US3454384A - Method of manufacturing graphite-bond grinding wheels for precision grinding - Google Patents

Method of manufacturing graphite-bond grinding wheels for precision grinding Download PDF

Info

Publication number
US3454384A
US3454384A US552444A US3454384DA US3454384A US 3454384 A US3454384 A US 3454384A US 552444 A US552444 A US 552444A US 3454384D A US3454384D A US 3454384DA US 3454384 A US3454384 A US 3454384A
Authority
US
United States
Prior art keywords
grinding
bond
graphite
wheels
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US552444A
Inventor
Naojiro Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3454384A publication Critical patent/US3454384A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches

Definitions

  • This invention relates to grinding wheels and more particularly to a new method for producing graphitebond grinding wheels having highly desirable characteristics for precision grinding.
  • the grinding heat generated not only gives rise to affected layers (deteriorated layers) and residual stress in the work being ground but also becomes a cause in many cases of occurrence of serious defects such as grinding cracks.
  • This grinding heat is generated by friction, most of the grinding work or energy being used for friction work, that is, for overcoming friction between glazed grains .and the workpiece being ground and friction between the bond material and the chips. Consequently, even when a large quantityof cooling fluid is used, cooling of local parts where heat is generated is grossly inadequate, whereby various defects are caused. Thus, grinding heat has been a serious problem in precision grinding.
  • a bond material having a low coefficient of friction, high lubricity, high thermal conductivity, and highbending strength is'required.
  • An ultimate object of the invention is to provide grinding wheels of high performance and other desirable characteristics for precision grinding.
  • Another object of the invention is to provide a method for producing grinding wheels of the above stated character.
  • the present invention contemplates the production of vitrified grinding wheels by bonding various grinding abrasive grains with a bonding material having the constitution of a hard graphite pencil and having essential conditions such as touch and slip, point strength, and suitable micro-wear steps.
  • a method for producing graphite-bond grinding wheels for precision grinding characterized by the steps of: thoroughly mixing a bond material composed of 30-70% of kaolin and -30% of montmorillonite clays and 40-60% of fine powdery graphite, having the constitution of a hard graphite pencil, with selected grinding abrasive grains; adding 3-10% of water to the resulting mixture; pressure moulding the resulting material to specified dimensions and shape to form a green wheel; heating and sintering the green wheel in a graphite saggar in a neutral or reducing atmosphere at a temperature of from 850 to 950 degrees C. thereby to produce a sintered wheel having micropores; and impregnating said mocripores with a lubricative treatment agent such as stearic acid.
  • a lubricative treatment agent such as stearic acid.
  • a bond material having'the constitution of a hard graphite pencil has not only a bending strength which is two to three times that of conventionally used bond materials, irrespective of the kind of abrasives used, but also many other desirable features.
  • this bond material by impregnating the micro-pores of this bond material with a lubrica-tive treatment agent such as stearic acid, the necessity of using cooling fluid is obviated, and dry grindiiig can be accomplished with a grinding wheel produced with this bond material with only .a very low generation of heat whereby loca-l temperatures can be maintained below 270 degrees C.
  • a lubrica-tive treatment agent such as stearic acid
  • the grinding process can be continued, without occurrence of defects such as deterioration of ground surface, residual stress, and grinding cracks, with the emission of a regular and clear sound as the original colour and lustre of the workpiece material is retained, and fresh flow type chips are smoothly discharged, the cutting edges of the abrasive grains being self-sharpened by'the suitable wear of the grinding wheel.
  • the bond materials having hardnesses corresponding to that of various hard graphite pencils have compositions as exemplified in Table 1 and physical properties as indicated in Table 2 and are prepared by sintering and then impregnating the micropores thereof with a treatment agent such as stearic acid thereby to increase their strength and lubricity.
  • Bond materials of the compositions indicated in Table 1 are selected in accordance with the indicated degrees of the grinding wheel and respectively mixed intimately with grinding abrasive grains of grain ratios of from 15 to 48 percent. From 3 to 5 percent of water is mixed uniformly with each resulting mixture, and a metal mould of specified form for a grinding wheel filled with the resulting mixture, which is moulded under pressure until the predetermined bulk density is attained.
  • Each green wheel of the specified dimensions thus moulded is removed from the mould and then dried at a temperature of 80 degrees C.
  • the dried green wheels are next placed in respective saggars and heated in a neutral atmosphere or a reducing atmosphere at a temperature of from 850 to 950 degrees C. to sinter the bond materials.
  • the sintered wheels so obtained are left standing to cool naturally and then, after being preheated at 100 degrees C., are immersed in molten stearic acid to cause suitable quantities of stearic acid to be adsorbed in the micro-pores of the wheels, which are thereupon completed.
  • a layer of a thickness of from 2 to 5 mm. containing diamond abrasive grains is bonded adhesively to a base structure in the form of a disk of the bond material according to the invention containing a suitable quantity of silicon carbide grains, a disk of alight alloy, or a disk of synthetic resin, whereupon the grinding wheel is completed.
  • Grinder Horizontal surface grinder manufactured by Okamoto Machine Tool Mfg. Co., Ltd., Japan. Grinding wheel- Dimensions: 205 mm. diameter; 19.5 mm. thickness;
  • Workpiece Special tool steel (Japan Industrial Standards designation SKS 2) hardness, Rockwell C64. Grinding conditions Wheel peripheral speed metres/min 1,750 Table speed do 10 Depth of out per pass "microns" 10 Type of grinding, dry.
  • the grinding wheel according to the invention has excellent performance.
  • a method for producing a graphite-bond grinding wheel for precision grinding which comprises: throughly mixing a bonding material composed of 30-70% by weight of kaolin and 70-30% of montmorillonite clays and 40-60% of fine powdery graphite with selected grinding abrasive grains, adding 310% by weight of water to the. resulting mixture; pressure moulding the resulting material to specified dimensions and shape to form a green wheel; heating and sintering the green Wheel in a graphite saggar in an inert atmosphere at a temperature of from 850 to 950 degree C thereby to produce a sintered wheel having micropores.

Description

United States Patent Office 3,454,384 Patented July 8, 1969 3,454,384 METHOD OF MANUFACTURING GRAPHITE- BOND GRINDING WHEELS FOR PRECISION GRINDING Naojiro Kumagai, 97, l-chome, Kamimeguro,
Meguro-ku, Tokyo-to, Japan N Drawing. Filed May 24, 1966, Ser. No. 552,444 Claims priority, application Japan, Nov. 16, 1965, 40/ 69,939 Int. Cl. B24d 5/00; C09c N68 US. Cl. 51295 3 Claims ABSTRACT OF THE DISCLOSURE Graphite-bond grinding wheels for precision grinding having a low coeflicient of friction, high thermal conductivity and high bending strength are obtained by molding and then sintering a mixture of abrasive grinding grains, graphite and a bonding material composed of 30-70% by weight of kaolin and 70-30% by weight of montmorillonite. The resultant sintered wheel has microspores and is desirably impregnated with a lubricating agent.
This invention relates to grinding wheels and more particularly to a new method for producing graphitebond grinding wheels having highly desirable characteristics for precision grinding.
In precision grinding, the grinding heat generated not only gives rise to affected layers (deteriorated layers) and residual stress in the work being ground but also becomes a cause in many cases of occurrence of serious defects such as grinding cracks. This grinding heat is generated by friction, most of the grinding work or energy being used for friction work, that is, for overcoming friction between glazed grains .and the workpiece being ground and friction between the bond material and the chips. Consequently, even when a large quantityof cooling fluid is used, cooling of local parts where heat is generated is grossly inadequate, whereby various defects are caused. Thus, grinding heat has been a serious problem in precision grinding.
Among the grinding wheels known heretofore, there are vitrified wheels wherein clays are vitrified for the bond material, resinoid wheels wherein synthetic resins are used, metal bond wheels wherein metals such as copper, nickel, and iron are used, and wheels in which other bond materials are used. In all of .these wheels, however, the coefficients of friction of the bond material are high, and, moreover, the wear of the bond material which influences the self-sharpening characteristic of the abrasive grains in each case is both advantageous and disadvantageous. Accordingly, together with blunt ing due to attrition wear of the cutting edges of the abrasive grains, the generation of grinding heat increases.
Particularly in the case of a diamond wheel, the generation of grinding heat and the irregular discharge of chips cause the cutting edges of the abrasive grains of diamond to be blunted by chemical action, whereby the grinding performance is greatly impaired. Furthermore, the abrasive grains are shed or ploughed by the discharged chips .and fall off. This is a serious disadvantage and makes the grinding of various heat-treated steels which produce flow type chips impossible.
In precision grinding, therefore, it is vitally important to reduce the generation of grinding heat as much as possible, cause smooth discharge of chips, prevent occurrence of deteriorated layers and residual stress, reduce the roughness of finished surfaces, and maintain accuracy of the order of r'n'icro'ns.
In order to reduce greatly the generation of grinding heat, cause smooth discharge of chips, and facilitate self-sharpening of the abrasive grains through suitable micro-wear of the bond material, .a bond material having a low coefficient of friction, high lubricity, high thermal conductivity, and highbending strength is'required.
It is an object of the present invention to provide a bond material having the above stated properties.
An ultimate object of the invention is to provide grinding wheels of high performance and other desirable characteristics for precision grinding.
Another object of the invention is to provide a method for producing grinding wheels of the above stated character.
More specifically, the present invention contemplates the production of vitrified grinding wheels by bonding various grinding abrasive grains with a bonding material having the constitution of a hard graphite pencil and having essential conditions such as touch and slip, point strength, and suitable micro-wear steps.
According to the present invention, briefly stated, there is provided a method for producing graphite-bond grinding wheels for precision grinding, characterized by the steps of: thoroughly mixing a bond material composed of 30-70% of kaolin and -30% of montmorillonite clays and 40-60% of fine powdery graphite, having the constitution of a hard graphite pencil, with selected grinding abrasive grains; adding 3-10% of water to the resulting mixture; pressure moulding the resulting material to specified dimensions and shape to form a green wheel; heating and sintering the green wheel in a graphite saggar in a neutral or reducing atmosphere at a temperature of from 850 to 950 degrees C. thereby to produce a sintered wheel having micropores; and impregnating said mocripores with a lubricative treatment agent such as stearic acid.
A bond material having'the constitution of a hard graphite pencil has not only a bending strength which is two to three times that of conventionally used bond materials, irrespective of the kind of abrasives used, but also many other desirable features.
For example, by impregnating the micro-pores of this bond material with a lubrica-tive treatment agent such as stearic acid, the necessity of using cooling fluid is obviated, and dry grindiiig can be accomplished with a grinding wheel produced with this bond material with only .a very low generation of heat whereby loca-l temperatures can be maintained below 270 degrees C. As a result, the grinding process can be continued, without occurrence of defects such as deterioration of ground surface, residual stress, and grinding cracks, with the emission of a regular and clear sound as the original colour and lustre of the workpiece material is retained, and fresh flow type chips are smoothly discharged, the cutting edges of the abrasive grains being self-sharpened by'the suitable wear of the grinding wheel.
In accordance with the present invention, the bond materials having hardnesses corresponding to that of various hard graphite pencils have compositions as exemplified in Table 1 and physical properties as indicated in Table 2 and are prepared by sintering and then impregnating the micropores thereof with a treatment agent such as stearic acid thereby to increase their strength and lubricity.
TABLE I.COMPOSITIONS, PERCENT 1 The hardness (H) degrees, 5H, 7H, 9H correspond respectively to hardnesses 5H, 7H, and 9H respectively of graphite pencils.
TAB LE 2.PHYSIOAL PROPERTIES Degree of Hardness l Physical Property 5H 7H 9H Goefi. of friction (.T.I.S.) Z 0.223 0. 225 0. 228 Specific gravity 2. 35 2. 40 2. 43 Water absorption, percent 16. 2 15.6 14. 8 Stcaric acid impregnation, percent 7. 41 7. 13 6. 82 Bending strength, kg./cm. 785 862 948 1 The hardness (H) degrees, 5H, 7H, 9H correspond respectivelyt hardnesses 5H, 7H, and 911 respectively of graphite pencils.
2 As defined by Japan Industrial Standards.
In Table 1, mixtures of amorphous graphite, crystalline graphite and bond material in the percent by weight indicated in each vertical column yields an object having the hardness set forth at the head of the columns, and the physical properties indicated in Table 2. It is to be noted that for each composition, the bond material is made up of specified percentages by weight of kaolin clay, montmorillonite A and montmorillonite B as shown in the bottom half Table 1.
In order to indicate more fully the nature of the present invention, the following example of its embodiment is set forth, it being understood that this example is presented as illustrative only, and that it is not intended to limit the scope of the invention.
Bond materials of the compositions indicated in Table 1 are selected in accordance with the indicated degrees of the grinding wheel and respectively mixed intimately with grinding abrasive grains of grain ratios of from 15 to 48 percent. From 3 to 5 percent of water is mixed uniformly with each resulting mixture, and a metal mould of specified form for a grinding wheel filled with the resulting mixture, which is moulded under pressure until the predetermined bulk density is attained.
Each green wheel of the specified dimensions thus moulded is removed from the mould and then dried at a temperature of 80 degrees C. The dried green wheels are next placed in respective saggars and heated in a neutral atmosphere or a reducing atmosphere at a temperature of from 850 to 950 degrees C. to sinter the bond materials.
The sintered wheels so obtained are left standing to cool naturally and then, after being preheated at 100 degrees C., are immersed in molten stearic acid to cause suitable quantities of stearic acid to be adsorbed in the micro-pores of the wheels, which are thereupon completed.
In the case of a diamond grinding wheel, a layer of a thickness of from 2 to 5 mm. containing diamond abrasive grains is bonded adhesively to a base structure in the form of a disk of the bond material according to the invention containing a suitable quantity of silicon carbide grains, a disk of alight alloy, or a disk of synthetic resin, whereupon the grinding wheel is completed.
In order to indicate the utility of the present invention the following example of actual use and grinding performance of a grinding wheel according to the invention is presented.
Grinding was carried out with the following equipment and under the following conditions.
4 Grinder: Horizontal surface grinder manufactured by Okamoto Machine Tool Mfg. Co., Ltd., Japan. Grinding wheel- Dimensions: 205 mm. diameter; 19.5 mm. thickness;
51.5 mm. hole diameter. Particulars: SA grains; 25% grain ratio; 2.17
bulk density. Workpiece: Special tool steel (Japan Industrial Standards designation SKS 2) hardness, Rockwell C64. Grinding conditions Wheel peripheral speed metres/min 1,750 Table speed do 10 Depth of out per pass "microns" 10 Type of grinding, dry.
The following results were obtained.
Grinding ratios Quantity of Quantity workpiece of wheel ground wear Grinding (mmfi) (mmfi) ratio Cumulative number of passes:
Finished surface roughness, as measured by contact needle type instrument:
Roughness, microns No crossfeed, no spark out 1.2 No crossfeed, full spark out 0.95 Crossfeed, spark out, 1 pass 0.8 Crossfeed, full spark out 0.75
Measurement of temperatures due to generated grinding heat (measured with constantan-iron thermocouples):
Electromotive force, mv. Temperature, C.
Successively lower thereafter.
As indicated by the results set forth above, the grinding wheel according to the invention has excellent performance.
Since it is obvious that many changes and modifications canbe made in the above described details without departing from the nature and spirit of the invention, it is to be understood that the invention is not to be limited to the details described herein except as set forth in the appended claims.
What I claim is:
1. A method for producing a graphite-bond grinding wheel for precision grinding which comprises: throughly mixing a bonding material composed of 30-70% by weight of kaolin and 70-30% of montmorillonite clays and 40-60% of fine powdery graphite with selected grinding abrasive grains, adding 310% by weight of water to the. resulting mixture; pressure moulding the resulting material to specified dimensions and shape to form a green wheel; heating and sintering the green Wheel in a graphite saggar in an inert atmosphere at a temperature of from 850 to 950 degree C thereby to produce a sintered wheel having micropores.
2. The method according to claim 1 and the further step of impregnating the microspores of said sintered wheel with stearic acid.
3. In a method for producing a graphite-bond grinding 1 Chemicalcontent (percent) of special tool steel SKSZ: 1.00-1.10 0; 0.35 (max.) Si; 0.80 (max,) Mn; 0,030 (max) I; 0.030 (max.) S; 0.50-1.00 G 1 004.50 W.
wheel for precision grinding by mixing graphite and a 1,546,115 7/1925 Beecher 51308 bonding material with abrasive grinding grains, shaping 1,844,064 2/ 1932 Hartmann 51295 and then sintering the mixture, the improvement which 2,132,005 10/1938 Milligan et a1. 51-308 comprises mixing 40-60% by weight of fine powdery 2,281,526 4/1942 Milligan et a1 51308 graphite and a bonding material composed of 30-70% by 5 3,321,287 5/1967 Hunsberger et a1 51295 weight of kaolin, 70-30% by weight of montmorillonite clays with selected grinding abrasive grains. DONALD J, ARNOLD, Primary Examiner.
References Cited s Cl. X.R'
UNITED STATES PATENTS 10 308 1,479,107 1/1924 Ohman 51-308 1,483,507 2/1924 Brockbank 51308
US552444A 1965-11-16 1966-05-24 Method of manufacturing graphite-bond grinding wheels for precision grinding Expired - Lifetime US3454384A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6993965 1965-11-16

Publications (1)

Publication Number Publication Date
US3454384A true US3454384A (en) 1969-07-08

Family

ID=13417119

Family Applications (1)

Application Number Title Priority Date Filing Date
US552444A Expired - Lifetime US3454384A (en) 1965-11-16 1966-05-24 Method of manufacturing graphite-bond grinding wheels for precision grinding

Country Status (5)

Country Link
US (1) US3454384A (en)
CH (1) CH451738A (en)
DE (1) DE1571616A1 (en)
FR (1) FR1505625A (en)
GB (1) GB1174096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874856A (en) * 1970-02-09 1975-04-01 Ducommun Inc Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it
DE2817569A1 (en) * 1977-05-14 1978-11-16 Daichiku Co Ltd WAX TREATED GRINDSTONE
US4157897A (en) * 1977-04-14 1979-06-12 Norton Company Ceramic bonded grinding tools with graphite in the bond
FR2483296A1 (en) * 1980-05-29 1981-12-04 Norton Co GLASS AGGLOMERATED ABRASIVE FURNITURE CONTAINING METALLIC GRAPHITE
EP1462216A1 (en) * 2003-03-26 2004-09-29 Toyoda Koki Kabushiki Kaisha Grinding stone with lubrification particles and manufacturing method thereof
CN115650699A (en) * 2022-12-08 2023-01-31 长沙中瓷新材料科技有限公司 Molded graphite sagger and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758965A (en) * 1969-11-14 1971-05-13 Norton Co ABRASIVE GRINDING ELEMENTS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1479107A (en) * 1917-11-01 1924-01-01 Buffalo Refractory Corp Refractory composition
US1483507A (en) * 1923-07-06 1924-02-12 Rosstacony Crucible Company Refractory article and method of making the same
US1546115A (en) * 1920-02-16 1925-07-14 Norton Co Vitreous bonded silicon-carbide abrasive article
US1844064A (en) * 1924-07-09 1932-02-09 Carborundum Co Abrading
US2132005A (en) * 1936-09-16 1938-10-04 Norton Co Article of ceramic bonded abrasive material and method of making the same
US2281526A (en) * 1940-05-16 1942-04-28 Norton Co Grinding wheel
US3321287A (en) * 1964-07-20 1967-05-23 A P De Sanno & Son Inc Method of impregnating lubricant into abrasive wheels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1479107A (en) * 1917-11-01 1924-01-01 Buffalo Refractory Corp Refractory composition
US1546115A (en) * 1920-02-16 1925-07-14 Norton Co Vitreous bonded silicon-carbide abrasive article
US1483507A (en) * 1923-07-06 1924-02-12 Rosstacony Crucible Company Refractory article and method of making the same
US1844064A (en) * 1924-07-09 1932-02-09 Carborundum Co Abrading
US2132005A (en) * 1936-09-16 1938-10-04 Norton Co Article of ceramic bonded abrasive material and method of making the same
US2281526A (en) * 1940-05-16 1942-04-28 Norton Co Grinding wheel
US3321287A (en) * 1964-07-20 1967-05-23 A P De Sanno & Son Inc Method of impregnating lubricant into abrasive wheels

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874856A (en) * 1970-02-09 1975-04-01 Ducommun Inc Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it
US4157897A (en) * 1977-04-14 1979-06-12 Norton Company Ceramic bonded grinding tools with graphite in the bond
DE2817569A1 (en) * 1977-05-14 1978-11-16 Daichiku Co Ltd WAX TREATED GRINDSTONE
FR2483296A1 (en) * 1980-05-29 1981-12-04 Norton Co GLASS AGGLOMERATED ABRASIVE FURNITURE CONTAINING METALLIC GRAPHITE
US4334895A (en) * 1980-05-29 1982-06-15 Norton Company Glass bonded abrasive tool containing metal clad graphite
EP1462216A1 (en) * 2003-03-26 2004-09-29 Toyoda Koki Kabushiki Kaisha Grinding stone with lubrification particles and manufacturing method thereof
US20040198205A1 (en) * 2003-03-26 2004-10-07 Toyoda Koki Kabushiki Kaisha Grinding stone with lubrication particles and manufacturing method thereof
CN115650699A (en) * 2022-12-08 2023-01-31 长沙中瓷新材料科技有限公司 Molded graphite sagger and preparation method and application thereof
CN115650699B (en) * 2022-12-08 2023-06-02 长沙中瓷新材料科技有限公司 Molded graphite sagger and preparation method and application thereof

Also Published As

Publication number Publication date
DE1571616A1 (en) 1971-02-18
CH451738A (en) 1968-05-15
FR1505625A (en) 1967-12-15
GB1174096A (en) 1969-12-10

Similar Documents

Publication Publication Date Title
US5429648A (en) Process for inducing porosity in an abrasive article
US3664819A (en) Resin bonded metal-coated diamond or cubic boron nitride abrasive tools containing an inorganic crystalline filler and graphite
EP3221087B1 (en) Bonded abrasive articles and methods of manufacture
CN106312839B (en) A kind of diamond low-temp ceramics/ferrous metals bonding agent and preparation method thereof
JP2000505004A (en) Manufacturing method of highly permeable whetstone
US4042347A (en) Method of making a resin-metal composite grinding wheel
US5037452A (en) Method of making vitreous bonded grinding wheels and grinding wheels obtained by the method
JP2006346857A (en) Polishing tool
CA2833342A1 (en) Resin bonded grinding wheel
JPH04226863A (en) Grinding material for grinding wheel and manufacture thereof
US3454384A (en) Method of manufacturing graphite-bond grinding wheels for precision grinding
JP2017035779A (en) Bonded abrasive body and method of forming the same
WO1996014186A1 (en) Method and abrasive article produced thereby
US2137200A (en) Abrasive article and its manufacture
US2162600A (en) Filler for abrasive articles
JP2643401B2 (en) Combination type polishing tool
US3081161A (en) Abrasive articles and their manufacture
US4076506A (en) Transition metal carbide and boride abrasive particles
US3551125A (en) Method of forming a grinding wheel
US2173833A (en) Abrasive article and its manufacture
JPS5882677A (en) Super particle grindstone
JPH03264263A (en) Porous metal bond grinding wheel and manufacture thereof
US2495257A (en) Diamond abrasive article
JPS59152066A (en) Cubic crystal boron nitride grind stone
JPS6099570A (en) Grindstone