assignee
Sinclair Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinclair Research Inc filed Critical Sinclair Research Inc
Application granted granted Critical
Publication of US3476686A publication Critical patent/US3476686A/en
Anticipated expiration legal-status Critical
Assigned to PONY INDUSTRIES, INC., A CORP. OF DE. reassignment PONY INDUSTRIES, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ATLANTIC RICHFIELD COMPANY, A DE. CORP.
Assigned to CIT GROUP/BUSINESS CREDIT, INC., THE, A NEW YORK CORP., MANUFACTURES HANOVER TRUST COMPANY, A NEW YORK CORP., CHASE MANHATTAN BANK, N.A., THE, A NATIONAL BANKING ASSOCIATION reassignment CIT GROUP/BUSINESS CREDIT, INC., THE, A NEW YORK CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PONY INDUSTRIES, INC.
Assigned to PONY INDUSTRIES, INC., A CORP. OF DE reassignment PONY INDUSTRIES, INC., A CORP. OF DE RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). PREVIOUSLY RECORDED ON REEL 4796 FRAME 001. Assignors: MANUFACTURERS HANOVER TRUST COMPANY
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/304Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/32Esters of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/084Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/043Polyoxyalkylene ethers with a thioether group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10

Definitions

  • Ashless lubricating oil detergents are provided by the reaction product of (A) a carboxylic acid or acid anhydride containing addition copolymer having at least two acid or anhydride groups, optionally composed in part of monomeric carboxylic acid or anhydride,
  • the present invention is directed to novel materials useful, for instance, as additives for lubricating oils. More specifically the invention concerns the reaction products of a carboxylic acid copolymer, an aminophenol, and an amine, and the alkaline metal salts of the reaction products which materials find use as lubricating oil detergents and anti-oxidants. If desired the carboxylic acid component can be composed in part of monomeric carboxylic acid or anhydride.
  • the base oil-soluble reaction product of a copolymeric carmboxylic acid, an aminophenol and an amine when added to a base oil of lubricating viscosity in small amounts, provides the oil with excellent dispersant and anti-oxidant properties.
  • the reaction product can also be used as an alkaline metal salt and can include monomeric carboxylic acid, for instance, reacted as an anhydride.
  • the sequence in which the reactants can be combined to afford the oil-soluble additives of the present invention may be varied depending upon the products which are being prepared. Regardless of the sequence of reaction and reaction conditions, however, about 0.1 to 2 moles, preferably about 0.2 to 1 mole, of total amine per average reactive carboxylic acid group (including an hydride groups as one such carboxyl group) is generally reacted per mole of reactive acid group, and at least about 0.2 mole, preferably up to about 2 moles, of the aminophenol per average basic nitrogen atom present in a mole of amine reactant, is reacted.
  • the aminophenol is present in an amount of about 0.2 to 1 mole per average moles of basic nitrogen atom in the amine.
  • the copolymeric carboxylic acids of the present invention may be the various materials having a polymeric backbone, preferably hydrocarbon and having at least two carboxylic acid or acid anhydride groups.
  • These polymeric materials include, for instance, the copolymers of ethylenically unsaturated carboxylic acids and anhydrides of 3 to 15 carbon atoms; and non-carboxylic addition polymerizable vinyl compounds of 2 to 12 carbon atoms such as for example ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, styrene or other polymerizable vinyl compounds; as well as copolymers of more than one of either the vinyl compounds or the unsaturated acids or both.
  • Preferred examples of these materials are styrenemaleic anhydride copolymers, alkylvinyl ether-maleic anhydride copolymers, ethylene-maleic anhydride copolymers, alpha-olefin-maleic anhydride copolymers, etc.
  • Other preferred copolymeric carboxylic acid anhydride products such as copolymers derived from the polymerization of styrene and acrylic acid; butadiene and acrylic acid; butadiene and methacrylic acid; styrene, alpha-olefin and maleic anhydride; styrene, alpha-olefin and acrylic acid, etc., can be employed to prepare additives of the present invention.
  • the average molecular weights of the copolymeric carboxylic acids may often vary from about 200 to 40,000, preferably about 400 to 10,000.
  • Particularly preferred acid reactants are the copolymer resins of the above-described vinyl compounds and maleic anhydride, for instance, styrene-maleic anhydride resins.
  • a mole ratio of vinyl compound to maleic anhydride is of about 1 to 4:1, preferably 1 to 3:1 is employed to prepare the copolymer.
  • These copolymer resins may contain repeating vinyl compound-maleic anhydride units and preferably have an average molecular weight of about 400 up to about 40,000 or more, preferably about 400 to 3,000.
  • the melting points of the lower molecular 3 Weight copolymers will generally range from about 80 to 300 C. as determined by the Fisher-Johns Melting Point Apparatus.
  • the determination of average molecular Weight as used herein is made by the Thermoelectric Differential Vapor Pressure Lowering Method on a Microlab Osmometer.
  • the copolymer carboxylic acid reactant can be composed in part of monomeric carboxylic acid, for instance, the latter material may be as much as 80 molar percent of the total carboxylic acid reactant. When the monomeric acid is used it may be a minor molar amount of the total carboxylic acid reactant and is preferably at least about 5 molar percent of the total when employed.
  • the monomeric carboxylic acid of the present invention may be a rnn0- or polycarboxylic acid including the corresponding acid anhydrides, esters or acid halides of the carboxylic acids.
  • the acid can be straight chain or branched, saturatred or unsaturated, aliphatic (including cycloaliphatic), aromatic or heterocyclic.
  • the monomeric carboxylic acids include, for instance, the monocarboxylic and polycarboxylic acids and their anhydrides, containing at least about 2, and often up to about 26 or more, carbon atoms.
  • the preferred monomeric carboxylic acids are the aliphatic monoand dicarboxylic or alkanoic acids and anhydrides of 2 to about 21 carbon atoms.
  • Illustrative of suitable monomeric carboxylic acids and anhydrides are the fatty acids, preferably of about 8 to 21 carbon atoms such as lauric acid, stearic acid, palmitic acid, oleic acid and the like.
  • Suitable monomeric polycarboxylic acids are succinic acid, alkyl or alkenyl succinic acids wherein the alkyl or alkenyl group contains say from 1 to about 200 carbon atoms or more, trimellitic acid, pyromellitic acid, naphthalene, 2,6-dicarboxylic acid, naphthoic anhydrides, phthalic anhydride, isophthalic acid, maleic anhydride, itaconic acid, etc.
  • the amine component of the reaction product of the invention can be either a monoamine or a polyamine or both, for instance, each in an amount of at least about 0.05 mole per mole of reactive carboxylic acid group of the carboxylic acid reactant.
  • the monoamine reactant of the invention includes those having the formula:
  • R is a monovalent hydrocarbon radical, preferably alkyl, including cycloalkyl, of up to about 100 or more carbon atoms, preferably about to 25 carbon atoms, and R is R or hydrogen.
  • at least one R has at least 5 carbon atoms, for instance about 12 to 20 carbon atoms.
  • R can be straight or branched chain, saturated or unsaturated, aliphatic or aromatic, and is preferably saturated.
  • the preferred monoamines are the primary monoamines.
  • Suitable monoamines are amyl amine, 2-ethy1hexyl amine, n-octyl amine, decyl amine, octadecyl amine, lauryl amine, stearyl amine, N-methylstearyl amine, N-ethyl octadecyl amine, 2-phenyl decyl amine, and the like or mixtures thereof.
  • the monoamine can also be substituted with groups which do not interfere with the reaction of the amino group of the amine with the acid moiety of the carboxylic acid component and do not otherwise unduly deleteriously affect the desired properties of the final reaction product.
  • Suitable polyamines of the invention include those represented by the formula:
  • n is a number of at least 1, commOnly 2 to about 10;
  • R is an alkylene radical of 2 to about 25 carbon atoms, preferably 2 to 19 carbon atoms, and R is selected from H and a hydrocarbon radical, such as alkyl, including cycloalkyl, of 1 to about 30 carbon atoms, preferably of 1 to about 7 carbon atoms. Both R and R can be substituted with non-deleterious groups.
  • polyamines include monoalkylene diamines, dialkylaminoalkylamines and the polyalkylenepolyamines.
  • suitable monoalkylene diamines are ethylene diamine, propylene diamine, butylene diamine, octylene diamine, etc.
  • suitable dialkylaminoalkylamines are dimethylaminomethylamine, dimethylaminoethylamine, dimethylaminopropylamine, dimethylaminobutylamine, diethylaminopropylamine, methylpropylaminoamylamine, propylbutylaminoethylamine, etc.
  • Nonlimiting examples of the polyalkylenepolyamine reactants are diethylenetriamine; triethylenetetram'ine; tetraethylenepentamine; etc.
  • R is selected from hydrogen and hydrocarbon groups such as alkyl, aryl, alkenyl and the like, and n is an integer of l to 4.
  • the R groups can be the same or different.
  • the present invention also contemplates use as the amino phenol component, aromatic derivatives other than phenyl derivatives as, for instance, aminonaphthols and similar derivatives of biphenyl, terphenyl, phenanthrene, anthracene, etc.
  • the total carbon atoms in the aminophenol may often range from 6 to about 24 or 30 or more.
  • the reSin i.e., the acid reactant
  • the amine component may be reacted directly with the aminophenol, such as p-aminophenol.
  • Reaction of the styrenemaleic anhydride copolymer and the amine may be conducted at a reaction temperature of about to 350 C., preferably about to 280 C.
  • Reaction of the resulting product with aminophenol is usually conducted at a temperature of about 125 to 350 C., preferably about 190 to 280 C. Both of the reactions are conveniently carried out at atmospheric pressure but subor super-atmospheric pressures can be employed, if desired.
  • the reaction may be carried out in bulk or in the presence of a mutual solvent for the reactant.
  • more than one carboxylic acid or carboxylic acid anhydride may be reacted with one or more of the amines of the invention.
  • the reactants can be reacted simultaneously, for instance, at about 125 to 350 C., preferably about 190 to 280 C.
  • Various orders of addition of the reactants can be used, for example, a portion of the amine such as the monoamine can be reacted with the carboxylic acid and aminophenol and then the resulting intermediate reacted with the polyamine.
  • Styrene-maleic anhydride resin-l-p-aminophenol with condensation product of an alkylsuccinic anhydride-polyamine
  • the condensation products of this invention are characterized as either having at least one reactive phenolic hydroxy group which remains unsubstituted or is replaced with an alkaline metal.
  • the oil-soluble alkaline metal salts, particularly the calcium salts, are effective for imparting thermal and oxidative stability to mineral oils.
  • alkaline metal is meant the alkaline metals such as sodium, potassium and lithium and the alkaline earth metals such as calcium, barium and strontium.
  • the alkaline salts can be prepared by neutralization of the condensation product with a basic compound of the alkaline metal as, for instance, the hydroxides, oxides, carbonates and the like or by neutralization with a metal oxide or hydroxide followed by preparation of the alkaline metal salt by metathesis.
  • a basic compound of the alkaline metal as, for instance, the hydroxides, oxides, carbonates and the like or by neutralization with a metal oxide or hydroxide followed by preparation of the alkaline metal salt by metathesis.
  • additional mineral oil of the type employed in preparing a mineral oil concentrate is added to the reaction mixture together with the basic compound and a small amount of Water to facilitate the neutralization.
  • Greater than stoichiometric equivalents of the alkaline earth metals can be used, if desired, to give basic salts.
  • the base oil into which the reaction product of the invention is incorporated can be of lubricating viscosity and can be a mineral oil or a synthetic oil.
  • the mineral lubricating oils can be, for instance, solvent extracted or solvent refined oils obtained in accordance with conventional methods of solvent refining lubricating oils. Frequently, the viscosity of these mineral oils will be about to 250 SUS at 210 F.
  • the mineral base oil may, for example, be derived from parafiinic naphthenic, as haltic or mixed base petroleum crudes, and if desired, a blend of solventtreated mid-continent neutrals and mid-continent bright stocks may be employed.
  • Synthetic oils to which the reaction product may be added include ester-based synthetic oil of lubricating viscosity which consists essentially of carbon, hydrogen and oxygen, e.g., di-3-ethylhexyl sebacate.
  • ester-based synthetic oil of lubricating viscosity which consists essentially of carbon, hydrogen and oxygen, e.g., di-3-ethylhexyl sebacate.
  • Various of these lubricating materials have been described in the literature and generally their viscosity ranges from the light to heavy oils, e.g., about 50 SUS at 100 F. to 250 SUS at 210 F., and preferably to 150 SUS at 210 F.
  • These esters are of improved thermal stability, low acid number and high flash and fire points.
  • monoesters and polyesters may be used alone or to achieve the most desirable viscosity characteristics
  • complex esters, diesters and polyesters may be blended with each CH CH 0 C in a other or with natural-occurring esters like castor oil to produce lubricating compositions of wide viscosity ranges which can be tailor-made to meet various specifications. This blending is performed, for example, by stirring together a quantity of diester and complex ester at an elevated temperature, altering the proportions of each component until the desired viscosity is reached.
  • ester base oils are disclosed in US. Patents Nos. 2,499,983, 2,499,984, 2,575,195, 2,575,196, 2,703,811, 2,705,724, and 2,723,286.
  • the synthetic base oils consist essentially of carbon, hydrogen and oxygen, i.e. the essential nuclear chemical structure is formed by these elements alone.
  • these oils may be substituted with other elements such as halogens, e.g. chlorine and fluorine.
  • compositions of this invention incorporate a small, minor amount of the above-described reaction product sufficient to provide the base oil of lubricating viscosity, which is the major portion of the compositions, with improved detergent and antioxidant properties.
  • This amount is generally about 0.1 to 10 weight percent or more depending on the particular base oil used and its application.
  • the preferred concentration is about 0.2 to 5%.
  • compositions of this invention Materials normally incorporated in lubricating oils and greases to impart special characteristics can be added to the composition of this invention. These include corrosion inhibitors, extreme pressure agents, anti-wear agents, etc.
  • the amount of additives included in the composition usually ranges from about 0.01 weight percent up to about 20 or more weight percent, and in general they can be employed in any amounts desired as long as the composition is not unduly deleteriously aifected.
  • the mixture was heated at a temperature of 220-230 C. for a period of 2 hours, during which time the theoretical amount of water was collected.
  • the product was an amber viscous liquid, which was completely soluble in lubricating oils and most organic solvents.
  • the properties displayed by this product in the lubricatng oil of Example I are shown below:
  • the above resin showed good properties as an ashless detergent and dispersant when formulated in lubricating oils.
  • Lubricating oils compositions containing this additive also showed improved oxidation resistance.
  • a lubricating oil composition consisting essentially of base oil of lubricating viscosity and a minor amount sufficient to improve the detergent properties of said oil, of an additive comprising the base oil-soluble reaction product obtained by reaction at about 125 to 350 C. of:
  • Carboxylic acid consisting essentially of copolymer of an addition polymerizable, noncarboxylic vinyl compound of 2 to 12 carbon atoms selected from the group consisting of styrene, alkyl vinyl ethers and alpha-olefins, and mono-ethylenically unsaturated carboxylic acid or anhydride of 3 to 15 carbon atoms and at least two carboxylic acid groups, said polymer having a molecular weight of about 200 to 40,000, and 0 toabout mole percent of monomeric carboxylic acid of at least about 2 carbon atoms,
  • n is an integer of 1 to 10; R is alkylene of 2 to 25 carbon atoms and R is selected from the group consisting of H and hydrocarbon of 1 to about 30 carbon atoms, and
  • a lubricating oil composition consisting essentially of base mineral oil of lubricating viscosity and about 0.1 to 10% by weight of an additive comprising the base oilsoluble reaction product obtained by reaction at about to 350 C. of:
  • R is alkyl of 5 to 25 carbon atoms and R is selected from the group consisting of hydrogen or R, and
  • n is an integer of 2 to 10; R is alkylene of 2 to 7 carbon atoms and, R is selected from the group consisting of hydrogen and alkyl of 1 to about 7 carbon atoms, and
  • a lubricating oil composition consisting essentially of base mineral oil of lubricating viscosity and about 0.1 to 10% by weight of an additive comprising the base oilsoluble reaction product obtained by reaction at about 125 to 350 C. of:
  • the mole ratio of B to A being about 0.1 to 2 moles of B per reactive carboxylic acid group per mole of A and said reactant C being present in an amount of about 0.2 to 2 moles per basic nitrogen per mole of reactant B.
  • composition of claim 3 wherein said amine is 0 a mixture of octadecylamine and diethylaminopropylamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

United States Patent US. Cl. 252-515 4 Claims ABSTRACT OF THE DISCLOSURE Ashless lubricating oil detergents are provided by the reaction product of (A) a carboxylic acid or acid anhydride containing addition copolymer having at least two acid or anhydride groups, optionally composed in part of monomeric carboxylic acid or anhydride,
(B) an amine, and
(C) an aminophenol.
This application is a continuation-in-part of application Ser. No. 487,624, filed Sept. 15, 1965, now abandoned.
The present invention is directed to novel materials useful, for instance, as additives for lubricating oils. More specifically the invention concerns the reaction products of a carboxylic acid copolymer, an aminophenol, and an amine, and the alkaline metal salts of the reaction products which materials find use as lubricating oil detergents and anti-oxidants. If desired the carboxylic acid component can be composed in part of monomeric carboxylic acid or anhydride.
The use of metallic detergents in internal combustion engine lubricating oil compositions is well known, particular utility for these detergents being found in lubricating oil compositions which are subjected to heavy duty service resulting in the oxidation of the oil with the resultant formation of sludge and varnish. Although these detergents such as metallic petroleum sulfonates have been very useful in maintaining sludge and varnish suspended in the oil they have the disadvantage of being themselves subject to break-down and deterioration resulting in the formation of a metallic ash which accumulates in the combustion chamber of the internal engine.
Another drawback of many metallic detergents is that they lack sufficient basicity to effectively counteract the deleterious acidic materials commonly found in lubricating oils. Nor have these metallic detergents proven effective in dispersing the blow-by contamination of the lubricating oil when the engine is operated in light service and at low operating temperatures. When the engine is cold the cylinder walls act as a condenser for the fuel vapors and combustion products in the cylinder. These contaminants wash past or blow-by the piston rings into the crankcase wherein they tend to emulsify and coagulate causing insoluble sludge deposits which the usual metallic detergents are unable to redisperse. To overcome these blow-by contaminants and to disperse the sludge deposits in the crankcase, attempts have been made to provide ashless dispersants which will prove effective at the low operating temperatures found in light service internal combustion engines.
"Ice
It has now been found that the base oil-soluble reaction product of a copolymeric carmboxylic acid, an aminophenol and an amine when added to a base oil of lubricating viscosity in small amounts, provides the oil with excellent dispersant and anti-oxidant properties. The reaction product can also be used as an alkaline metal salt and can include monomeric carboxylic acid, for instance, reacted as an anhydride.
The sequence in which the reactants can be combined to afford the oil-soluble additives of the present invention may be varied depending upon the products which are being prepared. Regardless of the sequence of reaction and reaction conditions, however, about 0.1 to 2 moles, preferably about 0.2 to 1 mole, of total amine per average reactive carboxylic acid group (including an hydride groups as one such carboxyl group) is generally reacted per mole of reactive acid group, and at least about 0.2 mole, preferably up to about 2 moles, of the aminophenol per average basic nitrogen atom present in a mole of amine reactant, is reacted. Advantageously, the aminophenol is present in an amount of about 0.2 to 1 mole per average moles of basic nitrogen atom in the amine.
The three major reactants which can be employed to form the reaction products of the reaction will be described under separate headings.
THE COPOLYMER CARBOXYLIC ACID REACTANT The copolymeric carboxylic acids of the present invention may be the various materials having a polymeric backbone, preferably hydrocarbon and having at least two carboxylic acid or acid anhydride groups. These polymeric materials include, for instance, the copolymers of ethylenically unsaturated carboxylic acids and anhydrides of 3 to 15 carbon atoms; and non-carboxylic addition polymerizable vinyl compounds of 2 to 12 carbon atoms such as for example ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene, methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, styrene or other polymerizable vinyl compounds; as well as copolymers of more than one of either the vinyl compounds or the unsaturated acids or both. Preferred examples of these materials are styrenemaleic anhydride copolymers, alkylvinyl ether-maleic anhydride copolymers, ethylene-maleic anhydride copolymers, alpha-olefin-maleic anhydride copolymers, etc. Other preferred copolymeric carboxylic acid anhydride products such as copolymers derived from the polymerization of styrene and acrylic acid; butadiene and acrylic acid; butadiene and methacrylic acid; styrene, alpha-olefin and maleic anhydride; styrene, alpha-olefin and acrylic acid, etc., can be employed to prepare additives of the present invention. The average molecular weights of the copolymeric carboxylic acids may often vary from about 200 to 40,000, preferably about 400 to 10,000.
Particularly preferred acid reactants are the copolymer resins of the above-described vinyl compounds and maleic anhydride, for instance, styrene-maleic anhydride resins. Usually a mole ratio of vinyl compound to maleic anhydride is of about 1 to 4:1, preferably 1 to 3:1 is employed to prepare the copolymer. These copolymer resins may contain repeating vinyl compound-maleic anhydride units and preferably have an average molecular weight of about 400 up to about 40,000 or more, preferably about 400 to 3,000. The melting points of the lower molecular 3 Weight copolymers will generally range from about 80 to 300 C. as determined by the Fisher-Johns Melting Point Apparatus. The determination of average molecular Weight as used herein is made by the Thermoelectric Differential Vapor Pressure Lowering Method on a Microlab Osmometer.
The copolymer carboxylic acid reactant can be composed in part of monomeric carboxylic acid, for instance, the latter material may be as much as 80 molar percent of the total carboxylic acid reactant. When the monomeric acid is used it may be a minor molar amount of the total carboxylic acid reactant and is preferably at least about 5 molar percent of the total when employed. The monomeric carboxylic acid of the present invention may be a rnn0- or polycarboxylic acid including the corresponding acid anhydrides, esters or acid halides of the carboxylic acids. The acid can be straight chain or branched, saturatred or unsaturated, aliphatic (including cycloaliphatic), aromatic or heterocyclic. The monomeric carboxylic acids include, for instance, the monocarboxylic and polycarboxylic acids and their anhydrides, containing at least about 2, and often up to about 26 or more, carbon atoms. The preferred monomeric carboxylic acids are the aliphatic monoand dicarboxylic or alkanoic acids and anhydrides of 2 to about 21 carbon atoms. Illustrative of suitable monomeric carboxylic acids and anhydrides are the fatty acids, preferably of about 8 to 21 carbon atoms such as lauric acid, stearic acid, palmitic acid, oleic acid and the like. Examples of suitable monomeric polycarboxylic acids are succinic acid, alkyl or alkenyl succinic acids wherein the alkyl or alkenyl group contains say from 1 to about 200 carbon atoms or more, trimellitic acid, pyromellitic acid, naphthalene, 2,6-dicarboxylic acid, naphthoic anhydrides, phthalic anhydride, isophthalic acid, maleic anhydride, itaconic acid, etc.
AMINE REACT ANT The amine component of the reaction product of the invention can be either a monoamine or a polyamine or both, for instance, each in an amount of at least about 0.05 mole per mole of reactive carboxylic acid group of the carboxylic acid reactant.
The monoamine reactant of the invention includes those having the formula:
wherein R is a monovalent hydrocarbon radical, preferably alkyl, including cycloalkyl, of up to about 100 or more carbon atoms, preferably about to 25 carbon atoms, and R is R or hydrogen. Advantageously, at least one R has at least 5 carbon atoms, for instance about 12 to 20 carbon atoms. R can be straight or branched chain, saturated or unsaturated, aliphatic or aromatic, and is preferably saturated. The preferred monoamines are the primary monoamines. Examples of suitable monoamines are amyl amine, 2-ethy1hexyl amine, n-octyl amine, decyl amine, octadecyl amine, lauryl amine, stearyl amine, N-methylstearyl amine, N-ethyl octadecyl amine, 2-phenyl decyl amine, and the like or mixtures thereof. The monoamine can also be substituted with groups which do not interfere with the reaction of the amino group of the amine with the acid moiety of the carboxylic acid component and do not otherwise unduly deleteriously affect the desired properties of the final reaction product.
Suitable polyamines of the invention include those represented by the formula:
wherein n is a number of at least 1, commOnly 2 to about 10; R is an alkylene radical of 2 to about 25 carbon atoms, preferably 2 to 19 carbon atoms, and R is selected from H and a hydrocarbon radical, such as alkyl, including cycloalkyl, of 1 to about 30 carbon atoms, preferably of 1 to about 7 carbon atoms. Both R and R can be substituted with non-deleterious groups.
These polyamines include monoalkylene diamines, dialkylaminoalkylamines and the polyalkylenepolyamines. Illustrative of suitable monoalkylene diamines are ethylene diamine, propylene diamine, butylene diamine, octylene diamine, etc. Examples of suitable dialkylaminoalkylamines are dimethylaminomethylamine, dimethylaminoethylamine, dimethylaminopropylamine, dimethylaminobutylamine, diethylaminopropylamine, methylpropylaminoamylamine, propylbutylaminoethylamine, etc. Nonlimiting examples of the polyalkylenepolyamine reactants are diethylenetriamine; triethylenetetram'ine; tetraethylenepentamine; etc.
THE AMINOPHENOL wherein R is selected from hydrogen and hydrocarbon groups such as alkyl, aryl, alkenyl and the like, and n is an integer of l to 4. The R groups can be the same or different. The present invention also contemplates use as the amino phenol component, aromatic derivatives other than phenyl derivatives as, for instance, aminonaphthols and similar derivatives of biphenyl, terphenyl, phenanthrene, anthracene, etc. The total carbon atoms in the aminophenol may often range from 6 to about 24 or 30 or more.
As discussed above the sequence of reaction can vary depending upon the particular reactants employed. For instance, when preparing reaction products from styrenemaleic anhydride resins, the reSin (i.e., the acid reactant) may first be reacted with the amine component and the resulting product then reacted directly with the aminophenol, such as p-aminophenol. Reaction of the styrenemaleic anhydride copolymer and the amine may be conducted at a reaction temperature of about to 350 C., preferably about to 280 C. Reaction of the resulting product with aminophenol is usually conducted at a temperature of about 125 to 350 C., preferably about 190 to 280 C. Both of the reactions are conveniently carried out at atmospheric pressure but subor super-atmospheric pressures can be employed, if desired. The reaction may be carried out in bulk or in the presence of a mutual solvent for the reactant.
In many instances, more than one carboxylic acid or carboxylic acid anhydride may be reacted with one or more of the amines of the invention. Also, the reactants can be reacted simultaneously, for instance, at about 125 to 350 C., preferably about 190 to 280 C. Various orders of addition of the reactants can be used, for example, a portion of the amine such as the monoamine can be reacted with the carboxylic acid and aminophenol and then the resulting intermediate reacted with the polyamine.
The following is illustrative of one of the reactions that may be employed to produce the products of the present invention.
Styrene-maleic anhydride resin-l-p-aminophenol with condensation product of an alkylsuccinic anhydride-polyamine.
CHa-CH-CH-CH OH CHa-C The condensation products of this invention are characterized as either having at least one reactive phenolic hydroxy group which remains unsubstituted or is replaced with an alkaline metal. The oil-soluble alkaline metal salts, particularly the calcium salts, are effective for imparting thermal and oxidative stability to mineral oils. By alkaline metal is meant the alkaline metals such as sodium, potassium and lithium and the alkaline earth metals such as calcium, barium and strontium. The alkaline salts can be prepared by neutralization of the condensation product with a basic compound of the alkaline metal as, for instance, the hydroxides, oxides, carbonates and the like or by neutralization with a metal oxide or hydroxide followed by preparation of the alkaline metal salt by metathesis. Preferably when carrying out the neutralization of the condensation product, additional mineral oil of the type employed in preparing a mineral oil concentrate is added to the reaction mixture together with the basic compound and a small amount of Water to facilitate the neutralization. Greater than stoichiometric equivalents of the alkaline earth metals can be used, if desired, to give basic salts.
The base oil into which the reaction product of the invention is incorporated can be of lubricating viscosity and can be a mineral oil or a synthetic oil. The mineral lubricating oils can be, for instance, solvent extracted or solvent refined oils obtained in accordance with conventional methods of solvent refining lubricating oils. Frequently, the viscosity of these mineral oils will be about to 250 SUS at 210 F. The mineral base oil may, for example, be derived from parafiinic naphthenic, as haltic or mixed base petroleum crudes, and if desired, a blend of solventtreated mid-continent neutrals and mid-continent bright stocks may be employed.
Synthetic oils to which the reaction product may be added include ester-based synthetic oil of lubricating viscosity which consists essentially of carbon, hydrogen and oxygen, e.g., di-3-ethylhexyl sebacate. Various of these lubricating materials have been described in the literature and generally their viscosity ranges from the light to heavy oils, e.g., about 50 SUS at 100 F. to 250 SUS at 210 F., and preferably to 150 SUS at 210 F. These esters are of improved thermal stability, low acid number and high flash and fire points. The complex esters, diesters,
monoesters and polyesters may be used alone or to achieve the most desirable viscosity characteristics, complex esters, diesters and polyesters may be blended with each CH CH 0 C in a other or with natural-occurring esters like castor oil to produce lubricating compositions of wide viscosity ranges which can be tailor-made to meet various specifications. This blending is performed, for example, by stirring together a quantity of diester and complex ester at an elevated temperature, altering the proportions of each component until the desired viscosity is reached.
Various useful ester base oils are disclosed in US. Patents Nos. 2,499,983, 2,499,984, 2,575,195, 2,575,196, 2,703,811, 2,705,724, and 2,723,286. Generally, the synthetic base oils consist essentially of carbon, hydrogen and oxygen, i.e. the essential nuclear chemical structure is formed by these elements alone. However, these oils may be substituted with other elements such as halogens, e.g. chlorine and fluorine. Some representative components of ester lubricants are ethyl palmitate, ethyl stearate, di-(Z-ethylhexyl) sebacate, ethylene glycol dilaurate, di- (2-ethylhexyl) phthalate, di-(l,3-methyl=butyl) adipate, di-(Z-ethylbutyl) adipate, di-(1ethylpropyl) adipate, diethyl oxylate, glycerol tri-n-acetate, di-cyclohexyl adipate, di-(undecyl) sebacate, tetraethylene glycol di-(Z-ethylenehexoate), di-Cellosolve phthalate, butyl phthallyl butyl glycolate, di-n-hexyl fumarate polymer, dibenzyl sebacate and diethylene glycol bis-(2-n-butoxy ethyl carbonate). 2-ethyl-hexyl-adipate-neopentyl glyolyadipate-Z-ethylhexyl, is a representative complex ester.
The compositions of this invention incorporate a small, minor amount of the above-described reaction product sufficient to provide the base oil of lubricating viscosity, which is the major portion of the compositions, with improved detergent and antioxidant properties. This amount is generally about 0.1 to 10 weight percent or more depending on the particular base oil used and its application. The preferred concentration is about 0.2 to 5%.
Materials normally incorporated in lubricating oils and greases to impart special characteristics can be added to the composition of this invention. These include corrosion inhibitors, extreme pressure agents, anti-wear agents, etc. The amount of additives included in the composition usually ranges from about 0.01 weight percent up to about 20 or more weight percent, and in general they can be employed in any amounts desired as long as the composition is not unduly deleteriously aifected.
The following examples are included to further illustrate the present invention.
EXAMPLE I Preparation of mixed octadecylamine, diethylaminopropyl amine and p-aminophenol condensation products with styrene-maleic anhydride resins Into a 1-liter resin kettle, equipped with a stirrer, reflux condenser (and Dean Stark trap), thermometer, nitrogen inlet tube, was placed 202 gms. of a 600-700 molecular weight styrene-maleic anhydride copolymer (of 1:1 styrene to maleic anhydride mole ratio), 243 grams of octadecylamine, 10.9 gms. of p-aminophenol and 469 gms. of 95 VI mineral lubricating oil. The mixture was heated to 220 C. until the water of reaction began to collect in the Dean Stark trap. The diethylaminopropyl amine (13 gms., 0.1 mole) was added dropwise to the mixture and the reaction continued for a period of 3 hours at 220 C. The resulting product was a dark brown, viscous liquid, which was completely soluble in parafiinic lubricating oils and most organic solvents. The properties of this additive displayed in a lubricating oil having a VI of 95 and a viscosity SUS at 100 F. of 150 were as follows:
Viscosity Pour. KVlOO KV210 dex F.
Percent concentration:
Preparation of octadecylamine, p-aminophenol derivatives of styrene-maleic anhydride resin Into a 1-liter resin kettle, equipped as previously described, was placed 395 gms. of the lubricating oil of Example I, 202 gms. (1 mole) of styrene-maleic anhydride copolymer resin (approximately 600-700 molecular weight and a mole ratio of styrenezmaleic anhydride of 1:1), 182 gms. (0.67 mole) of octadecylamine and 109 gms. (0.1 mole) of para-aminophenol. The mixture was heated at a temperature of 220-230 C. for a period of 2 hours, during which time the theoretical amount of water was collected. The product was an amber viscous liquid, which was completely soluble in lubricating oils and most organic solvents. The properties displayed by this product in the lubricatng oil of Example I are shown below:
Viscosity Pour KVIOO KV210 index F Percent concentration:
The above resin showed good properties as an ashless detergent and dispersant when formulated in lubricating oils. Lubricating oils compositions containing this additive also showed improved oxidation resistance.
EXAMPLE III Preparation of reaction product of styrene-maleic anhydride resin, diethylene triamine, polybutenyl succinic anhydride and p-aminophenol 27 gms. of p-aminophenol, and 29 gms. of the lubricating base oil of Example I. The mixture was heated at 210- 230 C. for 8 hours. The resulting product was an amber viscous liquid, which showed good properties as an ashless detergent-inhibitor in lubricating oils. The additive also showed good oxidation inhibiting properties.
In addition to the alkaline metal salts described above, other useful salts of the reaction product of the invention which can be prepared are the nickel, zinc, aluminum and other metals.
It is claimed:
1. A lubricating oil composition consisting essentially of base oil of lubricating viscosity and a minor amount sufficient to improve the detergent properties of said oil, of an additive comprising the base oil-soluble reaction product obtained by reaction at about 125 to 350 C. of:
(A) Carboxylic acid consisting essentially of copolymer of an addition polymerizable, noncarboxylic vinyl compound of 2 to 12 carbon atoms selected from the group consisting of styrene, alkyl vinyl ethers and alpha-olefins, and mono-ethylenically unsaturated carboxylic acid or anhydride of 3 to 15 carbon atoms and at least two carboxylic acid groups, said polymer having a molecular weight of about 200 to 40,000, and 0 toabout mole percent of monomeric carboxylic acid of at least about 2 carbon atoms,
(B) Amine selected from the group consisting of:
(1) Polyamine having the formula:
RI R-I IH wherein R is alkyl of about 5 to 25 carbon atoms, and R is selected from the group consisting of hydrogen and R, and (2) Polyamine having the formula:
N(RNH)..-H
wherein n is an integer of 1 to 10; R is alkylene of 2 to 25 carbon atoms and R is selected from the group consisting of H and hydrocarbon of 1 to about 30 carbon atoms, and
(C) Aminophenol having from 6 to about 30 carbon atoms; the mole ratio of B to A being about 0.1 to 2 moles of B per reactive carboxylic acid group per mole of A, and said reactant C being present in an amount of about 0.2 to 2 moles per mole of basic nitrogen per mole of reactant B.
2. A lubricating oil composition consisting essentially of base mineral oil of lubricating viscosity and about 0.1 to 10% by weight of an additive comprising the base oilsoluble reaction product obtained by reaction at about to 350 C. of:
(A) Copolymer of styrene and maleic anhydride having a mole ratio of styrene to maleic anhydride of about 1 to 3:1 and a molecular weight of about 400 to 3000;
(B) Amine selected from the group consisting of:
(l) Monoamine having the formula:
wherein R is alkyl of 5 to 25 carbon atoms and R is selected from the group consisting of hydrogen or R, and
(2) Polyamine having the formula:
wherein n is an integer of 2 to 10; R is alkylene of 2 to 7 carbon atoms and, R is selected from the group consisting of hydrogen and alkyl of 1 to about 7 carbon atoms, and
(C) Aminophenol having from 6 to about 24 carbon atoms; the mole ratio of B to A being about 0.1 to 2 moles of B per reactive carboxylic acid group per mole of-A and said reactant C being present in an amount of about 0.2 to 2 moles per basic nitrogen per mole of reactant B.
3. A lubricating oil composition consisting essentially of base mineral oil of lubricating viscosity and about 0.1 to 10% by weight of an additive comprising the base oilsoluble reaction product obtained by reaction at about 125 to 350 C. of:
(A) Copolymer of styrene and maleic anhydride having a mole ratio of styrene to maleic anhydride of about 1 to 3:1 and a molecular weight of about 400 to 3000 reacted with (B) Amine selected from the group consisting of:
(l) Monoarnine having the formula:
RNH
wherein R is alkyl or about 12 to 28 carbon atoms, and (2) Polyamide having the formula:
wherein n is an integer of 2 to 10; R is alkyl of 2 to 7 carbon atoms, and
(C) Para-aminophenol;
the mole ratio of B to A being about 0.1 to 2 moles of B per reactive carboxylic acid group per mole of A and said reactant C being present in an amount of about 0.2 to 2 moles per basic nitrogen per mole of reactant B.
4. The composition of claim 3 wherein said amine is 0 a mixture of octadecylamine and diethylaminopropylamine.
References Cited UNITED STATES PATENTS 2,205,172 6/ 1940 Musselman et al. 3,048,544 8/ 1962 Stewart et al. 3,110,673 11/1963 Benoit. 3,291,731 12/ 1966 Crowley et al.
FOREIGN PATENTS 748,633 5/1956 Great Britain.
DANIEL E. WYMAN, Primary Examiner W. J. SHINE, Assistant Examiner UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 3- -|-76.686 Dated flovember Ll, Inventor(s) Joseph A. Verdol and Donald J. Carrow It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 2, "carmboxylic" should read --ca.rboxylic--.
Column 8, line 29, claim I, "Polyamine" should read --Monoa.mine--.
lGHED Am.) SEALED sin-1W SEAL) Attest:
Fletcher!!- T mm: E. m, .m. Attestmg Offi er Gomissioner of Patents FORM PO-105OHCI-69) h "HI
US734210A 1968-06-04 1968-06-04 Ashless lubricating oil detergents Expired - Lifetime US3476686A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73421068A 1968-06-04 1968-06-04

Publications (1)

Publication Number Publication Date
US3476686A true US3476686A (en) 1969-11-04

Family

ID=24950740

Family Applications (1)

Application Number Title Priority Date Filing Date
US734210A Expired - Lifetime US3476686A (en) 1968-06-04 1968-06-04 Ashless lubricating oil detergents

Country Status (1)

Country Link
US (1) US3476686A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
DE4290288C2 (en) * 1991-02-05 1995-02-02 Kansai Paint Co Ltd Film-formable chelating resin, process for producing the same, use of the same and process for forming an electrophoretic coating
WO2015134129A2 (en) 2014-03-05 2015-09-11 The Lubrizol Corporation Emulsifier components and methods of using the same
US20220364002A1 (en) * 2021-04-21 2022-11-17 Ecolab Usa Inc. Asphaltene and paraffin dispersant compositions and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205172A (en) * 1937-11-26 1940-06-18 Standard Oil Co Preparation of lubricants
GB748633A (en) * 1952-12-26 1956-05-09 California Research Corp Lubricant composition
US3048544A (en) * 1959-06-10 1962-08-07 California Research Corp Lubricant composition
US3110673A (en) * 1961-03-31 1963-11-12 California Research Corp Lubricant composition
US3291731A (en) * 1962-02-05 1966-12-13 Exxon Research Engineering Co Incorporating sodium nitrite into lubricant compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205172A (en) * 1937-11-26 1940-06-18 Standard Oil Co Preparation of lubricants
GB748633A (en) * 1952-12-26 1956-05-09 California Research Corp Lubricant composition
US3048544A (en) * 1959-06-10 1962-08-07 California Research Corp Lubricant composition
US3110673A (en) * 1961-03-31 1963-11-12 California Research Corp Lubricant composition
US3291731A (en) * 1962-02-05 1966-12-13 Exxon Research Engineering Co Incorporating sodium nitrite into lubricant compositions

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471091A (en) * 1982-08-09 1984-09-11 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4486573A (en) * 1982-08-09 1984-12-04 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4489194A (en) * 1982-08-09 1984-12-18 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high/low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4564460A (en) * 1982-08-09 1986-01-14 The Lubrizol Corporation Hydrocarbyl-substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4575526A (en) * 1982-08-09 1986-03-11 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylaging agent derivative containing combinations, and fuels containing same
US4596663A (en) * 1982-08-09 1986-06-24 The Lubrizol Corporation Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US4623684A (en) 1982-08-09 1986-11-18 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
US5041622A (en) * 1988-04-22 1991-08-20 The Lubrizol Corporation Three-step process for making substituted carboxylic acids and derivatives thereof
DE4290288C2 (en) * 1991-02-05 1995-02-02 Kansai Paint Co Ltd Film-formable chelating resin, process for producing the same, use of the same and process for forming an electrophoretic coating
WO2015134129A2 (en) 2014-03-05 2015-09-11 The Lubrizol Corporation Emulsifier components and methods of using the same
US20220364002A1 (en) * 2021-04-21 2022-11-17 Ecolab Usa Inc. Asphaltene and paraffin dispersant compositions and uses thereof

Similar Documents

Publication Publication Date Title
US3558743A (en) Ashless,oil-soluble detergents
US3493520A (en) Ashless lubricating oil detergents
US3755433A (en) Ashless lubricating oil dispersant
US3449250A (en) Dispersency oil additives
US3367943A (en) Process for preparing oil soluble additives which comprises reacting a c2 to c5 alkylene oxide with (a) reaction product of an alkenylsuccinic anhydride and an aliphaticpolyamine (b) reaction product of alkenylsuccinic anhydride, a c1 to c30 aliphatic hydrocarbon carboxylic acid and an aliphatic polyamine
US3367864A (en) Additives for lubricating compositions
CA1146557A (en) Quaternary ammonium salt of ester-lactone and hydrocarbon oil containing same
US3476686A (en) Ashless lubricating oil detergents
US3337459A (en) 2-stroke lubricant
US3546324A (en) Amine salts of dithiophosphoric acids
US3432479A (en) Reaction product of monoamine,polyamine and polymer of a monovinyl monomer and maleic anhydride
US3864268A (en) Oil-soluble aminated oxidized olefin copolymers
US3679585A (en) Lubricant compositions
US3427245A (en) Lubricant additive composed of a mixture of amine salts of monoamides and monoamides of alkenyl succinic acids
US3903005A (en) Corrosion inhibited compositions
CA1323723C (en) Polysuccinate esters and lubricating compositions comprising same
US3224968A (en) Lubricating oil compositions
US4698169A (en) Reaction products of alkenylsuccinic compounds with aromatic amines and lubricant compositions thereof
US3809651A (en) Lubricating oil containing an alkylmercaptosuccinimide
US3454496A (en) Lubricant compositions
US3359203A (en) Ashless dithiophosphoric acid derivatives
US4036767A (en) Polymethacrylate additives and lubricating compositions thereof
EP0191967A2 (en) Reaction products of alkenylsuccinic compounds with aromatic amines and lubricant compositions thereof
US3563960A (en) Ashless lubricating oil detergents
US3365399A (en) Lubricant composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHASE MANHATTAN BANK, N.A., THE, A NATIONAL BANKIN

Free format text: SECURITY INTEREST;ASSIGNOR:PONY INDUSTRIES, INC.;REEL/FRAME:004796/0001

Effective date: 19861206

Owner name: MANUFACTURES HANOVER TRUST COMPANY, A NEW YORK CO

Free format text: SECURITY INTEREST;ASSIGNOR:PONY INDUSTRIES, INC.;REEL/FRAME:004796/0001

Effective date: 19861206

Owner name: CIT GROUP/BUSINESS CREDIT, INC., THE, A NEW YORK C

Free format text: SECURITY INTEREST;ASSIGNOR:PONY INDUSTRIES, INC.;REEL/FRAME:004796/0001

Effective date: 19861206

Owner name: PONY INDUSTRIES, INC., A CORP. OF DE.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ATLANTIC RICHFIELD COMPANY, A DE. CORP.;REEL/FRAME:004659/0926

Effective date: 19861219

AS Assignment

Owner name: PONY INDUSTRIES, INC., A CORP. OF DE

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MANUFACTURERS HANOVER TRUST COMPANY;REEL/FRAME:005110/0013

Effective date: 19890310