US3454907A - Radio frequency attenuator - Google Patents

Radio frequency attenuator Download PDF

Info

Publication number
US3454907A
US3454907A US569526A US3454907DA US3454907A US 3454907 A US3454907 A US 3454907A US 569526 A US569526 A US 569526A US 3454907D A US3454907D A US 3454907DA US 3454907 A US3454907 A US 3454907A
Authority
US
United States
Prior art keywords
conductor
radio frequency
resistance
frequency attenuator
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US569526A
Inventor
Victor E Rimsha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3454907A publication Critical patent/US3454907A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • H01B11/14Continuously inductively loaded cables, e.g. Krarup cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/18Safety initiators resistant to premature firing by static electricity or stray currents

Definitions

  • a radio frequency attenuator in the form of an electrical conductor for attenuating radio frequency signals is made of copper clad by a nickel cylindrical conductor and has a high magnetic permeability alloy wire wound helically around the conductor.
  • the high magnetic permeability alloy Wire is heat fused to the electrical conductor and is insulated by an insulated cover.
  • This invention relates to radio frequency attenuators and more specifically to electrical conductors for attenuating radio frequencies.
  • an electroexplosive device such as a detonator, squib, igniter, etc.
  • an electromagnetic field such as created by radar, communication or telemetry transmitters, or by a nuclear reaction
  • the BBB and its associated circuitry may couple energy from the electromagnetic radiation, and an inadvertent initiation of the EED may occur.
  • This hazard arises whenever a missile or a space vehicle is in the vicinity of radio transmitters, or nuclear reaction. This situation exists when the vehicle is on the launch pad. immediately after take-off when it is in the field of local transmitters, and at any time after launch if it is in an electromagnetic radiation field for radio or nuclear sources.
  • an object of this invention to provide a conductor of high magnetic permeability alloy With high skin effect resistance that provides adequate attenuation irrespective of the frequencies encountered.
  • Another object of this invention is to provide a radio frequency attenuator which eliminates notches at sneak frequencies.
  • the conductor is shown and consists of an inner solid conductor 5 made of copper being clad with a nickel cylindrical conductor 7. About this center core consisting of the copper conductor 5 and nickel clad 7 is wound, in a spiral manner, a wire 9 made of a metal having a high mu characteristic such a Permalloy. Wire 9 is heat fused to conductor 7 to insure proper condution producing a high skin effect of RF frequencies. The entire conductor is then insulated by an insulating cover 11 in a conventional manner such as being inserted into Teflon spaghetti tubing.
  • the configuration can be varied in size and alloy composition.
  • the DC resistance of the conductor is controlled primarily by the inner core, the copper plus nickel. Enlarging the copper diameter provides a lower DC resistance, which is desirable. If the inner conductor 5 is of iron or similar magnetic material, DC resistance is increased, but the RF performance is improved.
  • the nickel cladding over the copper provides strength during the heat treat of the conductor fusing wire 9 to conductor 7, and simultaneously improves the RF performance.
  • Other low mu materials may be used for the inner core. The compromise is between strength at heat treat temperature, corrosion resistance, and mu parameter.
  • the outer layer of the conductor, wire 9, has high mu characteristics and provides the skin resistance at high frequencies, which accomplishes the attenuation function. The thickness of this layer can be varied, by using larger or smaller wire to wrap around the inner core.
  • This cable is easily adaptable to winding coils for detonators and the like where there is a danger of premature ignition due to induced AC currents.
  • a radio frequency attenuator conductor comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

y 8, 1969 v. E. RIMSHA 3,454,907
RADIO FREQUENCY ATTENUATOR Filed Aug. 1, 1966 Victor E. Rimsha,
INVENTOR.
m BY M 0. MW
M w UM United States Patent 3,454,907 RADIO FREQUENCY ATTENUATOR Victor E. Rimsha, Santa Ana, Califi, assignor, by mesne assignments, to the United States of America as represented by the Secretary of the Army Filed Aug. 1, 1966, Ser. No. 569,526 Int. Cl. H01h 7/14 US. Cl. 333-79 3 Claims ABSTRACT OF THE DISCLOSURE A radio frequency attenuator in the form of an electrical conductor for attenuating radio frequency signals. The electrical conductor is made of copper clad by a nickel cylindrical conductor and has a high magnetic permeability alloy wire wound helically around the conductor. The high magnetic permeability alloy Wire is heat fused to the electrical conductor and is insulated by an insulated cover.
This invention relates to radio frequency attenuators and more specifically to electrical conductors for attenuating radio frequencies.
When an electroexplosive device (EED) such as a detonator, squib, igniter, etc. is placed in an electromagnetic field, such as created by radar, communication or telemetry transmitters, or by a nuclear reaction, a hazard arises. The BBB and its associated circuitry may couple energy from the electromagnetic radiation, and an inadvertent initiation of the EED may occur. This hazard arises whenever a missile or a space vehicle is in the vicinity of radio transmitters, or nuclear reaction. This situation exists when the vehicle is on the launch pad. immediately after take-off when it is in the field of local transmitters, and at any time after launch if it is in an electromagnetic radiation field for radio or nuclear sources.
Many devices or procedures have been considered and/ or used to provide partial protection such as shielding, isolating, and balancing wiring, decreased EED sensitivity, filter networks, carbonyl iron ferrite attenuators, exploding bridgewire and band pass transformers. All of the above devices fall far short for providing a solution to the problem.
In view of the above deficiencies, it is, therefore, an object of this invention to provide a conductor of high magnetic permeability alloy With high skin effect resistance that provides adequate attenuation irrespective of the frequencies encountered.
Further, it is an object of this invention to provide a conductor having attenuation of alternating currents at all radio frequencies.
Another object of this invention is to provide a radio frequency attenuator which eliminates notches at sneak frequencies.
Still further, it is an object of thi invention to provide a radio frequency attenuator which is cheaper and easier to manufacture.
These and other objects and the attendant advantages, features, and uses will become apparent to those skilled in the art as the description proceeds when considered in conjunction with the single figure of a radio frequency attenuating conductor according to the present invention.
Referring now to the figure, the conductor is shown and consists of an inner solid conductor 5 made of copper being clad with a nickel cylindrical conductor 7. About this center core consisting of the copper conductor 5 and nickel clad 7 is wound, in a spiral manner, a wire 9 made of a metal having a high mu characteristic such a Permalloy. Wire 9 is heat fused to conductor 7 to insure proper condution producing a high skin effect of RF frequencies. The entire conductor is then insulated by an insulating cover 11 in a conventional manner such as being inserted into Teflon spaghetti tubing.
The configuration can be varied in size and alloy composition. The DC resistance of the conductor is controlled primarily by the inner core, the copper plus nickel. Enlarging the copper diameter provides a lower DC resistance, which is desirable. If the inner conductor 5 is of iron or similar magnetic material, DC resistance is increased, but the RF performance is improved.
The nickel cladding over the copper provides strength during the heat treat of the conductor fusing wire 9 to conductor 7, and simultaneously improves the RF performance. Other low mu materials may be used for the inner core. The compromise is between strength at heat treat temperature, corrosion resistance, and mu parameter. The outer layer of the conductor, wire 9, has high mu characteristics and provides the skin resistance at high frequencies, which accomplishes the attenuation function. The thickness of this layer can be varied, by using larger or smaller wire to wrap around the inner core. This variation becomes a trade-off between RF performance and size of conductor, and it has been found that the relationship of performance to size is non-linear, Further, it should be pointed out that a wire with low resistance core, iron, with permalloy clad over it by wire draw process, does not produce the high skin resistance. However, when a high mu metal is wound in a helix over the composite nickel/ copper core and fused to the core by means of electrical heating, the high skin resistance effect is obtained. The reason for which will be explained presently.
IN OPERATION When a DC current is passed through the conductor, the current is uniformly distributed through the cross section of the inner core (conductors 5 and 7). The resistance of the conductor to current flow is, by definition, the true or ohmic resistance. From this resistance, the resistivity of the particular metal or alloy per unit volume is computed. Such values are listed in handbooks.
When alternating currents are induced or applied to the conductor, there is a greater current density near the surface of the conductor. This is known as skin effect. As frequency increases, the current is crowded more and more to the surface of the conductor, until at high frequencies, nearly all the current is in the very thin film at the surface, i.e., in the skin of the conductor. The effective resistance increases with frequency. Since the spiral conductor 9 is heat fused to conductor 7, it acts as the outermost part of the entire conductor, and being of a high mu material, it provides a high resistance to AC currents which is the needed requirement for protection of an EED while DC currents are easily passed through conductors 5 and 7.
This cable has been tested extensively, and a five foot section has the following ohmic resistances:
Frequency: Ohmic resistance, ohms DC 1.5 100.0 kc -150 In addition to increased attenuation of RF frequencies, there are no sneak frequency notches; thus, eliminating the need for a filter network, it is cheaper to manufacture and it is more reliable.
This cable is easily adaptable to winding coils for detonators and the like where there is a danger of premature ignition due to induced AC currents.
While in accordance with the provisions of the statutes, the best form of the invention now known has been illustrated, it will be apparent to those skilled in the art that changes may be made in the form of the invention disclosed without departing from the spirit of the invention.
Accordingly, it is desired that the scope of this invention be limited only by the appended claims.
What is claimed is: r
1. A radio frequency attenuator conductor comprising:
Permalloy having a high mu factor for greater RF attenuation.
3. A radio frequency attenuator conductor as set forth in claim 2, wherein said insulating means comprises a Teflon an inner core conductor of a metal having a low mu factor, 5 spaghetti tubing placed over said helical wound outer consaid inner core conductor comprising a solid copper conductor and a cylindrical nickel cladding surrounding said copper conductor; a helical wound outer conductor of a metal having a high mu factor for attenuating AC currents forced into conduction in said helical conductor due to skin effect, said helical conductor being heat fused to said inner core conductor to insure transfer of AC currents to said helical conductor, said cylindrical nickel cladding surrounding said copper conductor for providing strength to said conductor during heat fusion of said heli- 5 cal conductor to said inner core; and an insulating means surrounding said outer conductor.
2. A radio frequency attenuator conductor as set forth in claim 1, wherein said helical conductor is made of duuctor.
References Cited UNITED STATES PATENTS 3,219,951 11/1965 Clark 333-79 3,191,132 6/1965 Mayer 33379 2,756,394 7/1956 Sieven 33331 3,329,911 7/1967 Schlicke 33379 HERMANN KARL SAALBACH, Primary Examiner.
C. BARAFF, Assistant Examiner.
US. Cl. X.R.
US569526A 1966-08-01 1966-08-01 Radio frequency attenuator Expired - Lifetime US3454907A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US56952666A 1966-08-01 1966-08-01

Publications (1)

Publication Number Publication Date
US3454907A true US3454907A (en) 1969-07-08

Family

ID=24275799

Family Applications (1)

Application Number Title Priority Date Filing Date
US569526A Expired - Lifetime US3454907A (en) 1966-08-01 1966-08-01 Radio frequency attenuator

Country Status (1)

Country Link
US (1) US3454907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2423377A1 (en) * 1978-04-18 1979-11-16 Daimler Benz Ag SYSTEM INTENDED TO RETAIN THE BODY OF PASSENGERS ON VEHICLES
US4757297A (en) * 1986-11-18 1988-07-12 Cooper Industries, Inc. Cable with high frequency suppresion
EP0281722A1 (en) * 1987-03-10 1988-09-14 Nobel Kemi AB A blasting system for underwater use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756394A (en) * 1953-07-14 1956-07-24 Hackethal Draht & Kabelwerk Ag Delay cables
US3191132A (en) * 1961-12-04 1965-06-22 Mayer Ferdy Electric cable utilizing lossy material to absorb high frequency waves
US3219951A (en) * 1963-05-03 1965-11-23 Don B Clark Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies
US3329911A (en) * 1963-02-25 1967-07-04 Allen Bradley Co Low transfer impedance capacitor with resistive electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756394A (en) * 1953-07-14 1956-07-24 Hackethal Draht & Kabelwerk Ag Delay cables
US3191132A (en) * 1961-12-04 1965-06-22 Mayer Ferdy Electric cable utilizing lossy material to absorb high frequency waves
US3329911A (en) * 1963-02-25 1967-07-04 Allen Bradley Co Low transfer impedance capacitor with resistive electrode
US3219951A (en) * 1963-05-03 1965-11-23 Don B Clark Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2423377A1 (en) * 1978-04-18 1979-11-16 Daimler Benz Ag SYSTEM INTENDED TO RETAIN THE BODY OF PASSENGERS ON VEHICLES
US4757297A (en) * 1986-11-18 1988-07-12 Cooper Industries, Inc. Cable with high frequency suppresion
EP0281722A1 (en) * 1987-03-10 1988-09-14 Nobel Kemi AB A blasting system for underwater use

Similar Documents

Publication Publication Date Title
US3572247A (en) Protective rf attenuator plug for wire-bridge detonators
US2821139A (en) Shielded initiator
US4757297A (en) Cable with high frequency suppresion
US2322773A (en) Electrical conductor
US2387783A (en) Transmission line
US4383225A (en) Cables with high immunity to electro-magnetic pulses (EMP)
US4486252A (en) Method for making a low noise cable
US2411534A (en) Impedance transformer
JPS62190609A (en) Radio frequency attenuation cable
US3185093A (en) High frequency immune squib
US4017344A (en) Magnetically enhanced coaxial cable with improved time delay characteristics
US3125733A (en) Transmission line having high attenuation for radiant
US3309633A (en) Anti-parasite electric cable
US3425004A (en) Radio frequency energy attenuator
US3219951A (en) Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies
US3454907A (en) Radio frequency attenuator
WO1992001301A1 (en) High velocity propagation ribbon cable
US2689294A (en) Metal film attenuator
US2727945A (en) High frequency magnetic elements and telecommunication circuits
US2354809A (en) Transmission line load for high frequencies
US4848233A (en) Means for protecting electroexplosive devices which are subject to a wide variety of radio frequency
US3324417A (en) Shielded common return pairs and coaxial cable
US3066266A (en) Radio frequency transformer
US3227974A (en) Radio-frquency interference guard in form of low-pass filter
US3912850A (en) High frequency coaxial cable