US3048544A - Lubricant composition - Google Patents

Lubricant composition Download PDF

Info

Publication number
US3048544A
US3048544A US819223A US81922359A US3048544A US 3048544 A US3048544 A US 3048544A US 819223 A US819223 A US 819223A US 81922359 A US81922359 A US 81922359A US 3048544 A US3048544 A US 3048544A
Authority
US
United States
Prior art keywords
oil
polymer
monomer
carbon atoms
imide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US819223A
Inventor
William T Stewart
Frank A Stuart
Lowe Warren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Research LLC
Original Assignee
California Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Research LLC filed Critical California Research LLC
Priority to US819223A priority Critical patent/US3048544A/en
Priority to GB12010/60A priority patent/GB924418A/en
Priority to FR828959A priority patent/FR1265419A/en
Priority to US169128A priority patent/US3160612A/en
Application granted granted Critical
Publication of US3048544A publication Critical patent/US3048544A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/005Macromolecular compounds, e.g. macromolecular compounds composed of alternatively specified monomers not covered by the same main group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/406Imides, e.g. cyclic imides substituted imides comprising nitrogen other than the imide nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • This invention relates to a novel lubricant composition, and it is particularly directed to the provision of a lubricant composition which is adapted to be employed in internal combustion engines.
  • a lubricant which will permit the engine to be operated at a high level of efficiency over long periods of time.
  • the primary function of the lubricant is, of course, to reduce friction and thereby not only decrease the wear on pistons, piston walls, bearings and other moving parts, but also increase the efiiciency of the engine. Additionally, it is also a function of the lubricant to prevent the deposition of solid products on the piston walls and other surfaces of the engine coming in contact with the lubricant. Such deposits seriously interfere with eflicient engine operation for they accelerate piston ring and cylinder wall wear and also increase oil losses by plugging the oil ring grooves.
  • any metal-containing additives present in the oil may form an ash which is partially deposited out on the various surfaces of the combustion chamber and on those of the spark plugs and valves. Accordingly, it is a particular object of this invention to provide a lubricant composition which is compounded with metalor mineral-free detergents and wear-reducing additives.
  • a material normally referred to as a detergent a material normally referred to as a detergent.
  • all the detergent additives which have heretofore been successfully employed on a commercial scale are organic, metal-containing compounds such a calcium petroleum sulfonate, calcium cetyl phosphate, calcium octyl salicylate, calcium phenyl stearate, the barium salts of waxsubstituted benzene sulfonate, or the potassium salt of the reaction product of phosphorus pentasulfide and polybutene.
  • Various of these detergents act by reacting chemically with deposit precursors to form harmless compounds.
  • Detergents capable of acting in the latter fashion are preferably employed Wherever possible, particularly in automotive engines to be operated under city driving conditions.
  • metal-containing additives few are available which are capable of solubilizing any appreciable amount of all the many types of polymer precursors which are carried into the oil from the fuel.
  • piston ring and cylinder wall wear is also one which is closely related to the composition of the crankcase lubricant.
  • abrasive wear which is caused by dust and dirt and can be remedied by suitable filtering and air-cleaning means
  • a large part of the wear experienced by piston rings and cylinder wall is attributable to chemical attack by moisture and acidic products originating as lay-products of fuel combustion. In engines operated at optimum temperature levels, these combustion products are largely discharged through the exhaust and breather pipe.
  • abrasive wear which is caused by dust and dirt and can be remedied by suitable filtering and air-cleaning means
  • the present invention is based on the discovery that certain copolymers, which contain no metal component and therefore are substantially free of any ash-forming tendency, have the ability to impart excellent detergent and antiwear qualities to lubricating oils employed in internal combustion engines.
  • these copolymers have the ability to solubilize in the oil large amounts of all the various partially oxidized combustion products of the fuels employed in internal combustion engines, while also having the ability of maintaining in a state of suspension any solid polymeric products present in the oil. Addi engine deposits and wear over extended operating periods.
  • copolymeric additives of this invention are noncorrosive to the various bearing metals employed in engines.
  • the polymeric additives'of the present invention are polymers of monomers comprising (A) polymerizable oil solubilizing compounds having a single ethylenic linkage and containing a monovalent hydrocarbon group of from 4 to 30 carbon atoms and (B) N-substituted alkyl irnides 'o-f anti-ethylenically unsaturated-a,[3-dicarboxylic acids of from 4 to 12 carbon atoms each in which the alkyl groups attached to the acids contain from 1 to 4 carbon atoms each and in which the imide nitrogen atom is attached to an amino substituted alkyl group of from 2 to 7 carbon atoms,-said polymer having'a molecular weight of at least 50,000 and said monomers being present in the polymer in the ratio of about 1 to 20 monomer units of the oil solubilizing monomer (A) for each monomer unit of the imide monomer (B).
  • Representative polymers coming within the scope of the present invention are, for example, those of dodecyl methacrylate, and N-dimethylaminopropyl maleimide; octadecyl acrylate and the imide of maleic acid and tetraethylene pentamine; allyl stearate and the imide of maleic acid and diethylene triamine; dodecyl methacrylate, octadecyl methacrylate and the imide of citraconic acid and 3-dimethylaminopropyl amine; and doedcyl methacrylate and the imide of itaconic acidand diethylene triamine.
  • the oil solubilizing aliphatic radical can be introduced into the copolymer, as will hereinafter be more fully described.
  • This aliphatic radical imparts oil solubility to the polymer and is preferably a branched or straight-chain alkyl radical or a cycloalkyl radical such as butyl, isobutyl, n-pentyl, n-hexyl, Z-ethylhexyl, decyl, dodecyl, tetradecyl cyclohexyl, 4-ethylcyclohexyl, or the like, or an alkenyl radical such as oleyl, ricinoleyl, or the like, wherein the ethylenic double bond has substantially no polymerizing tendency.
  • a branched or straight-chain alkyl radical or a cycloalkyl radical such as butyl, isobutyl, n-pentyl, n-hexyl, Z-ethylhexyl, decyl, dodecyl, tetradecyl cyclohe
  • Oil solubilizing monomers of this general character are well known in the art and are frequently employed as the oil solubilizing portion of polymers which are added to lubricating oils to improve the viscosity index and pour point characteristics thereof. They include such materials as olefins and ethylenically unsaturated ethers, esters, ketones, aldehydes, and the like.
  • the oil solubilizing monomers of component (A) may also be illustrated by the following general formula:
  • R and R are members of the group consisting of hydrogen and hydrocarbon radicals of from 4 to 30 carbon atoms, at least one of which contains an aliphatic hydrocarbon group of from 4 to 30 carbon atoms as described above
  • G and G are members of the class consisting of oxy (O), carbonyl and carbonyloxy OLEFINS Octadecene-l 4-octyleyclohexene-1 3-ghenyll1exadecene-1 I-Iexene-l 2ethylhexene-1 Diand triisobutylene Tripropylene ctylstyrene Dodecene-l Vinylcyclohexane Hexadecene-l 2-l1exadecylbntadiene-l,3 Cyelohexene p-Tertiarybutylstyrene ETHERS Propenyl 2-ethylhexyl ether Crotyl noctyl ether Iso
  • Representative acids of this type are the acrylic, methacrylic, crotonic, tiglic, angelic, a-ethylacrylic, or-methylcrotonic, a-ethylcrotonic, B-ethylcrotonic, B-propylcrotonic, and hydrosorbic acids and the like.
  • Representative alcohols are vinyl alcohol, allyl alcohol, methallyl alcohol, crotyl alcohol and the like. Even more desirable are the alkyl esters of acrylic and methacrylic acids containing from 8 to 30 carbon atoms in the alkyl groups, since they are found to provide highly superior polymers for the lubricant compositions of the invention and are obtainable in commercial quantities.
  • the base oil unless otherwise indicated, is a solvent-refined, wax-free, SAE- grade mineral lubricating oil having a viscosity index of which is derived from California Waxy crude.
  • Various amounts of the copolymers are incorporated into the oil as indicated in terms of percent by weight.
  • the piston varnish ratings of the lubricant compositions were obtained by the standard FL-2 test procedure as set out in the June 21, 1948 report of the Coordinating Research Council. In this test the lubricating oil compositions were tested as crankcase lubricants in a 6- cylinder Chevrolet engine, using a low-grade gasoline especially prone to cause engine deposits. At the end of each test the engine Was dismantled and the detergency or deposition properties of the lubricant compositions Were determined by eXarnining the engine deposits on the piston and visually rating them as to the amount of piston varnish present. The piston varnish ratings of the compositions are given in numerical terms on a scale of 0-l0 with 10 representing the complete absence of deposits.
  • the deposition characteristics of the lubricant compositions containing the copolymeric additives were also determined in the lacquer deposition test.
  • typical engine fuel combustion products were passed into the lubricant compositions and the ability of the lubricant compositions to solubilize and retain the lacquerforming materials was observed by Weighing the amount of lacquer deposits formed on a fresh iron catalytic surface for a standard period of time.
  • the lacquer deposit of the lubricant composition is taken as the number of milligrams deposit on the metal surface, and may be correlated directly to the piston varnish rating obtained in the standard FL-2 test procedure outlined in the above paragraph.
  • the irnide monomer components of the polymeric additives of this invention are the derivatives of alkylcne polyarnines and aliphatic unsaturated dicarboxylic acids of from 4 to 12 carbon atoms or their anhydrides such as maleic acid, maleic anhydride, citraconic acid, itaconic acid and the like, wherein the two carbonyl carbon atoms of the acid are linked to a single substituted nitrogen atom.
  • Suitable irnide monomers are readily prepared by reacting the unsaturated dicarboXylic acid with the alkylene polyamine as hereinafter described. Heating is desirable and an excess of acid is preferably employed to reduce formation of diamides.
  • a preferred group of irnide monomers is made up of those of the type defined in the foregoing paragraph but where the dicarboxylic acid is one of the a d-unsaturated-a,fi-dicarboxylic variety, for example, maleic acid, citraconic acid or the like.
  • R is an alkylcne group of from 1 to 7 carbon atoms and R and R are hydrogen, alkyl groups of from 1 to 7 carbon atoms or amino substituted alkyl groups, the amino substituents being alkylcne diamines, and polyalkylene polyarnines in which the alkylcne groups contain from 1 to 7 carbon atoms.
  • the imides of maleic acid and alkylcne diamines and polyalkylene polyarnines in which the alkylcne group contain from 2 to 4 carbon atoms and the polyalkylene polyarnines contain from 2 to 8 alkylcne amine units.
  • the amino nitrogen groups of such preferred compounds may be substituted by alkyl radicals of from 1 to 4 carbon atoms.
  • oil solubilizing (A) monomers vary somewhat in their solubilizing characteristics.
  • oil solubilizing (A) and nitrogenous (B) monomer ratios as low as 1:1; while in others it is advantageous to raise this ratio to much higher values, e.g., about 20:1, in order to obtain a polymer product having optimum oil solubility characteristics.
  • polymers having excellent detergent and antiwear characteristics together with the requisite oil solubility (which should be at least 0.5 and is preferably as great as 10% by weight of the lubricant composition) can be prepared by employing oil solubilizing (A) monomer to polar (B) monomer ratios of from about 3:1 to 15:1, and such a range is preferably employed wherever possible.
  • oil solubilizing (A) monomer to polar (B) monomer ratios of from about 3:1 to 15:1, and such a range is preferably employed wherever possible.
  • the polymers of this invention can be prepared by one or more of a variety of diflerent methods known in the art.
  • reactants per se there can be employed a given oil solubilizing monomer, or a mixture of such monomers, together With an imide nitrogen monomer or a combination of such monomers.
  • monomer reactants other than those which finally compose the polymer can be employed.
  • ester monomers are to form a part of the polymer, one may employ, instead of the ester, the corresponding unsaturated alcohol or unsaturated acid, With the balance of the ester monomer unit being supplied by subjecting the copolymer intermediate to an appropriate esterification treatment.
  • a polymer of dodecyl methacrylate and N-dimethylaminopropyl maleimide can be formed by first polymerizing equimolar amounts of dodecyl methacrylate and maleic anhydride, and then forming the desired imide linkages by treating the polymer with dimethylaminopropyl amine under appropriate conditions.
  • the present invention contemplates those polymers which are soluble to the extent of at least 0.5% by weight in hydrocarbon mineral oils, and which contain at least one N-aminoalkyl-substituted imide monomer unit for each twenty oil solubilizing monomer units present in the copolymer, and at most one such nitrogenou monomer unit for each monomer unit of the oil solubilizing compound.
  • the copolymer of this invention can be prepared by conventional bulk, solution or emulsion methods of addition polymerization in the presence of an addition polymerization initiator.
  • an addition polymerization initiator such as benzene, toluene, xylene or petroleum naphtha
  • a free radical-liberating type of initiator such as a peroxy compound, for example, benzoyl peroxide, acetyl peroxide, tert.-butyl hydroperoxide, di-tert. butyl peroxide, dibenzoyl peroxide, or di-tert.
  • amyl peroxide or an azo initiator such as 1,1- azodicyclohexanecarbonitrile, or a,a'-azodiisobutyronitrile.
  • the catalyst or polymerization initiator can be em ployed in an amount of from about 0.1 to with a preferred range being from about 0.25 to 2%. If desired, the catalyst can be added in increments as the reaction proceeds. Likewise, additional portions of the solvent can also be added from time to time in order to maintain the solution in a homogenous condition.
  • the temperature of polymerization varies from about 75 to 150 C., with the optimum temperature depending on the solvent selected, the concentration of monomers present therein, the catalyst selected, and the time of the reaction. Much the same conditions prevail when the polymerization is efiected in bulk rather than in the presence of an inert solvent.
  • the polymer additives of the invention have apparent molecular weights as determined by standard light scattering methods of at least 50.000. For practical purposes, molecular weights of from 100,000 to 1,000,000 are most suitable from the standpoint of viscosity and other physical characteristics of the polymeric additives.
  • polar groups the following representative radicals are included: OH (either acid, alcohol or phenol), --NH -NH,
  • EXAMPLE I This example shows the preparation of alkyl methacrylate maleic anhydride polymer 1 ratio).
  • a 2-liter, round-bottomed, three-neck iiask was fitted with a mechanical stirrer, reflux condenser, dropping funnel, and burette for catalyst addition and maintained under an inert atmosphere.
  • a charge consisting of 316 g. of alkyl methacrylate in which the alkyl groups are a mixture of 60% by weight dodecyl and 40% by weight octadecy-l groups, 5 g. of maleic anhydride, and 200 g. of methyl ethyl ketone was placed in the flask.
  • the dropping funnel was charged with 316 g. of the alkyl methacrylate and 211 g. of methyl ethyl ketone.
  • the catalyst was a 2% solution of bis-azoisobutyronitrile (AIBN) in methyl ethyl ketone.
  • AIBN bis-azoisobutyronitrile
  • the contents of the flask were brought to boiling, and an initial charge of 1.5 ml. of catalyst was added. T hereafter, the catalyst level was maintained at 0.01% by further addition at 15-minute intervals.
  • the monomer was slowly added at the rate of 315 ml. the first hours, ml. the second, 93 ml. the third, 32 ml. the fourth, and the remainder the fifth hours. At the end of 5 hours, the reaction was stopped by the addition of quinone.
  • the polymer was precipitated with acetone and twice precipitated from benzene with acetone. The yield was about 480 g. of polymer. This was in the form of a 68.8% solution in benzene.
  • EXAMPLE II This example shows the preparation of maleirnide polymer.
  • maleimide polymers having a variety of N-amino substituted alkyl imide groups were prepared by the procedure illustrated above and used in the preparation of blends for tests.
  • EXAMPLE III This example shows the preparation of polymer of alkyl methacrylate, polyethylene glycol methacrylate, and maleic anhydride.
  • a 2-liter, round-bottomed, three-neck flask was fitted with amechanical stirrer, reflux condenser, and burette for catalyst addition and maintained under an inert atmosphere.
  • the contents of the flask were brought to boiling, and an initial change of 0.85 ml. of catalyst was added.
  • the catalyst level was maintained at 0.01% by slow addition of catalyst.
  • EXAMPLE IV This example shows the preparation of polymer of alkyl methacrylate, polyethylene glycol methacrylate and imide of maleic anhydride and tetraethylene pentamine.
  • a 2-liter, round-bottomed flask fitted with a thermometer, mechanical stirrer, reflux condenser, and dropping tunnel was charged with 50 g. of tetraethylene pentamine and 200 g. of benzene.
  • the dropping funnel was charged with 200 g. of the above prepared 50% solution of alkyl methacrylate, polyethylene glycol methacrylate, maleic anhydride polymer and 300 g. of benzene.
  • the polymer solution was added over a period of two hours.
  • the resulting solution was heated under reflux for two hours.
  • the benzene was stripped off until the temperature of the flask rose to 280 C., and the flask was then allowed to cool.
  • the excess amine was removed by precipitation of the polymer three times from benzene with methanol.
  • the polymer was dissolved in benzene, added to 300 g. of 150 neutral oil, and stripped at 120 C. at 5 mm. pressure. This concentrate was used to prepare blends for engine and carbon peptization tests.
  • the base oil can be a refined Pennsylvania or rather paraffin base oil, a refined naphthenic base oil, or a synthetic hydrocarbon or non-hydrocarbon oil of lubricating viscosity.
  • synthetic oils there can be used alkylated waxes and similar alkylated hydrocarbons of relatively high molecular weight, hydrogenated polymers of hydrocarbons, and the condensation products of chlorinated alkyl hydrocarbons with aromatic compounds.
  • suitable oils are those which are obtained by polymerization of lower molecular weight alkylene oxides such as propylene and/or ethylene, oxide.
  • Still other synthetic oils are obtained by etherification and/or esterification of the hydroxy groups in alkylene oxide polymer such as, for example, the acetate of the 2-ethyl-hexanol-initiated polymer of propylene oxide.
  • Other important classes of synthetic oils include the various esters as, for example, di(2-ethylhexyl) sebacate, tricresyl phosphate and silicate esters. If desired, the oil can be a mixture of mineral and synthetic oils.
  • lubricant compositions which contain not only such polymers, but also other additives such as pour point depressants, oiliness and extreme pressure agents, antioxidants, rust and corrosion inhibiting agents, blooming agents, thickening agents, and/or compounds for enhancing the temperature-viscosity characteristics of the oil.
  • the present invention also contemplates the addition to the lubricant composition (particularly when the amount of polymer employed is relatively small) of auxiliary detergents and/ or antiwear agents.
  • the eflicacy of polymeric additives of the type described above as detergents and antiwear agents in lubricating oils is illustrated by data from a number of tests.
  • the base oil unless otherwise specified, is a solvent-refined, Wax-free SAE-30 grade mineral lubricating oil having a viscosity index of which is derived from California waxy crude.
  • Various amounts of the polymeric additives are incorporated into the oil as noted in terms of percent by Weight.
  • the low temperature detergency of the oils tested is measured by deter mining the ability of the oils to suspend finely divided carbon particles, which is in direct correlation to the ability of the oil to solubilize and retain typical engine fuel deposits and precursors thereof.
  • 0.5 gram of lampblack are suspended in ml. of light hydrocarbon oil along with 1% of the polymer in a grad uated glass cylinder. The suspension is observed over a period of time of several hours to determine the amount of sedimentation.
  • the engine is dismantled and the amount of engine deposits on the piston determined and expressed as the piston varnish rating.
  • This value is obtained by visually rating (on a scale of to 10, with 10 representing the absence of any deposit) the amount of deposit on each piston skirt and averaging the individual ratings so obtained for the various pistons.
  • a piston varnish rating of 4.5 is indicative of satisfactory performance, though preferably this rating should be or above.
  • the piston varnish rating is approximately 3.0.
  • Table 11 when the base oil is compounded with the indicated amounts of a copolymer, greatly superior results are ob tained.
  • each of the illustrative compositions containing the polymeric lubricating oil additives according to the invention possesses improved lubricating properties compared to the base oils alone.
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufficient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oil-solubilizing compounds selected from the group consisting of alkyl esters of a,,8-unsaturated monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and tetraethylene pentamine, said polymer having a molecular Weight from about 100,000 to about 1,000,- 000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
  • A polymerizable oil-solubilizing compounds selected from
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufiicient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consisting of alkyl esters of a,B-unsaturated monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and diethylene triamine, said polymer having a molecular weight from about 100,00 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
  • A polymerizable oilsolubilizing compounds selected from the group consisting
  • a lubricant composition comprising a major por tion of a mineral lubricating oil and a minor portion, sufiicient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consist ing of alkyl esters of art-unsaturated monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and 3-dimethyl amino propylamine, said polymer having a molecular weight from about 100, 000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
  • A polymerizable oilsolubilizing compounds
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufficient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consisting of alkyl esters of 0:,13-1111Sfli1112lt6d monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and a polyamine selected from the group consisting of B-dimethyl amino propylamine, diethylene triamine and tetraethylene pentamine, said polymer having a molecular weight from about 100,000 to about 1,00,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufficient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consist ing of alkyl esters of ,fi-IIIlSfltUI'fltEd monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, (B) the imide of maleic anhydride and a polyamine selected from the group consisting of 3-dimethyl amino propylamine, diethylene triamine and tetraethylene pentamine, and (C) polyethylene glycol methacrylate having a molecular weight of about 1800, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sutficient to enhance the detergent characteristics of the composition, of a polymer of (A) alkyl methacrylates having from 8 to 30 carbon atoms in the alkyl group, and (B) the imide of maleic anhydride and tetraethylene pentamine, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil solubiiizing monomer (A) for each monomer unit of the imide monomer (B).
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, suflicient to enhance the detergent characteristics of the composition, of a polymer of (A) alkyl methacrylates having from 8 to 30 carbon atoms in the alkyl group, and (B) the imide of maleic anhydride and diethylene triamine, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil solubilizing monomer (A) for each monomer unit of the imide monomer (B).
  • a lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, suflicient to enhance the detergent characteristics of the composition, of a polymer of (A) alkyl methaerylates having from 8 to 30 carbon atoms in the alkyl group, and (B) the imide of maleic anhydride and 3-dimethyl amino propylamine, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil solubilizing monomer (A) for each monomer unit of the imide monomer (B).

Description

ire States 3,048,544 LUBRICANT COMPUSITION William T. Stewart, El Cerrito, Frank A. Stuart, Orinda, and Warren Lowe, San Francisco, Calif., assignors to California Research Corporation, San Francisco, Calif., a corporation of Delaware No Drawing. Filed June 10, 1959, Ser. No. 319,223 8 Claims. (Cl. 252-515) This invention relates to a novel lubricant composition, and it is particularly directed to the provision of a lubricant composition which is adapted to be employed in internal combustion engines.
With the refinements now being made in automotive and other internal combustion engines, a great deal of attention is being directed to the provision of a lubricant which will permit the engine to be operated at a high level of efficiency over long periods of time. The primary function of the lubricant is, of course, to reduce friction and thereby not only decrease the wear on pistons, piston walls, bearings and other moving parts, but also increase the efiiciency of the engine. Additionally, it is also a function of the lubricant to prevent the deposition of solid products on the piston walls and other surfaces of the engine coming in contact with the lubricant. Such deposits seriously interfere with eflicient engine operation for they accelerate piston ring and cylinder wall wear and also increase oil losses by plugging the oil ring grooves. The troublesome deposits which form on the face of the piston and on the other walls of the combustion chamber, as well as on valves and spark plugs, are also partially attributable in many cases to the lubricant and especially to various of the metal-containing additives employed therein. It is of importance to eliminate or at least minimize the formation of all such deposits, and it i the basic object of this invention to achieve such a result.
To a minor degree, certain of the deposits formed on engine surfaces have their origin in the oil itself, that is to say, in the decomposition products of the oil. A more important, though still minor, source of engine deposits lies in the additives with which oils are conventionally supplied. This is particularly the case with metal-containing additives as, for example, the organic, metal-com taining salts which are incorporated in the oil to increase the detergency thereof, and the various metal-containing compounds which are added to increase the lubricity of the oil and reduce piston ring and cylinder wall wear. Whenever oil is burned in the engine (as occurs with the oil film present in the cylinder wall during the combustion stroke) any metal-containing additives present in the oil may form an ash which is partially deposited out on the various surfaces of the combustion chamber and on those of the spark plugs and valves. Accordingly, it is a particular object of this invention to provide a lubricant composition which is compounded with metalor mineral-free detergents and wear-reducing additives.
While certain of the additives heretofore employed in oils (and to a lesser degree the oil itself) are partially responsible for deposits which form on engine surfaces, it is now recognized that the major source of such deposits or their precursors lies in the various aldehydes, acids, oxy-acids and other similarly reactive, partially-oxidized combustion products of the fuel. These products are formed both under pre-ignition conditions as well as during the combustion step proper, particularly during 3,048,544 Patented Aug. 7, 1962 ice the period before the engine has reached operating temperature. Accordingly, under city driving conditions where the engine is repeatedly started in the cold condition and is seldom driven for a distance sufi'icient to reach the most efficient operating temperatures, the formation of partial oxidation products is particularly severe. Many of these partial oxidation products are carried down into the crankcase of the engine along with other blow by gases, and since most are insoluble or only sparingly soluble in lubricating oils, they tend to separate from the oil and adhere to engine surfaces or form large droplets. In either case, under the elevated temperature conditions prevailing in the engine, these reactive monomers quickly polymerize to form solid masses which readily deposit out on the engine wall surfaces.
It is the practice in the art to prevent the formation of such deposits by adding to the lubricant a material normally referred to as a detergent. Insofar as is known, all the detergent additives which have heretofore been successfully employed on a commercial scale are organic, metal-containing compounds such a calcium petroleum sulfonate, calcium cetyl phosphate, calcium octyl salicylate, calcium phenyl stearate, the barium salts of waxsubstituted benzene sulfonate, or the potassium salt of the reaction product of phosphorus pentasulfide and polybutene. Various of these detergents act by reacting chemically with deposit precursors to form harmless compounds. Others act to prevent flocculation or coagulation of solid particles in the oil and maintain the same in a state of suspension as finely divided particles. Still others not only perform this dispersant function but also effect the soluhilization or emulsification of the sparingly soluble monomers in the oil and thereby greatly reduce the rate of polymerization. In the latter case, such polymer materials as do then form within the body of the oil are smaller in size and can be peptized or dispersed in the oil much more readily than is the case with the large polymeric particles which are formed on exposed engine surfaces or in droplets lying without the oil.
Detergents capable of acting in the latter fashion are preferably employed Wherever possible, particularly in automotive engines to be operated under city driving conditions. However, even among the metal-containing additives, few are available which are capable of solubilizing any appreciable amount of all the many types of polymer precursors which are carried into the oil from the fuel. Accordingly, it is a more particular object of this invention to provide a lubricant composition incorporating a metal-free detergent which is capable of solubilizing or emulsifying in the lubricant large amounts of all the various partial oxidation products of the fuel which are carried into the oil, and which is also capable of maintaining in suspension in the oil the various solid polymeric materials which are present therein.
The problem of piston ring and cylinder wall wear, especially the control thereof, is also one which is closely related to the composition of the crankcase lubricant. Aside from abrasive wear, which is caused by dust and dirt and can be remedied by suitable filtering and air-cleaning means, a large part of the wear experienced by piston rings and cylinder wall is attributable to chemical attack by moisture and acidic products originating as lay-products of fuel combustion. In engines operated at optimum temperature levels, these combustion products are largely discharged through the exhaust and breather pipe. However,
acaaeaa under the relatively cold conditions experienced in city driving, and especially at cylinder wall temperatures below about 150 F., the moisture and acid products are condensed on the engine surfaces where they promote corro sive attack and are in a position to work past the piston and accumulate within the engine and in the crankcase oil. This difiiculty is one which the art has heretofore met most successfully by supplying the lubricating oil with additives such as the various metal salts of petroleum sulfonic acids and other metal-organic compounds, especially those having a basic reaction. However, this practice has a disadvantage of adding still another metal-containing ingredient to the oil and therefore of increasing the deposit-forming characteristics of the lubricant composition. Accordingly, it forms still another object of this invention to provide .a lubricant composition containing a metalormineral-free additive which effectively decreases the wear experienced by piston rings and cylinder walls, particularly during periods before the engine has become thoroughly warmed to operating temperatures.
The present invention is based on the discovery that certain copolymers, which contain no metal component and therefore are substantially free of any ash-forming tendency, have the ability to impart excellent detergent and antiwear qualities to lubricating oils employed in internal combustion engines. In particular, these copolymers have the ability to solubilize in the oil large amounts of all the various partially oxidized combustion products of the fuels employed in internal combustion engines, while also having the ability of maintaining in a state of suspension any solid polymeric products present in the oil. Addi engine deposits and wear over extended operating periods.
It should also be noted that the copolymeric additives of this invention are noncorrosive to the various bearing metals employed in engines.
Since the additives of the present invention differ in kind from any heretofore proposed for either detergent or antiwear purposes, it would have been surprising to discover that they were effective for either of these purposes. However, that they possessed not one but both of said qualities was altogether unexpected and could not have been predicted.
The polymeric additives'of the present invention are polymers of monomers comprising (A) polymerizable oil solubilizing compounds having a single ethylenic linkage and containing a monovalent hydrocarbon group of from 4 to 30 carbon atoms and (B) N-substituted alkyl irnides 'o-f anti-ethylenically unsaturated-a,[3-dicarboxylic acids of from 4 to 12 carbon atoms each in which the alkyl groups attached to the acids contain from 1 to 4 carbon atoms each and in which the imide nitrogen atom is attached to an amino substituted alkyl group of from 2 to 7 carbon atoms,-said polymer having'a molecular weight of at least 50,000 and said monomers being present in the polymer in the ratio of about 1 to 20 monomer units of the oil solubilizing monomer (A) for each monomer unit of the imide monomer (B).
Representative polymers coming within the scope of the present invention are, for example, those of dodecyl methacrylate, and N-dimethylaminopropyl maleimide; octadecyl acrylate and the imide of maleic acid and tetraethylene pentamine; allyl stearate and the imide of maleic acid and diethylene triamine; dodecyl methacrylate, octadecyl methacrylate and the imide of citraconic acid and 3-dimethylaminopropyl amine; and doedcyl methacrylate and the imide of itaconic acidand diethylene triamine.
The oil-solubilizing monomer portion of the polymeric additives of this invention can be any compound having at least one ethylenic linkage C= together with at least one substituent group which contains an oil-solubilizing hydrocarbyl group of from 4 to 30 aliphatic carbon atoms, and which is characterized by the ability to copolymerize through said ethylenic linkage with the polar monomer referred to above in the presence of a suitable catalyst. Alternatively, the oil solubilizing aliphatic radical can be introduced into the copolymer, as will hereinafter be more fully described. This aliphatic radical, whether present in the original monomer or introduced into the copolymer, imparts oil solubility to the polymer and is preferably a branched or straight-chain alkyl radical or a cycloalkyl radical such as butyl, isobutyl, n-pentyl, n-hexyl, Z-ethylhexyl, decyl, dodecyl, tetradecyl cyclohexyl, 4-ethylcyclohexyl, or the like, or an alkenyl radical such as oleyl, ricinoleyl, or the like, wherein the ethylenic double bond has substantially no polymerizing tendency. Oil solubilizing monomers of this general character are well known in the art and are frequently employed as the oil solubilizing portion of polymers which are added to lubricating oils to improve the viscosity index and pour point characteristics thereof. They include such materials as olefins and ethylenically unsaturated ethers, esters, ketones, aldehydes, and the like.
The oil solubilizing monomers of component (A) may also be illustrated by the following general formula:
in which R and R are members of the group consisting of hydrogen and hydrocarbon radicals of from 4 to 30 carbon atoms, at least one of which contains an aliphatic hydrocarbon group of from 4 to 30 carbon atoms as described above, G and G are members of the class consisting of oxy (O), carbonyl and carbonyloxy OLEFINS Octadecene-l 4-octyleyclohexene-1 3-ghenyll1exadecene-1 I-Iexene-l 2ethylhexene-1 Diand triisobutylene Tripropylene ctylstyrene Dodecene-l Vinylcyclohexane Hexadecene-l 2-l1exadecylbntadiene-l,3 Cyelohexene p-Tertiarybutylstyrene ETHERS Propenyl 2-ethylhexyl ether Crotyl noctyl ether Isopropenyl dodecyl ether l-decenyl butyl ether 1-e1cosenyl deeyl ether Vinyl p-octylphenyl ether Methallyl p-tert.butylphenyl other l-decenyl p-cetylphenyl ether l-decenyl 2phenylbutyl ether Vinyl n-butyl ether Vinyl 2-ethylhexyl ether Allyl n-butyl ether Allyl isobutyl ether Allyl cyclohexyl ether Allyl 4,4,8,S-tetramethyldoc0- syl ether Methallyl nhexyl ether Methallyl n-decyl ether Methallyl 2-ethylhexyl ether Mcthallyl octadecyl ether ESTERS Cyclohexyl 2-dodecen0ate Decyl vinylacetate Isooctyl a-chloroacrylate 2-hexadec- Although any of the oil solubilizing compounds described above Will give efiective copolymer compositions for lubricant compositions in accordance with the present invention, higher alkyl esters of o e-unsaturated .monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having alkyl groups of from 4 to 30 carbon atoms are most preferred, both for availability and effectiveness of copolymers prepared from them. Representative acids of this type are the acrylic, methacrylic, crotonic, tiglic, angelic, a-ethylacrylic, or-methylcrotonic, a-ethylcrotonic, B-ethylcrotonic, B-propylcrotonic, and hydrosorbic acids and the like. Representative alcohols are vinyl alcohol, allyl alcohol, methallyl alcohol, crotyl alcohol and the like. Even more desirable are the alkyl esters of acrylic and methacrylic acids containing from 8 to 30 carbon atoms in the alkyl groups, since they are found to provide highly superior polymers for the lubricant compositions of the invention and are obtainable in commercial quantities.
Various copolymers employing representative oil solup-Isoamylphenyl encate 4-p-toly1bntyl 2-0ctadecenoate Undecyl einnamate Methylcyclohexyl 2 ethyl-2- hexenoate fi-ethyldocosyl crotonate Octadecyl isocrotonate mButy1-2-eicosenoate p-Tert.amylphenyl octadecyl maleate p-Hexadecylphenyl 2 ethylhexyl maleate o-Tolyl 2-octadecyleyclohexyl maleate o-Nonylphenyl-hexadecyl maleate Dihexadecyl maleate Dimethylcyclohexyl nlaleate Mono-2-ethylhexyl maleate Di-2-ethylhexyl maleate Di-dodecy1 maleate Di-dodecyl mesaconate Di dodecyl citraconate o-Toly1 octadecyl itaconate Mono-hexadecyl itaconate Isopropenyl palmitoleate l-decenyl laul'ate l-hexadecenyl myristate bilizing monomers of the foregoing types were prepared to illustrate the oil solubilizing efiect of the monomers on the resultant copolymers. The solubility of the copolymers in oil and their suitability as lubricating oil additives were demonstrated by incorporating the copolymers into lubricating oils. The lubricant compositions thus obtained were tested to determine their detergency and deposition properties. The results of these tests are given in Table I below.
In the tests the base oil, unless otherwise indicated, is a solvent-refined, wax-free, SAE- grade mineral lubricating oil having a viscosity index of which is derived from California Waxy crude. Various amounts of the copolymers are incorporated into the oil as indicated in terms of percent by weight.
The piston varnish ratings of the lubricant compositions were obtained by the standard FL-2 test procedure as set out in the June 21, 1948 report of the Coordinating Research Council. In this test the lubricating oil compositions were tested as crankcase lubricants in a 6- cylinder Chevrolet engine, using a low-grade gasoline especially prone to cause engine deposits. At the end of each test the engine Was dismantled and the detergency or deposition properties of the lubricant compositions Were determined by eXarnining the engine deposits on the piston and visually rating them as to the amount of piston varnish present. The piston varnish ratings of the compositions are given in numerical terms on a scale of 0-l0 with 10 representing the complete absence of deposits.
The deposition characteristics of the lubricant compositions containing the copolymeric additives were also determined in the lacquer deposition test. In this test typical engine fuel combustion products were passed into the lubricant compositions and the ability of the lubricant compositions to solubilize and retain the lacquerforming materials was observed by Weighing the amount of lacquer deposits formed on a fresh iron catalytic surface for a standard period of time. The lacquer deposit of the lubricant composition is taken as the number of milligrams deposit on the metal surface, and may be correlated directly to the piston varnish rating obtained in the standard FL-2 test procedure outlined in the above paragraph.
Table I Piston Ratio of (l) Lacquer Varnish Monomer to Piston Deposit Rating Lubricant Composition (2) Monomer Varnish (Milli' (Estimated to (3) Rating grains) From Monomer Lacquer Deposit) Base Oil alone 3.0 850 2.8% (1)Dodecylmethacrylate (2) N,N -di-2-hydroxyethyl malea- 20/1 450 5.0
20/1/1 405 5. 2 7/1 6.3 an: o 3.0%* (l) Trideeyl methacrylate..-
(2) Oetadecyl methacrylate 10 ll 8 4 (3) Monododecyl ether of hexadecaethylene glycol methacry1ate. 2.5% (1) Allyl stearate (2) Didodeeyl maleatc 5/5/2 5 5 (3) Di-(hydroxyethyl) ethylenc-dia- 7 vmine iitlltlgfmoitmdecylmaleata 2.8 0 l inyl e y exoa e (2) It 15 1 500 4. o
(2) Maleic anhydride (3) Monododecyl other of pentaethyl 30/1/2/1 325 6.0
one glycol methacrylate. (4) Methncrylamide 2.5% (1) Allyl stearate (2) Ethylene glycol mono-oleate mouomaleate. 5/4/1 4. 0 (3) Mono-N,N -di (Z-hydroxy-ethyl) ethylenediarnine maleate (salt). 2.8% (1) Oetadecene (2) Monododecyl maleate 2/1/1 500 4. 5 (3) Monopentaerythritol maleate..
See footnotes at end of table.
Table l-Continued Ratio of (1) Monomer to (2) Monomer Piston Lubricant Composition Varnish Rating Monomer Lacquer Depo it (Milligrams) Piston Varnish Rating (Estimated From Lacquer Deposit) 2.8% (1) I-Iexene-l Dodecyl methaerylate. (3) Methacrylic acid (4) M onododecyl ether of eieosaethylene glycol methacrylate. (1) Di-Z-ethylhexyl fumarate (2) Octadccene-l (3) Crotonic acid (4) lvlonotridecyl ether of clecaethylene glycol nlethacrylate.
Vinyl stcarate. (3) Itaconic acid (4) hilonododecyl other of (lacaethylone glycol crotonate. (1) Vinyl 2-ethylhexyl other (2) 'letradecylphenyl male-ate (3) Dodecyl maloatc -1 s (4) M aleic acid (1) Dodccyl acrylate (2) Monododecyl ether of decaethylone glycol acrylate.
(3) Acrylic acid (1) Hexadccyl styrene (2) Methacrylic acid" In 140 Neutral Mineral Lubricating Oil from solvent-refined waxy Caliornia crude.
* Polyethylene glycol of 704 MAN. b Polyethylene glycol of 220 W. V. s Polyethylene glycol of 880 M.W. d Polyethylene glycol 01' 440 M .W.
From the above test data it will be Seen that all of the various oil solubilizing monomers representative of the aforementioned types were effective in the production of useful, copolyrneric lubricating oil additives which are capable of preventing deposits from lubricant compositions under typical engine operating conditions. These monomers, as previously described, constitute a definite, recognized class of compounds which have been used heretofore in the art in the production of polymeric lubricating oil additives of the nonpolar type, such as V1. improvers and pour point depressants. Although the results demonstrate beyond any reasonable doubt the suitability of the different oil solubilizing. monomers within the terms of the description in the production of oil soluble copolyrners, it should be understood that the efficacy of each individual class of copolymers as. detergents is primarily dependent upon the particular polar or functional group in the so-called polar monomer and its relationship to the rest of the copolymer.
Since the functionality of the individual polar groups differs and is largely empirical in nature, no conclusion is intended to be drawn concerning equivalency of the various copolymeric lubricating oil additives employed as detergents in this illustration. The polar group of the particular class copolymers of the compositions of this invention and their balance or relationship to the remainder of the copolymers are more fully discussed in the disclosure which follows, along with additional examples of the invention.
The irnide monomer components of the polymeric additives of this invention are the derivatives of alkylcne polyarnines and aliphatic unsaturated dicarboxylic acids of from 4 to 12 carbon atoms or their anhydrides such as maleic acid, maleic anhydride, citraconic acid, itaconic acid and the like, wherein the two carbonyl carbon atoms of the acid are linked to a single substituted nitrogen atom.
Suitable irnide monomers are readily prepared by reacting the unsaturated dicarboXylic acid with the alkylene polyamine as hereinafter described. Heating is desirable and an excess of acid is preferably employed to reduce formation of diamides.
A preferred group of irnide monomers .is made up of those of the type defined in the foregoing paragraph but where the dicarboxylic acid is one of the a d-unsaturated-a,fi-dicarboxylic variety, for example, maleic acid, citraconic acid or the like. Suchcompounds have the structural formula fir i I l 0:0 C=O l lia N R R4 where the R s, which can be the same. as or different from one another, are hydrogen atoms or alkyl groups of not morethan 4 carbon atoms, where R is an alkylcne group of from 1 to 7 carbon atoms and R and R are hydrogen, alkyl groups of from 1 to 7 carbon atoms or amino substituted alkyl groups, the amino substituents being alkylcne diamines, and polyalkylene polyarnines in which the alkylcne groups contain from 1 to 7 carbon atoms.
Presently preferred are the imides of maleic acid and alkylcne diamines and polyalkylene polyarnines in which the alkylcne group contain from 2 to 4 carbon atoms and the polyalkylene polyarnines contain from 2 to 8 alkylcne amine units. The amino nitrogen groups of such preferred compounds may be substituted by alkyl radicals of from 1 to 4 carbon atoms.
In preparing the polymers of the invention, it is only necessary that conditions be chosen which will insure polymerization and the formation of polymers having the requisite oil solubility. The oil solubilizing (A) monomers vary somewhat in their solubilizing characteristics. Thus, in some cases it is possible to obtain polymers which are soluble in oil by employing oil solubilizing (A) and nitrogenous (B) monomer ratios as low as 1:1; while in others it is advantageous to raise this ratio to much higher values, e.g., about 20:1, in order to obtain a polymer product having optimum oil solubility characteristics. As a general rule, however, polymers having excellent detergent and antiwear characteristics, together with the requisite oil solubility (which should be at least 0.5 and is preferably as great as 10% by weight of the lubricant composition) can be prepared by employing oil solubilizing (A) monomer to polar (B) monomer ratios of from about 3:1 to 15:1, and such a range is preferably employed wherever possible.
The polymers of this invention can be prepared by one or more of a variety of diflerent methods known in the art. As regards the reactants per se, there can be employed a given oil solubilizing monomer, or a mixture of such monomers, together With an imide nitrogen monomer or a combination of such monomers. However, it is also possible to employ monomer reactants other than those which finally compose the polymer. Thus, in the case where ester monomers are to form a part of the polymer, one may employ, instead of the ester, the corresponding unsaturated alcohol or unsaturated acid, With the balance of the ester monomer unit being supplied by subjecting the copolymer intermediate to an appropriate esterification treatment. Again, instead of employing the monomeric imide to form the copolymer, one can employ the corresponding unsaturated acid or acid anhydride, or the acid chloride, or a half ester of the acid, for example, with the desired imide then being formed after the polymerization reaction is complete. Thus, a polymer of dodecyl methacrylate and N-dimethylaminopropyl maleimide can be formed by first polymerizing equimolar amounts of dodecyl methacrylate and maleic anhydride, and then forming the desired imide linkages by treating the polymer with dimethylaminopropyl amine under appropriate conditions. Again by a practice of this same method, but using only a minor percentage of the amount of dimethylaminopropylamine required for complete amidization, there is formed a polymer made up of at least three difierent monomer units, namely, dodecyl methacrylate, maleic anhydride, and N-dimethylarninopropyl maleamide. As the remaining carboxyl or incipient carboxyl (anhydride) groups in the latter polymer are then converted to one or more of various ester, cyano, or amide linkages, or the like, it is obvious that many other monomer units can readily be formed in the polymer.
In any event, the present invention contemplates those polymers which are soluble to the extent of at least 0.5% by weight in hydrocarbon mineral oils, and which contain at least one N-aminoalkyl-substituted imide monomer unit for each twenty oil solubilizing monomer units present in the copolymer, and at most one such nitrogenou monomer unit for each monomer unit of the oil solubilizing compound.
Having selected the desired monomeric reactants, the copolymer of this invention can be prepared by conventional bulk, solution or emulsion methods of addition polymerization in the presence of an addition polymerization initiator. Preferably, however, the polymerization is effected in an inert organic solvent such as benzene, toluene, xylene or petroleum naphtha in the presence of a free radical-liberating type of initiator such as a peroxy compound, for example, benzoyl peroxide, acetyl peroxide, tert.-butyl hydroperoxide, di-tert. butyl peroxide, dibenzoyl peroxide, or di-tert. amyl peroxide, or an azo initiator such as 1,1- azodicyclohexanecarbonitrile, or a,a'-azodiisobutyronitrile. The catalyst or polymerization initiator, can be em ployed in an amount of from about 0.1 to with a preferred range being from about 0.25 to 2%. If desired, the catalyst can be added in increments as the reaction proceeds. Likewise, additional portions of the solvent can also be added from time to time in order to maintain the solution in a homogenous condition. The temperature of polymerization varies from about 75 to 150 C., with the optimum temperature depending on the solvent selected, the concentration of monomers present therein, the catalyst selected, and the time of the reaction. Much the same conditions prevail when the polymerization is efiected in bulk rather than in the presence of an inert solvent.
The polymer additives of the invention have apparent molecular weights as determined by standard light scattering methods of at least 50.000. For practical purposes, molecular weights of from 100,000 to 1,000,000 are most suitable from the standpoint of viscosity and other physical characteristics of the polymeric additives.
In a preferred application of the polymeric lubricating oil detergent additives of the present invention in mineral lubricating oil, it has been noted that a certain optimum relationship between the total number of aliphatic carbon atoms to polar groups within the molecule appears to exist. Evidence has been obtained that for a given concentration the co-polymer compositions containing a .ratio of aliphatic carbon atoms to polar groups within the range of from 50 to 225, preferably 75 to 125, appear to embrace the optimum composition for deposit reduction effectiveness. in determining this apparent balance between the polar and nonpolar constituents, the aliphatic carbon atoms to be considered are the following:
and excluding aromatic ring carbon atoms or the carbon atom of the carbonyl groups. As polar groups, the following representative radicals are included: OH (either acid, alcohol or phenol), --NH -NH,
LL l and an acid anhydride or imide group as a single unit.
Although this concept of polymer compositions appears to correlate generally with their performance in all of the oils of lubricating viscosity, there may be additional composition factors which alter the effect of these improving agents in various types of lubricating oil systems and service. However, on the basis of these assumptions, it becomes evident that variations in the aliphatic carbon to polar ratio and hence performance efiicacy may be accomplished by the choice of the acid derivative radical and degree of neutralization in the modification of polar component (B).
Typical methods for preparing the polymers which can be employed with success as detergents and anti-wear oxidants in lubricant compositions are given in the following examples:
EXAMPLE I This example shows the preparation of alkyl methacrylate maleic anhydride polymer 1 ratio).
A 2-liter, round-bottomed, three-neck iiask was fitted with a mechanical stirrer, reflux condenser, dropping funnel, and burette for catalyst addition and maintained under an inert atmosphere. A charge consisting of 316 g. of alkyl methacrylate in which the alkyl groups are a mixture of 60% by weight dodecyl and 40% by weight octadecy-l groups, 5 g. of maleic anhydride, and 200 g. of methyl ethyl ketone was placed in the flask. The dropping funnel was charged with 316 g. of the alkyl methacrylate and 211 g. of methyl ethyl ketone. The catalyst was a 2% solution of bis-azoisobutyronitrile (AIBN) in methyl ethyl ketone.
The contents of the flask were brought to boiling, and an initial charge of 1.5 ml. of catalyst was added. T hereafter, the catalyst level was maintained at 0.01% by further addition at 15-minute intervals. The monomer was slowly added at the rate of 315 ml. the first hours, ml. the second, 93 ml. the third, 32 ml. the fourth, and the remainder the fifth hours. At the end of 5 hours, the reaction was stopped by the addition of quinone. The polymer was precipitated with acetone and twice precipitated from benzene with acetone. The yield was about 480 g. of polymer. This was in the form of a 68.8% solution in benzene.
EXAMPLE II This example shows the preparation of maleirnide polymer.
aoaasaa A 2-liter, round bottomed flask fitted with a thermometer, mechanical stirrer, reflux condenser, and dropping funnel was charged with 100 g. of tetraethylenepentamine and 200 g. of benzene. Over a period of two hours, 250 g. of a solution of the polymer prepared above and 300 g. of benzene were slowly added with stirring. The resultingsolution was then heated under reflux for one hour. The benzene was stripped ofl until the temperature of the flask contents rose to 290 C., and the flask was then allowed to cool. The excess amine was removed by precipitation of the polymer three times from benzene with methanol. The polymer Was dissolved in benzene, added to 300 g. of 150 neutral oil, and stripped at mm. pressure. This concentrate was used to prepare blends for engine and carbon black peptization tests.
Other maleimide polymers having a variety of N-amino substituted alkyl imide groups were prepared by the procedure illustrated above and used in the preparation of blends for tests.
The structure of these compounds was substantiated by infra red analysis. The twin carbonyl peaks associated with succinic anhydride are no longer present. A carbonyl absorption band consistent with an imide structure is present, as well as the absence of any absorption due to amide or salt form.
EXAMPLE III This example shows the preparation of polymer of alkyl methacrylate, polyethylene glycol methacrylate, and maleic anhydride.
A 2-liter, round-bottomed, three-neck flask was fitted with amechanical stirrer, reflux condenser, and burette for catalyst addition and maintained under an inert atmosphere. A charge consisting of 514 g. of alkyl methacrylate (95%) in which the alkyl groups are a mixture of 60% by weight of dodecyl and 40% by weight octadecyl groups, 140 g. of polyethylene glycol methacrylate having a molecular weight of about 1800, g. of maleic anhydride, and 220 g. of methyl ethyl ketone was placed in, the flask. The catalyst was a 4% solution of bis-azoisobutyronitrile in methyl ethyl ketone.
The contents of the flask were brought to boiling, and an initial change of 0.85 ml. of catalyst was added. The catalyst level was maintained at 0.01% by slow addition of catalyst.
At the end of 5% hours, the reaction was stopped by the addition of quinone. The polymer was precipitated with methanol and twice precipitated from benzene with methanol and dissolved in benzene to make a 50% solution. Analysis showed the ratio of alkyl methacrylatepolyethylene glycol methacrylate maleic anhydride to be 50:1: 1.5.
EXAMPLE IV This example shows the preparation of polymer of alkyl methacrylate, polyethylene glycol methacrylate and imide of maleic anhydride and tetraethylene pentamine.
A 2-liter, round-bottomed flask fitted with a thermometer, mechanical stirrer, reflux condenser, and dropping tunnel was charged with 50 g. of tetraethylene pentamine and 200 g. of benzene. The dropping funnel was charged with 200 g. of the above prepared 50% solution of alkyl methacrylate, polyethylene glycol methacrylate, maleic anhydride polymer and 300 g. of benzene. The polymer solution was added over a period of two hours. The resulting solution was heated under reflux for two hours. The benzene was stripped off until the temperature of the flask rose to 280 C., and the flask was then allowed to cool. The excess amine was removed by precipitation of the polymer three times from benzene with methanol. The polymer was dissolved in benzene, added to 300 g. of 150 neutral oil, and stripped at 120 C. at 5 mm. pressure. This concentrate was used to prepare blends for engine and carbon peptization tests.
In general, excellent detergent and antiwear properties can be imparted to lubricating oils by dissolving therein a quantity of from about 0.1 to 10% by weight of the polymers of the type described above, although a preferred range is from about 0.5 to 5% by weight. The polymeric additives of this invention can be used with good effect in the case of any one of a wide variety of oils of lubricating viscosity, or of blends of such oils. Thus, the base oil can be a refined Pennsylvania or rather paraffin base oil, a refined naphthenic base oil, or a synthetic hydrocarbon or non-hydrocarbon oil of lubricating viscosity. As synthetic oils, there can be used alkylated waxes and similar alkylated hydrocarbons of relatively high molecular weight, hydrogenated polymers of hydrocarbons, and the condensation products of chlorinated alkyl hydrocarbons with aromatic compounds. Other suitable oils are those which are obtained by polymerization of lower molecular weight alkylene oxides such as propylene and/or ethylene, oxide. Still other synthetic oils are obtained by etherification and/or esterification of the hydroxy groups in alkylene oxide polymer such as, for example, the acetate of the 2-ethyl-hexanol-initiated polymer of propylene oxide. Other important classes of synthetic oils include the various esters as, for example, di(2-ethylhexyl) sebacate, tricresyl phosphate and silicate esters. If desired, the oil can be a mixture of mineral and synthetic oils.
While satisfactory lubricant compositions can be obtained by adding to the base oil employed only one or more of the polymeric additives of the type described above, it also falls within the purview of this invention to provide lubricant compositions which contain not only such polymers, but also other additives such as pour point depressants, oiliness and extreme pressure agents, antioxidants, rust and corrosion inhibiting agents, blooming agents, thickening agents, and/or compounds for enhancing the temperature-viscosity characteristics of the oil. The present invention also contemplates the addition to the lubricant composition (particularly when the amount of polymer employed is relatively small) of auxiliary detergents and/ or antiwear agents.
The eflicacy of polymeric additives of the type described above as detergents and antiwear agents in lubricating oils is illustrated by data from a number of tests. In the tests from which the data is obtained the base oil unless otherwise specified, is a solvent-refined, Wax-free SAE-30 grade mineral lubricating oil having a viscosity index of which is derived from California waxy crude. Various amounts of the polymeric additives are incorporated into the oil as noted in terms of percent by Weight.
In the carbon black peptization test, the low temperature detergency of the oils tested is measured by deter mining the ability of the oils to suspend finely divided carbon particles, which is in direct correlation to the ability of the oil to solubilize and retain typical engine fuel deposits and precursors thereof. In the tests, 0.5 gram of lampblack are suspended in ml. of light hydrocarbon oil along with 1% of the polymer in a grad uated glass cylinder. The suspension is observed over a period of time of several hours to determine the amount of sedimentation.
In the test where the piston varnish ratings are obtained, the same lubricating oil as above but containing 12 millimols per kilogram of zinc butyl hexyl dithiophosphate corrosion inhibitor is tested as the crankcase lubricant in a 6-cylinder Chevrolet engine using a low grade gasoline especially prone to cause engine deposits, the conditions being those defined in the standard FL-2 test procedure as described in the June 21, 1948 report of the Coordinating Research Council. This procedure requires the maintenance of a jacket temperature of 95 F. and a crankcase oil temperature of F. at 2500 r.p.m. and 45 brake horsepower of 40 hours, and therefore closely simulates the relatively cold engine conditions which are normally experienced in city driving. At the end of each test, the engine is dismantled and the amount of engine deposits on the piston determined and expressed as the piston varnish rating. This value is obtained by visually rating (on a scale of to 10, with 10 representing the absence of any deposit) the amount of deposit on each piston skirt and averaging the individual ratings so obtained for the various pistons. Under the conditions of this test, a piston varnish rating of 4.5 is indicative of satisfactory performance, though preferably this rating should be or above. In the case of the base oil alone without the addition of any additives, it is found that the piston varnish rating is approximately 3.0. On the other hand, as indicated by the data presented in Table 11 below, when the base oil is compounded with the indicated amounts of a copolymer, greatly superior results are ob tained.
1 60% by weight dodecyl and 40% by weight octadecyl.
From the tests of the foregoing table, it will be seen that each of the illustrative compositions containing the polymeric lubricating oil additives according to the invention possesses improved lubricating properties compared to the base oils alone.
We claim:
1. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufficient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oil-solubilizing compounds selected from the group consisting of alkyl esters of a,,8-unsaturated monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and tetraethylene pentamine, said polymer having a molecular Weight from about 100,000 to about 1,000,- 000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
2. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufiicient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consisting of alkyl esters of a,B-unsaturated monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and diethylene triamine, said polymer having a molecular weight from about 100,00 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
3. A lubricant composition comprising a major por tion of a mineral lubricating oil and a minor portion, sufiicient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consist ing of alkyl esters of art-unsaturated monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and 3-dimethyl amino propylamine, said polymer having a molecular weight from about 100, 000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
4. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufficient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consisting of alkyl esters of 0:,13-1111Sfli1112lt6d monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, and (B) the imide of maleic anhydride and a polyamine selected from the group consisting of B-dimethyl amino propylamine, diethylene triamine and tetraethylene pentamine, said polymer having a molecular weight from about 100,000 to about 1,00,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
5. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sufficient to enhance the detergent characteristics of the composition, of a polymer of (A) polymerizable oilsolubilizing compounds selected from the group consist ing of alkyl esters of ,fi-IIIlSfltUI'fltEd monocarboxylic acids of from 3 to 6 carbon atoms and fatty acid esters of unsaturated alcohols of from 2 to 6 carbon atoms having a single ethylenic linkage and containing an alkyl group of from 4 to 30 carbon atoms, (B) the imide of maleic anhydride and a polyamine selected from the group consisting of 3-dimethyl amino propylamine, diethylene triamine and tetraethylene pentamine, and (C) polyethylene glycol methacrylate having a molecular weight of about 1800, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil-solubilizing monomer (A) for each monomer unit of the imide monomer (B).
6. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, sutficient to enhance the detergent characteristics of the composition, of a polymer of (A) alkyl methacrylates having from 8 to 30 carbon atoms in the alkyl group, and (B) the imide of maleic anhydride and tetraethylene pentamine, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil solubiiizing monomer (A) for each monomer unit of the imide monomer (B).
7. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, suflicient to enhance the detergent characteristics of the composition, of a polymer of (A) alkyl methacrylates having from 8 to 30 carbon atoms in the alkyl group, and (B) the imide of maleic anhydride and diethylene triamine, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil solubilizing monomer (A) for each monomer unit of the imide monomer (B).
8. A lubricant composition comprising a major portion of a mineral lubricating oil and a minor portion, suflicient to enhance the detergent characteristics of the composition, of a polymer of (A) alkyl methaerylates having from 8 to 30 carbon atoms in the alkyl group, and (B) the imide of maleic anhydride and 3-dimethyl amino propylamine, said polymer having a molecular weight from about 100,000 to about 1,000,000, and said monomers being present in the polymer in the ratio of from about 1 to 20 monomer units of the oil solubilizing monomer (A) for each monomer unit of the imide monomer (B).
References Cited in the file of this patent UNITED STATES PATENTS 2,666,044 Catlin Jan. 12, 1954 16 Giammaria Feb. 16, 1954 Mikeska et a1. May 4, 1954 Giammaria Dec. 20, 1955 Catlin Mar. 6, 1956 Tawney Apr. 24, 1956 DAlelio Mar. 4, 1958 Zopf et al Mar. 28, 1961 OTHER REFERENCES 10 Biswell et al.: A New Class of Polymeric Dispersants for Hydrocarbon Systems, paper presented at 125th National Meeting, American Chemical Society, Kansas City, Mo., March 23 to April 1, 1954; page 3.

Claims (1)

1. A LUBRICANT COMPOSITION COMPRISING A MAJOR PORTION OF A MINERAL LUBRICATING OIL AND A MINOR PORTION, SUFFICIENT TO ENHANCE THE DETERGENT CHARACTERISTICS OF THE COMPOSITION, OF A POLYMER OF (A) POLYMERIZABLE OIL-SOLUBILIZING COMPOUNDS SELECTED FROM THE GROUP CONSISTING OF ALKYL ESTERS OF A, B-UNSATURATED MONOCARBOXYLICACIDS OF FROM 3 TO 6 CARBON ATOMS AND FATTY ACIDSESTERS OF UNSATURATED ALCOHOLS OF FROM 2 TO 6 CARBON ATOMS HAVING A SINGLE ETHYLENIC LINKAGE AND CONTAINING AN ALKYL GROUP OF FROM 4 TO 30 CARBON ATOMS, AND (B) THE IMIDE OF MALEIC ANHYDRIDE AND TERAETHYLENE PENTAMINE, SAID POLYMER HAVING A MOLECULAR WEIGHT FROM ABOUT 100,000 TO ABOUT 1,000,000, AND SAID MONOMERS BEING PRESENT IN THE POLYMER IN THE RATIO OF FROM ABOUT 1 TO 20 MONOMER UNITS OF THE OIL-SOLUBILIZING MONOMER (A) FOR EACH MONOMER UNIT OF THE IMIDE MONOMER (B).
US819223A 1959-06-10 1959-06-10 Lubricant composition Expired - Lifetime US3048544A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US819223A US3048544A (en) 1959-06-10 1959-06-10 Lubricant composition
GB12010/60A GB924418A (en) 1959-06-10 1960-04-05 Lubricant composition
FR828959A FR1265419A (en) 1959-06-10 1960-06-02 Lubricating composition
US169128A US3160612A (en) 1959-06-10 1962-01-26 Detergent copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US819223A US3048544A (en) 1959-06-10 1959-06-10 Lubricant composition

Publications (1)

Publication Number Publication Date
US3048544A true US3048544A (en) 1962-08-07

Family

ID=25227529

Family Applications (1)

Application Number Title Priority Date Filing Date
US819223A Expired - Lifetime US3048544A (en) 1959-06-10 1959-06-10 Lubricant composition

Country Status (1)

Country Link
US (1) US3048544A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189546A (en) * 1960-02-09 1965-06-15 Shell Oil Co Mineral oil compositions and additives therefor
US3206404A (en) * 1958-08-18 1965-09-14 Standard Oil Co Lubricants containing benzalalkylimine copolymers
US3216941A (en) * 1963-03-28 1965-11-09 California Research Corp Alkylene glycol amine reaction product
US3281358A (en) * 1963-06-20 1966-10-25 Exxon Research Engineering Co Hydrocarbon compositions containing anti-wear additives
US3307928A (en) * 1963-01-30 1967-03-07 Exxon Research Engineering Co Gasoline additives for enhancing engine cleanliness
US3311558A (en) * 1964-05-19 1967-03-28 Rohm & Haas N-alkylmorpholinone esters of alkenylsuccinic anhydrides
US3365399A (en) * 1965-10-07 1968-01-23 Sinclair Research Inc Lubricant composition
US3432479A (en) * 1965-10-07 1969-03-11 Sinclair Research Inc Reaction product of monoamine,polyamine and polymer of a monovinyl monomer and maleic anhydride
US3455827A (en) * 1967-08-04 1969-07-15 Enver Mehmedbasich Maleic anhydride copolymer succinimides of long chain hydrocarbon amines
US3476686A (en) * 1968-06-04 1969-11-04 Sinclair Research Inc Ashless lubricating oil detergents
US3493520A (en) * 1968-06-04 1970-02-03 Sinclair Research Inc Ashless lubricating oil detergents
US4440659A (en) * 1982-02-19 1984-04-03 Ethyl Corporation Lubricating oil ashless dispersant and lubricating oils containing same
US5055213A (en) * 1988-12-12 1991-10-08 Societe Nationale Elf Aquitaine Additives to lubricants resulting from the condensation of an alkylene polyamine with a copolymer containing vicinal carboxylic groups
US5221335A (en) * 1990-05-23 1993-06-22 Coates Electrographics Limited Stabilized pigmented hot melt ink containing nitrogen-modified acrylate polymer as dispersion-stabilizer agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666044A (en) * 1951-03-09 1954-01-12 Du Pont Alkyl acrylate/n-hydrocarbon-substituted acrylamide/unsaturated tertiary amino compound copolymers
US2669555A (en) * 1949-09-29 1954-02-16 Socony Vacuum Oil Co Inc Homopolymers of alkyl n-substituted maleimides
US2677662A (en) * 1948-08-02 1954-05-04 Standard Oil Dev Co Lubricating oil additives
US2727862A (en) * 1949-09-29 1955-12-20 Socony Mobil Oil Co Inc Mineral oil compositions containing polymers of alkyl n-substituted maleimides
US2737496A (en) * 1952-02-16 1956-03-06 Du Pont Lubricating oil compositions containing polymeric additives
US2743260A (en) * 1953-05-25 1956-04-24 Us Rubber Co Polymeric methyeol maleimide and derivatives
US2825716A (en) * 1953-06-26 1958-03-04 Koppers Co Inc Polymers and copolymers of n-(amino-1, 2, 4-triazolyl) imides of alkyl-1, 2-dioic acids
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677662A (en) * 1948-08-02 1954-05-04 Standard Oil Dev Co Lubricating oil additives
US2669555A (en) * 1949-09-29 1954-02-16 Socony Vacuum Oil Co Inc Homopolymers of alkyl n-substituted maleimides
US2727862A (en) * 1949-09-29 1955-12-20 Socony Mobil Oil Co Inc Mineral oil compositions containing polymers of alkyl n-substituted maleimides
US2666044A (en) * 1951-03-09 1954-01-12 Du Pont Alkyl acrylate/n-hydrocarbon-substituted acrylamide/unsaturated tertiary amino compound copolymers
US2737496A (en) * 1952-02-16 1956-03-06 Du Pont Lubricating oil compositions containing polymeric additives
US2743260A (en) * 1953-05-25 1956-04-24 Us Rubber Co Polymeric methyeol maleimide and derivatives
US2825716A (en) * 1953-06-26 1958-03-04 Koppers Co Inc Polymers and copolymers of n-(amino-1, 2, 4-triazolyl) imides of alkyl-1, 2-dioic acids
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206404A (en) * 1958-08-18 1965-09-14 Standard Oil Co Lubricants containing benzalalkylimine copolymers
US3189546A (en) * 1960-02-09 1965-06-15 Shell Oil Co Mineral oil compositions and additives therefor
US3307928A (en) * 1963-01-30 1967-03-07 Exxon Research Engineering Co Gasoline additives for enhancing engine cleanliness
US3216941A (en) * 1963-03-28 1965-11-09 California Research Corp Alkylene glycol amine reaction product
US3281358A (en) * 1963-06-20 1966-10-25 Exxon Research Engineering Co Hydrocarbon compositions containing anti-wear additives
US3311558A (en) * 1964-05-19 1967-03-28 Rohm & Haas N-alkylmorpholinone esters of alkenylsuccinic anhydrides
US3365399A (en) * 1965-10-07 1968-01-23 Sinclair Research Inc Lubricant composition
US3432479A (en) * 1965-10-07 1969-03-11 Sinclair Research Inc Reaction product of monoamine,polyamine and polymer of a monovinyl monomer and maleic anhydride
US3455827A (en) * 1967-08-04 1969-07-15 Enver Mehmedbasich Maleic anhydride copolymer succinimides of long chain hydrocarbon amines
US3476686A (en) * 1968-06-04 1969-11-04 Sinclair Research Inc Ashless lubricating oil detergents
US3493520A (en) * 1968-06-04 1970-02-03 Sinclair Research Inc Ashless lubricating oil detergents
US4440659A (en) * 1982-02-19 1984-04-03 Ethyl Corporation Lubricating oil ashless dispersant and lubricating oils containing same
US5055213A (en) * 1988-12-12 1991-10-08 Societe Nationale Elf Aquitaine Additives to lubricants resulting from the condensation of an alkylene polyamine with a copolymer containing vicinal carboxylic groups
US5221335A (en) * 1990-05-23 1993-06-22 Coates Electrographics Limited Stabilized pigmented hot melt ink containing nitrogen-modified acrylate polymer as dispersion-stabilizer agent

Similar Documents

Publication Publication Date Title
US3073807A (en) Copolymers of olefins with sulfonyloxy compounds
US2892786A (en) Lubricant composition
US2737496A (en) Lubricating oil compositions containing polymeric additives
CA1094538A (en) Solid particles-containing lubricating oil compositions and method for making same
US3048544A (en) Lubricant composition
US2993032A (en) Detergent copolymers
US3525693A (en) Alkenyl succinic polyglycol ether
US4029702A (en) Oil-soluble bicarbamamide compounds
US2892816A (en) Detergent copolymers
US2892793A (en) Lubricant composition
US2637698A (en) Mineral oil lubricating composition containing a copolymer of an alkyl ester of itaconic acid and an alkyl acrylate or methacrylate
US2892788A (en) Lubricant composition
US2892821A (en) Detergent copolymers
US2849399A (en) Improved lubricating composition
US2892792A (en) Lubricant composition
US3001942A (en) Lubricant composition
US3160612A (en) Detergent copolymer
US3046260A (en) Detergent copolymer
US2892791A (en) Lubricant composition
US2892819A (en) Detergent copolymers
US3208945A (en) Rust resistant lubricant composition
US2748170A (en) Synthetic lubricant product of polymerization of a vinyl ether with an olefin
US3048615A (en) Tertiary alkyl azomethine copolymers
US3502581A (en) Antioxidant composition and use thereof
US3078230A (en) Stabilization of lubricants