US3468361A - Continuous metal casting method - Google Patents
Continuous metal casting method Download PDFInfo
- Publication number
- US3468361A US3468361A US596292A US3468361DA US3468361A US 3468361 A US3468361 A US 3468361A US 596292 A US596292 A US 596292A US 3468361D A US3468361D A US 3468361DA US 3468361 A US3468361 A US 3468361A
- Authority
- US
- United States
- Prior art keywords
- casting
- mold
- molten
- salt
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 7
- 238000005058 metal casting Methods 0.000 title description 2
- 239000002184 metal Substances 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 23
- 238000005266 casting Methods 0.000 description 20
- 150000003839 salts Chemical class 0.000 description 17
- 239000002826 coolant Substances 0.000 description 16
- 239000007787 solid Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 2
- 229910001626 barium chloride Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/14—Plants for continuous casting
- B22D11/143—Plants for continuous casting for horizontal casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
- B22D11/1241—Accessories for subsequent treating or working cast stock in situ for cooling by transporting the cast stock through a liquid medium bath or a fluidized bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
- B22D11/1245—Accessories for subsequent treating or working cast stock in situ for cooling using specific cooling agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S65/00—Glass manufacturing
- Y10S65/04—Electric heat
Definitions
- the casting so formed is advanced horizontally didepth at which the pressure acting on the periphery of the solid casting shell sufficiently counteracts the pressure of the molten core in this casting to prevent rupture.
- the casting is maintained substantially at this depth until the casting is sufficiently solidified in the coolant to prevent outbreak of the molten core, and the casting so sufiiciently solidified is discharged continuously from the coolant bath.
- This invention relates to the art of continuous casting of molten metal.
- a molten metal such as steel
- such metal is led into one end of a water-cooled mold, which may be made of copper or a copper alloy.
- the mold is open at both ends and may be of any convenient cross-sectional shape, but is usually round or rectangular in cross-section.
- the metal in contact with the mold walls solidifies, forming a solid shell which remains filled with a molten metal core. This shell is continually pulled from the exit end of the mold and, as further cooling progresses, the molten core gradually solidifies.
- a ladle 10 is shown.
- the ladle supplies molten metal to a refractory tundish 11 through ladle pipe 12.
- An exit pipe 13 provides a path by which the molten metal 14 in the tundish may reach a mold 15.
- Water passages 16 allow cooling of mold 15, which may be made of copper.
- the mold has interior surfaces defining a mold bore 17.
- the walls of the mold bore 17 may be parallel or, as shown in the drawing, they may have a straightsided portion and an exit portion where the walls flare outward so that the cross-sectional area of the bore increases from the entrance to the exit.
- Cooling passages 23 are embedded in the chamber walls to facilitate the removal of heat from the salt and a rotatable stirrer 24 may be provided to direct a current of salt against the ingot 25 as it emerges from the mold.
- rollers 26 which may be rotatably held in loose metal journals, The salt will tend to lubricate such bearings.
- the apparent weight of the ingot on the rollers is reduced by the flotation effect of the salt bath.
- An opening for the ingot to leave the salt bath is provided by a copper exit ring 27 having internal passages 28 through which a cooling solution may be passed.
- a central opening defined by surface 29 is provided through the exit ring, said opening being alined with the opening in mold bore 17.
- the central opening is shaped to conform to the surface of the ingot as it passes therethrough, but preferably a small space is left between the surface 29 and the surface of the ingot in order to prevent wear of the exit ring.
- Molten salt enters this space and freezes due to contact with the exit ring 27.
- This salt acts as packing to prevent undue loss of salt from the mass within the chamber.
- the film of salt left upon the emerging ingot may be cracked therefrom by rolls or other devices, or washed off by cooling water.
- a tray 30 is provided to receive such salt fragments, which may be periodically returned to the salt chamber.
- Further cooling of the ingot may be accomplished by water spray nozzle 31, after which the ingot may be cut into pieces of a desired length by any suitable means.
- a method of continuously casting a molten metal comprising the steps of continuously introducing said molten metal into a mold having a bore extending in a substantially horizontal direction, cooling a portion of said molten metal below its freezing point in said mold bore by contact with said mold and thereby forming a solid shell, moving said solid shell from the mold bore into a bath of molten coolant of a temperature lower than the melting point of the molten metal and thereby removing heat from the solid shell and passing the solid shell in a substantially horizontal direction from the bath of molten coolant through an orifice defined by surfaces which are cooler than the melting point of the molten coolant and which conform to the surface of the shell to form thereby a thin layer of solidified coolant on the surface of the shell, as it passes through said orifice.
- a method of continuously casting a molten metal comprising continuously introducing molten metal under pressure into a mold having a bore with cooling walls to produce a partially solidified casting comprising a solid shell surrounding a molten core, continuously advancing said casting as it is formed and while in partially solidified condition substantially horizontally from said mold directly into contact with a bath of liquid coolant at a rate to cause a substantial length of said casting to be immersed in said coolant While in said partially solidified condition and at a depth in which the pressure of the coolant acting on the periphery of said partially solidified casting is sufliciently high to counteract the core pressure in said casting and thereby to prevent rupturing of said solid shell due to said core pressure, maintaining said casting While it is advancing in said coolant substantially at said depth to maintain said counteracting pressure action substantially constant until the casting is sufliciently solidified in said coolant to prevent outbreak of the molten core in the absence of coolant pressure, and continuously discharging the casting from said coolant bath.
- liquid coolant is barium chloride
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59629266A | 1966-11-22 | 1966-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3468361A true US3468361A (en) | 1969-09-23 |
Family
ID=24386744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US596292A Expired - Lifetime US3468361A (en) | 1966-11-22 | 1966-11-22 | Continuous metal casting method |
Country Status (9)
Country | Link |
---|---|
US (1) | US3468361A (enrdf_load_stackoverflow) |
AU (1) | AU5675869A (enrdf_load_stackoverflow) |
BE (1) | BE734876A (enrdf_load_stackoverflow) |
CH (1) | CH511654A (enrdf_load_stackoverflow) |
DE (1) | DE1931206A1 (enrdf_load_stackoverflow) |
FR (1) | FR2050546A5 (enrdf_load_stackoverflow) |
GB (1) | GB1266020A (enrdf_load_stackoverflow) |
LU (1) | LU58913A1 (enrdf_load_stackoverflow) |
NL (1) | NL6909531A (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3658117A (en) * | 1970-05-07 | 1972-04-25 | Fromson H A | Continuous metal casting method and apparatus |
EP0013076A1 (en) * | 1978-11-27 | 1980-07-09 | Secretary of State for Industry in Her Britannic Majesty's Gov. of the United Kingdom of Great Britain and Northern Ireland | Process and apparatus for producing metallic slurries |
US4751959A (en) * | 1984-12-27 | 1988-06-21 | Sms Concast Inc. | Method of and apparatus for continuously casting metals |
US4765390A (en) * | 1986-05-13 | 1988-08-23 | Concast Service Union Ag | Method of and arrangement for cooling a continuously cast strand |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE669725C (de) * | 1939-01-16 | Hugo Hahn | Klappe zum UEberbruecken der Durchfalloeffnungen fuer die Kugeln von Geschicklichkeitsspielen | |
FR878023A (fr) * | 1939-01-24 | 1943-01-08 | Kohle Und Eisenforschung Gmbh | Procédé de coulée continue de pièces |
US2754559A (en) * | 1955-02-11 | 1956-07-17 | Howard A Fromson | Method for the casting of sheets of a fusible material |
US2789327A (en) * | 1954-09-21 | 1957-04-23 | Burley W Corley | Apparatus for continuous metal casting |
US3128513A (en) * | 1961-03-29 | 1964-04-14 | Joseph W Charlton | Moldless metal casting process |
US3151366A (en) * | 1957-12-11 | 1964-10-06 | Howard A Fromson | Method and apparatus for the casting of fusible materials |
-
1966
- 1966-11-22 US US596292A patent/US3468361A/en not_active Expired - Lifetime
-
1969
- 1969-06-17 FR FR6920166A patent/FR2050546A5/fr not_active Expired
- 1969-06-20 AU AU56758/69A patent/AU5675869A/en not_active Expired
- 1969-06-20 DE DE19691931206 patent/DE1931206A1/de active Pending
- 1969-06-20 GB GB3141269A patent/GB1266020A/en not_active Expired
- 1969-06-20 BE BE734876A patent/BE734876A/xx unknown
- 1969-06-20 CH CH950969A patent/CH511654A/fr not_active IP Right Cessation
- 1969-06-20 NL NL6909531A patent/NL6909531A/xx unknown
- 1969-06-20 LU LU58913A patent/LU58913A1/xx unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE669725C (de) * | 1939-01-16 | Hugo Hahn | Klappe zum UEberbruecken der Durchfalloeffnungen fuer die Kugeln von Geschicklichkeitsspielen | |
FR878023A (fr) * | 1939-01-24 | 1943-01-08 | Kohle Und Eisenforschung Gmbh | Procédé de coulée continue de pièces |
US2789327A (en) * | 1954-09-21 | 1957-04-23 | Burley W Corley | Apparatus for continuous metal casting |
US2754559A (en) * | 1955-02-11 | 1956-07-17 | Howard A Fromson | Method for the casting of sheets of a fusible material |
US3151366A (en) * | 1957-12-11 | 1964-10-06 | Howard A Fromson | Method and apparatus for the casting of fusible materials |
US3128513A (en) * | 1961-03-29 | 1964-04-14 | Joseph W Charlton | Moldless metal casting process |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3658117A (en) * | 1970-05-07 | 1972-04-25 | Fromson H A | Continuous metal casting method and apparatus |
EP0013076A1 (en) * | 1978-11-27 | 1980-07-09 | Secretary of State for Industry in Her Britannic Majesty's Gov. of the United Kingdom of Great Britain and Northern Ireland | Process and apparatus for producing metallic slurries |
US4751959A (en) * | 1984-12-27 | 1988-06-21 | Sms Concast Inc. | Method of and apparatus for continuously casting metals |
US4765390A (en) * | 1986-05-13 | 1988-08-23 | Concast Service Union Ag | Method of and arrangement for cooling a continuously cast strand |
Also Published As
Publication number | Publication date |
---|---|
CH511654A (fr) | 1971-08-31 |
LU58913A1 (enrdf_load_stackoverflow) | 1970-01-14 |
NL6909531A (enrdf_load_stackoverflow) | 1970-12-22 |
BE734876A (enrdf_load_stackoverflow) | 1969-11-22 |
AU5675869A (en) | 1970-12-24 |
GB1266020A (enrdf_load_stackoverflow) | 1972-03-08 |
DE1931206A1 (de) | 1971-01-07 |
FR2050546A5 (enrdf_load_stackoverflow) | 1971-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI547323B (zh) | Continuous casting casting and steel continuous casting method | |
US4166495A (en) | Ingot casting method | |
US2515284A (en) | Differential cooling in casting metals | |
US4784208A (en) | Dual roll type continuous casting machine | |
JP6947737B2 (ja) | 鋼の連続鋳造方法 | |
US3468361A (en) | Continuous metal casting method | |
US3210812A (en) | Continuous casting mold | |
US3593778A (en) | Continuous casting apparatus | |
US2955334A (en) | Continuous casting | |
KR101320353B1 (ko) | 침지형 초음파 발생장치 | |
US3354936A (en) | Continuous casting process | |
US3339623A (en) | Thermal bending of continuous castings | |
US3570587A (en) | Apparatus for continuously casting and cooling while advancing through a body of liquid coolant | |
US3327768A (en) | Horizontal continuous casting apparatus | |
JPH0131976B2 (enrdf_load_stackoverflow) | ||
KR101400044B1 (ko) | 연주 공정에서의 주조속도 제어 방법 | |
KR101368350B1 (ko) | 용강의 탄소증가량 예측장치 및 그 방법 | |
JPS61119359A (ja) | マグネシウムまたはその合金の連続鋳造法 | |
KR101277627B1 (ko) | 연주공정에서 응고쉘의 브레이크아웃 예측 장치 및 그 방법 | |
US4355680A (en) | Method and apparatus for continuous casting of hollow articles | |
US3831660A (en) | Apparatus for improving continuously cast strands | |
JPS609553A (ja) | 絞り込み式連続鋳造機 | |
US3916985A (en) | Apparatus for continuous casting of metal strips | |
KR101388071B1 (ko) | 연속주조용 몰드의 냉각 방법 | |
RU2149074C1 (ru) | Способ непрерывной разливки тонких плоских слитков из металла |