US3448500A - Method of bulking yarn - Google Patents

Method of bulking yarn Download PDF

Info

Publication number
US3448500A
US3448500A US605700A US3448500DA US3448500A US 3448500 A US3448500 A US 3448500A US 605700 A US605700 A US 605700A US 3448500D A US3448500D A US 3448500DA US 3448500 A US3448500 A US 3448500A
Authority
US
United States
Prior art keywords
yarn
jet
filaments
yarns
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US605700A
Inventor
Gustav E Benson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US551091A external-priority patent/US3411287A/en
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Application granted granted Critical
Publication of US3448500A publication Critical patent/US3448500A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam

Definitions

  • the zone of fluid turbulence may be provided by an enclosed fluid texturing jet and strand feed and take-up apparatus is used to pass the strand through the fluid jet at a speed such that the energy transferred to said strand filaments is suflicient to form the desired arches but is insufficient to break the groups of filaments or to distort the desired arches into closed loops.
  • This invention relates to improved textile yarns and fabrics and an apparatus and method for producing such yarns and fabrics. It is a particular object of this invention to provide a fabric woven from glass yarns which has the texture and appearance of a fine cotton, silk or wool fabric and a hand equivalent to these fabrics.
  • this invention provides a novel bulky yarn and a method and apparatus for producing such novel yarn.
  • this invention relates to a method and apparatus for the high speed production of an improved bulky yarn, which yarn is characterized by the fact that it has a uniformly higher degree of bulk or volume than yarns heretofore produced by prior art methods and apparatuses and which is further characterized by the absence of broken ends or fibers.
  • the yarn produced by the method and apparatus of this invention is further characterized by the presence of randomly spaced, undulatory surface waves comprised of a discrete bundle of filaments which have been separated from a relatively densely packed core area and which are returned to and intermingled with the core area on each side of the individual wave.
  • Fabrics woven from the improved bulky yarn of this invention are characterized by the appearance and hand of fine cotton, silk or wool and have a low density and soft texture uniformly throughout.
  • Bulky yarns of this type are characterized by the presence of a large number of closed or crunodal loops which vary in size in accordance with the pressure and the relative rates at which the yarn is fed to and withdrawn from the area of fluid turbulence or jet.
  • US. Patent 2,874,444 discloses an apparatus including a freely rotatable, double diameter, coaxial pulley over which yarn is fed to the jet inlet from a first yarn surface of a relatively large diameter and is withdrawn from the jet outlet on a second yarn surface of relatively small diameter, thus fixing the overfeed ratio.
  • Apparatuses of this nature are effective to maintain a fixed overfeed ratio between the yarn fed and yarn withdrawn from the jet but, because of certain difiiculties in the apparatus such as inertia of the pulley and the direction in which the yarns are fed to and withdrawn from the jet, such apparatuses have been unable to be effectively used at yarn speeds in excess of about 500 feet per minute. At higher speeds, stresses are placed on the yarn and it is apt to completely break or to sever a large number of the filaments.
  • the yarn produced by the apparatus of this invention is characterized by the absence of any broken filaments and is also characterized by the presence of a large number of undulatory shaped waves each of which include selected numbers of filaments which are taken from the relatively densely packed core area on either side of the wave.
  • This novel yarn is further char- 3 acterized by a high bulk or loft, that is, the height of the undulatory waves is substantially greater than the diameter or thickness of the closely compacted core area of the textured yarn.
  • the improved yarns of this invention characterized by uniform bulking without surface irregularities and by the absence of broken filaments and crunodal or closed loops, are produced by the high speed apparatus of this invention which is able to pass untextured yarn through highly turbulent zone at a linear yarn velocity sutficient to uniformly bulk the yarn while preventing the formation of completed or closed loops and preventing filament breakage.
  • the improved yarns of this invention are produced by the device of this invention which passes them through the highly turbulent zone at a speed at which the energy transferred from the fluid turbulence to each increment of yarn is sufficient to separate a number of filaments into successive discrete undulatory arches or waves extending laterally from the core or bundle of yarn, but in insuflicient to form closed or crunodal loops in such filaments.
  • the energy transferred is not suflicient to break a substatial number of such filaments. This energy-velocity relationship is described in greater detail below.
  • the yarn feeding and take-up surfaces of the double diameter feed rolls are axially spaced apart on the coaxial feed rolls, it is possible to feed the yarn to the outlet orifice of the jet at a small angle to the axis of the jet but yet in a plane passing through the axis of the jet.
  • This small angle is important in that it keeps the incoming yarn out of the blow-back from the inlet orifice of the jet which has caused problems in previous attempts at high speed.
  • Blow-back is high velocity air which comes out of the inlet orifice of the jet, causing resistance to the incoming yarn and producing an initial fuzz or slight separation of the yarns prior to entering the jet.
  • the yarn By feeding the yarn to the inlet orifice of the jet at a slight angle to the axis of the jet to avoid the blow-back, the yarn enters the interior of the jet in a substantially unopened or compact condition where the forces of fluid turbulence initially strike only the surface portions of the yarn.
  • the yarn is passed through the jet at such high speeds, it is believed that a somewhat different bulking or texturing action takes place than in prior art apparatuses. This texturing action in which the forces of fluid turbulence affect only the surface areas of the yarn is believed to account for the novel characteristics of the yarn produced from the apparatus of this invention.
  • the device of this invention can attain a yarn feed velocity such that the energy available to each yarn increment passing through the turbulent zone is sufficient to separate the surface filaments into laterally extending undulatory waves but is insuflicient to break or to form complete or crunodal loops in the filaments.
  • FIG. 1 is a view, on a greatly enlarged scale, of a short section of an untextured or untreated yarn, prior to being treated by the apparatus of this invention
  • FIG. 2 is a view also on a greatly enlarged scale, of a short section of the novel yarn product of this invention illustrating the undulatory wave-like configurations assumed by selected bundles of surface filaments which are produced from the relatively straight, closely packed filaments of the yarn shown in FIG. 1;
  • FIG. 3 is a cross-sectional view, taken along the lines 33 of FIG. 2, and showing the manner in which the undulatory waves formed by the bundles of surface filaments extend in all directions from the core thereof;
  • FIG. 4 is a schematic view in perspective of a complete yarn bulking apparatus of this invention, showing a yarn texturing fluid jet with yarn being fed to and taken from it by a pair of driven, double diameter, coaxial yarn feed and take-up rollers and further illustrating the manner in which the yarn is passed from the take-up roller to a liquid size applicator and thence to a constant tension Winding device;
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4 and showing, on an enlarged scale, the alignment of the fluid jet inlet and outlet orifices with the axial centers of the yarn bearing surfaces of the feed and take-up rollers;
  • FIG. 6 is a schematic View of a portion of FIG. 5 showing the drive mechanism for the feed and take-up rollers.
  • the improved bulky yarn of this invention can be made from an untextured yarn or strand of continuous filament fibers of any origin. Glass fibers are particularly adapted for use in forming the bulky product of this invention.
  • yarn refers to a bundle of continuous filament fibers, twisted or untwisted. The filaments prior to being treated are generally parallel and are densely compacted into a yarn having a uniform average diameter, indicated by reference numeral 10a.
  • the novel product of this invention comprises a generally linear, relatively dense core section, designated by reference numeral 10b, and a plurality of surface waves designated by reference numeral 11.
  • the surface waves 11 occur randomly along the length of the yarn and have generally equal forward and reverse slopes Within each wave.
  • the waves Ila-11c extend radially outwardly from the core section 10b in all directions so that the bulk or waves of the improved yarn extends radially outwardly from the center of the core section 10b by a substantially equal amount in all directions.
  • the core section is further characterized by the presence of randomly occurring holes or splits, designated by reference letter X, formed by a separation of the core section filaments into distinct groups.
  • Each of the waves 11 is comprised of a group of filaments taken from the core section 10b on either side of the wave.
  • the group of filaments forming the waves appear to lie on the opposite side of the core section from which the wave emerges so that the waves are bound in place by the main body of filaments of the core section.
  • the individual filaments are of varying length so that each wave is comprised of a number of filaments which are spaced apart, extending from the outermost filament 12 of the wave 11a and extending radially inwardly toward the core section 1011.
  • each of these waves extend in all directions from the center of the core section 10b, as seen in FIG. 3, each of these waves, from its crest, such as from filament 12 in wave 11:! to the core section 10b, is substantially greater in depth than the diameter of the core section 10b.
  • the novel yarn product is quite bulky in relation to its untextured source, shown in FIG. 1, and has surface characteristics distinct from that source and also from prior art yarn.
  • the Waves 11 are comprised of a number of loosely compacted and spaced apart filaments, this bulkiness is imparted by displacement of relatively few filaments, so that the substantial majority of the filaments from the source yarn remain in the core section 10b.
  • Adjacent waves 11 are not formed of the same selected filaments but are composed of a different group of filaments coming out of the core area 11b. A relatively large number of filaments remains in the core section 10b from wave to wave and each wave retains its separate identity from the adjacent waves because its included filaments are returned to and gripped by the relatively closely packed core section 10b.
  • EXAMPLE 1 A continuous filament fibrous glass yarn comprised of a single strand of filaments having an average diameter of 0.00029 inch with a 1/0 Z twist was run through a fluid jet, of the type described in my copending application Ser. No. 407,758, originally filed Oct. 30, 1964, now U.S. Patent 3,381,346 supplied with air at p.s.i.g. The yarn was fed to and taken-up from the jet in an apparatus similar to that shown in FIGS. 4-6. The exit speed of the bulked yarn from the jet was 3,000 feet per minute.
  • the bulked yarn made in this example had a breaking strength of 2.6 pounds and, under microscopic inspection, was found to be characterized by the absence of broken filaments and by the presence of the undulatory Wavelike surface convolutions shown in FIG. 1.
  • the bulkiness of the product was uniform throughout the length of the test samples. It appeared that the surface fibers of a particular wave returned on each side of the wave to the opposite side of a relatively dense core portion and that the height of the waves from their outermost fiber or crest to the core portion was substantially greater than the diameter of the core portion itself. Samples in accordance with this example were further characterized by the absence of closed or crunodal loops.
  • Woven textile products using the bulked yarn of this example had a uniform surface characteristic due to the uniformity of the bulked yarn.
  • the yarn of this example may be Woven as is or may be given an additional twist prior to weaving.
  • Air pressure Exit speed of Appearance of the bulked prodto jet bulked yarn uct is characterized by Example (p.s.i.g.) (f.p.m.)
  • the yarn of this invention is due to (a) very high turbulence which is capable of agitating and separating groups of surface filaments and pushing these groups laterally away from the body of the yarn and (b) high rates of yarn travel by which successive increments of yarn are passed through the turbulent zone at a speed sufiicient to prevent filament breakage or formation of closed or crunodal loops.
  • Such high speeds in excess of 2000 f.p.m. have been impossible to attain prior to the development of the apparatus of this invention, described below in detail.
  • FIGS. 4, 5 and 6 the preferred embodiment of an apparatus for textun'ng a yarn in accordance with the concepts of this invention is shown in detail.
  • a horizontal platform 13 supports a vertically extending housing 14 and a winder mechanism 15.
  • Extending below the support platform 13 is a yarn supply, generally designated by reference numeral 16 and a liquid sizing applicator 17 whose function will be subsequently explained.
  • a fluid jet 18 having an inlet orifice 19 and an outlet orifice 20 with a general axial passage 21 extending therethrough is secured to the front face of the housing 14 with a fluid supply line 22 connected to a source of fluid or air pressure (not shown).
  • the construction and operation of such fluid jets are well known in the prior art.
  • the jet used in this apparatus may be of the type disclosed in U.S. Patent 2,994,438 but is preferably of the type disclosed in my copending application, Ser. No. 407,758, originally filed Oct. 30, 1964, now U.S. Patent 3,381,346.
  • a pair of double diameter, coaxial yarn feed and takeup rollers 23 and 24 are secured to rotating shafts 25 and 26, respectively, which shafts 25 and 26 are journaled for rotation on parallel axes in the housing 14 by suitable bearings 27 and 28, schematically shown in FIG. 5.
  • a suitable drive mechanism such as an electric motor M is connected by a belt 29 to a pulley 30 which is secured to the shaft 25.
  • a second belt 31 extends around a second pulley (not shown) secured to the shaft 25 and around a pulley 32 secured to the shaft 26. Clockwise rotation of the motor, in the direction shown by the arrow in FIG. 6 will turn both the yarn feed and take-up rollers 23 and 24 in the same clockwise direction.
  • the peripheral or surface speed of each of the rollers 23 and 24 be identical at corresponding points on their surfaces. If the rollers 23 and 24 are of the same size, the pulleys connecting the drive belts 29 and 31 should also be of the same size. If the rollers 23 and 24 are of a different size, the size of their corresponding pulleys should be adjusted so that the surface or peripheral speed of the rollers 23 and 24 is the same for corresponding points on their outer diameters.
  • each of these rollers includes a first cylindrical section 33 having a diameter D and a second coaxially secured cylindrical section 34 having a diameter d which is smaller than the diameter D.
  • the positioning of the inlet orifice 19 and outlet orifice 20 of the jet 18 in relation to the external yarn bearing surfaces of the cylindrical sections 33 and 34 of the rollers 23 and 24 is important to assure that the apparatus is capable of feeding and withdrawing yarn to and from the jet 18 at high speed.
  • the axial passage 21, which connects the inlet and outlet orifices 19 and 20 and is hereinafter referred to as the axis of the jet 18, lies in a plane which is tangential to the outer or yarn bearing surface of the larger cylindrical section 33 of the roller 23.
  • a line passing through the outlet orifice 20 and normal to the axis of the jet is tangential to the outer surface of the smaller cylindrical section 34 of the roller 24.
  • This angular placement 'of the jet accomplishes three things. First, it places the inlet orifice 19 of the jet in a plane normal to the rotational axes of the rollers 23 and 24 and passing through the midpoint of the yarn bearing surface of the cylindrical section 33 of the roller 23 so that yarn supported on this surface at its middle is directed downwardly directly into the jet orifice 19.
  • the angle between the jet axis and the direction of the entering yarn, a, as shown in FIG. 5, is preferably about 10 which is sufi'icient to avoid the jet blow-back and yet permit the yarn to be fed into the interior of the jet 18 without striking, at a large angle, the edges of the inlet orifice 19 or other portions in the throat of the jet 18.
  • yarn from the yarn supply 16 is directed through a yarn guide or pigtail 35 upwardly, thence around and between the outer surfaces of the larger cylindrical sections 33 of each of the rollers 23 and 24.
  • the expression around and between" the yarn feed and take-up rollers 23 and 24 defines the path of the yarn shown in FIG. 4 in which the yarn is led around the remote outer surface of one of the rollers thence directly to the other roller, thence around its remote outer surface and back, without directly encircling either of the individual rollers 23 or 24.
  • the untextured yarn is directed around and between the outer surfaces of the cylindrical sections 33 a number of times sufficient to provide enough engagement with these surfaces to prevent slippage as the yarn is being withdrawn from the yarn supply 16 when the rollers are driven at high speed.
  • the yarn is directed from the surface of the section 33 of the roller 23 downwardly to the inlet orifice 19 of the jet 18, through the jet 18 and then from the outlet orifice 20 directly to the outer surface of the cylindrical section 35 of the roller 24.
  • the yarn is then directed around and between the cylindrical sections 34 of both rollers 23 and 24 for a sufiicient number of turns to insure against slipping as the yarn is withdrawn from the jet when the rollers 23 and 24 are driven at high speed.
  • Constant tension Winders such as those commercially available from a number of manufacturers include a tension sensing mechanism, such as a tension arm 37, which, through electrical or electrical-mechanical controls will vary the winding speed of the yarn package on its mandrel in accordance with variations in the tension of the yarn being wound.
  • the textured yarn after being led around the roller 36, is taken directly to a yarn package 38, wound on a mandrel 39 of the constant tension winder which includes a traverse mechanism 40. As seen in FIG. 4, the yarn leaving or passing by the roller 36 is contacted by the lowermost portion of a liquid size applicator 17.
  • the application of size to the bulked yarn after it leaves the jet '18 is desirable in certain instances to partially assist in holding the bulked waves 11 in place and further lock the filaments in their relation to one another. It is also desirable in assuring a uniform pack-age buildup on the mandrel 39 and prevents drafting or flattening of the bulked yarn.
  • Suitable liquid sizing may be starch, hot melt or solvent type coatings presently commercially available from a number of sources.
  • the bulked yarns may be heat set or thermally relaxed by passing them through a zone of heat sufficient to fix them in their bulked or undulatory configurations.
  • an elongate mufile furnace or open flame having a sufficiently high temperature to set the individual filaments may be used. This, of course, must be done prior to applying an appropriate size which may be added after the heat setting.
  • composite yarns made up of continuous glass fibers and other fibers such as resin fibers of polyethylene, tetrafiuoroethylene or a polyamide can also be texturized by the present technique and then heat set.
  • the resin fibers can be selectively heat set to lock in the textured condition of the glass fibers with the glass uneffected by the heat.
  • the resin fibers can also be heated to a plastic condition to effect cohesion of the resin fibers to the glass fibers.
  • the principle of using at least two driven feed rollers can be eflectively utilized in a system in which separate yarn sources are combined in a fluid jet to produce a composite bulky product.
  • a process which combines two separate yarn sources such as is disclosed in US. Patent 2,869,967
  • one source of untextured yarn is overfed to the jet at a first rate while a second source is overfed to the jet at a second rate which is faster than the first overfeed rate.
  • the first and second yarns which may be designated as core and effect yarns, are combined within the jet so that the core yarns maintain generally untextured and linear configurations While the effect yarns, which are overfed at a great rate, form the surface convolutions which give bulk to the composite product.
  • each of the feed and take-up rollers would include three coaxial cylindrical sections of diflFerent diameter.
  • the first feed section for the eifect yarn would have the greatest diameter
  • the second feed section for the core yarn would have an intermediate size diameter
  • the third section for the takeup of the composite yarn would have the smallest diameter.
  • a jet could be positioned in relation to the feed and take-up surface so that the yarn is withdrawn from the outlet orifice at an angle normal to the axis of the jet and so that the entering yarn from each of the core and effect feed roll surfaces is directed to the jet in a direction slightly displaced from the axis of the jet.
  • the apparatus shown in FIGS. 4 through 6 is capable of obtaining higher speeds in feeding and withdrawing yarn to and from a fluid jet at a fixed rate of overfeed than have heretofore been obtainable with other prior art drive and take-up mechanisms.
  • the apparatus described due to its ability to feed yarn through the area of fluid turbulence within the jet at such high speed, produces a different texturing action which results in the novel product characterized by the absence of broken filaments, the absence of crunodal loops, and the presence of undulatory waves comprised of selected ones of the filaments in the core area which return to the core area on either side of each wave and remain bound in place by relatively dense compaction of the core area which remains intact throughout the process.
  • fabrics, woven or unwoven, comprised of the improved bulked yarn of this invention are characterized by the appearance and texture of cotton, silk or woolen fabric. Because of the lofty or open nature of these yarns, fabrics composed of it also have superior wetting or impregnation characteristics when used as reinforcing in fiber-reinforced plastics. Resin laminates made of a plurality of resin impregnated fabric layers have better lamination strength due to thorough penetration or impregnation of the resin into the individual yarns of the fabric and due to the lateral extension of the lofted fibers toward the interfaces of the lamination or adjacent layers of fabric.
  • a method of producing a bulky textile product comprising the steps of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Forwarding And Storing Of Filamentary Material (AREA)

Description

June 10, 1969 G. E. BENSON 3,448,500
INVENTOR Eusml/ EBENEUN ATTORNEY June 10, 1969 G. E. BENSON METHOD OF BULKING YARN Sheet 2 Filed Dec. 29, 1966 INVENTOR EUsTAY fifiznsmr. Wxm ATTORNEY United States Patent Int Cl. D02g 3/22 US. Cl. 2872 6 Claims ABSTRACT OF THE DISCLOSURE A method of producing a bulky textile product from a strand of textile filaments by passing successive increments of the strand through a zone of fluid turbulence at a high linear speed whereby groups of filaments are separated and displaced from those remaining in the strand to form arches or waves extending outwardly from the body of the strand. The zone of fluid turbulence may be provided by an enclosed fluid texturing jet and strand feed and take-up apparatus is used to pass the strand through the fluid jet at a speed such that the energy transferred to said strand filaments is suflicient to form the desired arches but is insufficient to break the groups of filaments or to distort the desired arches into closed loops.
This application is a continuation-in-part of my copending application Ser. No. 551,091, filed May 18, 1966, now US. Patent 3,411,287.
This invention relates to improved textile yarns and fabrics and an apparatus and method for producing such yarns and fabrics. It is a particular object of this invention to provide a fabric woven from glass yarns which has the texture and appearance of a fine cotton, silk or wool fabric and a hand equivalent to these fabrics.
Conventional glass yarns are hard, shiny and of high density and fabrics woven from such conventional yarns are consequently dense, hard and shiny. Previous attempts to texturize or bulk conventional glass yarns, particularly of a single strand, have not been fully satisfactory due to poor uniformity and have produced yarns which when woven present a nubby fabric which had only limited acceptance.
To achieve this improved fabric, this invention provides a novel bulky yarn and a method and apparatus for producing such novel yarn.
More specifically, this invention relates to a method and apparatus for the high speed production of an improved bulky yarn, which yarn is characterized by the fact that it has a uniformly higher degree of bulk or volume than yarns heretofore produced by prior art methods and apparatuses and which is further characterized by the absence of broken ends or fibers. The yarn produced by the method and apparatus of this invention is further characterized by the presence of randomly spaced, undulatory surface waves comprised of a discrete bundle of filaments which have been separated from a relatively densely packed core area and which are returned to and intermingled with the core area on each side of the individual wave. Fabrics woven from the improved bulky yarn of this invention are characterized by the appearance and hand of fine cotton, silk or wool and have a low density and soft texture uniformly throughout.
To obscure the nonuniformity of prior art bulked yarns, texturization was carried to the extent where the filaments were looped or broken to produce a rough, nubby and relatively weak yarn that could only be used to produce boucle and other rough surfaced fabrics. Bulky yarns in which relatively straight and closely compacted filaments have been separated and convoluted by passing the unbulked yarn through an enclosed area of fluid turbulence are well known in the prior art. United States Patent 2,783,609 discloses one such yarn and the apparatus for producing it. Bulky yarns of this type are characterized by the presence of a large number of closed or crunodal loops which vary in size in accordance with the pressure and the relative rates at which the yarn is fed to and withdrawn from the area of fluid turbulence or jet.
One of the ditficulties encountered with prior art apparatuses and methods have been that it has been heretofore impossible to bulk or texture a yarn with a substantial degree of bulkiness and, at the same time,
' be highly uniform in the degree of bulkiness along the length of the yarn and avoid breakage of a substantial number of the filaments in the fluid turbulence. While it may be desirable in some instances to produce a staple type product characterized by the presence of a relatively large number of broken filaments, it is desirable in many instances to produce a bulky yarn characterized by the absence of broken filaments because such a yarn retains its original tensile strength and also has novel surface characteristics.
Another disadvantage of prior art apparatuses and processes for bulking yarns in a fluid jet has been the relative slow rate of feed obtainable. A number of apparatuses for feeding the unbulked or untextured yarns to the jet inlet and withdrawing them from the jet outlet at fixed speeds are currently available. Because such fluid bulking processes necessarily reduce the length of the yarn which had been bulked relative to that of the unbulked yarn, a number of apparatuses which overfeed one or a plurality of yarns to the jet have been developed.
US. Patent 2,874,444 discloses an apparatus including a freely rotatable, double diameter, coaxial pulley over which yarn is fed to the jet inlet from a first yarn surface of a relatively large diameter and is withdrawn from the jet outlet on a second yarn surface of relatively small diameter, thus fixing the overfeed ratio. Apparatuses of this nature are effective to maintain a fixed overfeed ratio between the yarn fed and yarn withdrawn from the jet but, because of certain difiiculties in the apparatus such as inertia of the pulley and the direction in which the yarns are fed to and withdrawn from the jet, such apparatuses have been unable to be effectively used at yarn speeds in excess of about 500 feet per minute. At higher speeds, stresses are placed on the yarn and it is apt to completely break or to sever a large number of the filaments.
It has been discovered that, through the use of at least two coaxial, multiple diameter feed rollers which are in a fixed and predetermined position in relation to the inlet and outlet orifices of the fluid jet and are driven at high speed with the untextured yarn wrapped around and between the large diameter surfaces and thence fed to the jet and thence taken from the jet and wrapped around and between the small diameter surfaces, that speeds in excess of 3,000 feet per minute can be used in texturing yarns without breaking any of the yarn filaments.
It has also been discovered, through use of such an apparatus at high speed as previously described, that the yarn produced thereby has distinct and different characteristics from the yarns produced by previously known prior art processes and apparatuses. The yarn produced by the apparatus of this invention is characterized by the absence of any broken filaments and is also characterized by the presence of a large number of undulatory shaped waves each of which include selected numbers of filaments which are taken from the relatively densely packed core area on either side of the wave. This novel yarn is further char- 3 acterized by a high bulk or loft, that is, the height of the undulatory waves is substantially greater than the diameter or thickness of the closely compacted core area of the textured yarn.
The improved yarns of this invention, characterized by uniform bulking without surface irregularities and by the absence of broken filaments and crunodal or closed loops, are produced by the high speed apparatus of this invention which is able to pass untextured yarn through highly turbulent zone at a linear yarn velocity sutficient to uniformly bulk the yarn while preventing the formation of completed or closed loops and preventing filament breakage. For a given amount of turbulence, (or fluid pressure applied to a turbulent zone in the texturing device), the improved yarns of this invention are produced by the device of this invention which passes them through the highly turbulent zone at a speed at which the energy transferred from the fluid turbulence to each increment of yarn is sufficient to separate a number of filaments into successive discrete undulatory arches or waves extending laterally from the core or bundle of yarn, but in insuflicient to form closed or crunodal loops in such filaments. Preferably also the energy transferred is not suflicient to break a substatial number of such filaments. This energy-velocity relationship is described in greater detail below.
It is believed that the previously enumerated advantages of the instant apparatus and method are made possible through use of at least two coaxial, multiple-diameter driven feed rollers whereby the yarn from the larger diameter section of one of the feed rolls can be fed to the inlet orifice of the jet in a path which lies substantially in a plane passing through the axis of the jet and can be withdrawn from the outlet orifice of the jet in a path which is subtsantially normal to the axis of the jet. This manner of feeding and withdrawing the yarn to and from the jet is believed to account for the fact that the yarn may be textured with the instant apparatus at such high speed which has been unobtainable with prior art apparatuses. Furthermore, as will be subsequently explained, because the yarn feeding and take-up surfaces of the double diameter feed rolls are axially spaced apart on the coaxial feed rolls, it is possible to feed the yarn to the outlet orifice of the jet at a small angle to the axis of the jet but yet in a plane passing through the axis of the jet. This small angle is important in that it keeps the incoming yarn out of the blow-back from the inlet orifice of the jet which has caused problems in previous attempts at high speed. Blow-back is high velocity air which comes out of the inlet orifice of the jet, causing resistance to the incoming yarn and producing an initial fuzz or slight separation of the yarns prior to entering the jet.
By feeding the yarn to the inlet orifice of the jet at a slight angle to the axis of the jet to avoid the blow-back, the yarn enters the interior of the jet in a substantially unopened or compact condition where the forces of fluid turbulence initially strike only the surface portions of the yarn. When the yarn is passed through the jet at such high speeds, it is believed that a somewhat different bulking or texturing action takes place than in prior art apparatuses. This texturing action in which the forces of fluid turbulence affect only the surface areas of the yarn is believed to account for the novel characteristics of the yarn produced from the apparatus of this invention. Additionally, with the yarns passing through the turbulent Zone within the jet at such high speeds, the energy transferred to the yarn from the turbulence, for a given amount of turbulence, is greatly reduced and is concentrated upon the external or surface areas of the yarn. For fixed amounts of high turbulence, (or fluid pressure supplied to a fluid jet), the device of this invention can attain a yarn feed velocity such that the energy available to each yarn increment passing through the turbulent zone is sufficient to separate the surface filaments into laterally extending undulatory waves but is insuflicient to break or to form complete or crunodal loops in the filaments.
It is an object of this invention to provide a novel bulky yarn characterized by the absence of broken filaments or staple fibers and by the absence of closed or crunodal loops.
It is another object of this invention to provide a novel bulky yarn characterized by the presence of randomly occurring undulatory waves on the surface of the bulked yarn which are comprised of selected numbers of filaments which are drawn from the relatively densely packed core area of the yarn and are returned thereto after extending into a less densely packed Wave.
It is still another object of this invention to provide a novel bulky yarn of glass fibers characterized by the presence of a number of undulatory waves of selected filaments drawn from a relatively densely packed core area of the yarn which waves are comprised of a selected group of filaments drawn from a relatively densely packed core section and in which the height of such waves, from their crest to the center of the core of the yarn, is substantially larger than the diameter of the core area of the yarn.
It is an object of this invention to provide an improved apparatus for texturing or bulking yarns by means of feeding the unbulked yarn at high speed through a fluid texturing jet.
It is another object of this invention to provide an improved apparatus for bulking yarns by feeding them at high speed to the yarn inlet of a fluid texturing jet in a direction slightly displaced from the axis of the jet and withdrawing the textured yarn from the outlet orifice of the jet in a direction substantially normal to the axis of the jet.
It is still another object of the invention to provide an apparatus for producing a novel bulky yarn which includes means for applying a liquid size to the yarn after it has been textured, and a high speed constant tension take-up device which forms a compact package of textured yarn of uniform tension.
It is still a further object of this invention to provide an improved method of producing a novel bulky yarn which method produces such yarn at a rate substantially in excess of any prior art methods.
It is yet a further object of this invention to provide a method of texturing yarn by passing it through an area of fluid turbulence, which method includes the steps of feeding the yarn at a first rate into the inlet orifice of a fluid jet at an angle slightly displaced from the axis of the jet and in withdrawing the yarn at a second, slower rate from the outlet orifice of the jet in a direction substantially normal to the axis of the jet.
It is another object of this invention to provide a meth- 0d, and an apparatus for carrying out such method of texturing yarns by passing them through a zone of turbulence at a speed such that, for a given amount of high turbulence, the energy transferred to each increment of yarn is sufficient to separate a number of filaments into undulatory or wave-like arches extending laterally from the body of the yarn but is insuflicient to rearrange the filament into closed or crunodal loops.
Other objects and advantages of this invention will be apparent to those skilled in the art from the following detailed description of the product, the method and a preferred embodiment of the apparatus, reference being made to the accompanying drawings in which:
FIG. 1 is a view, on a greatly enlarged scale, of a short section of an untextured or untreated yarn, prior to being treated by the apparatus of this invention;
FIG. 2 is a view also on a greatly enlarged scale, of a short section of the novel yarn product of this invention illustrating the undulatory wave-like configurations assumed by selected bundles of surface filaments which are produced from the relatively straight, closely packed filaments of the yarn shown in FIG. 1;
FIG. 3 is a cross-sectional view, taken along the lines 33 of FIG. 2, and showing the manner in which the undulatory waves formed by the bundles of surface filaments extend in all directions from the core thereof;
FIG. 4 is a schematic view in perspective of a complete yarn bulking apparatus of this invention, showing a yarn texturing fluid jet with yarn being fed to and taken from it by a pair of driven, double diameter, coaxial yarn feed and take-up rollers and further illustrating the manner in which the yarn is passed from the take-up roller to a liquid size applicator and thence to a constant tension Winding device;
FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4 and showing, on an enlarged scale, the alignment of the fluid jet inlet and outlet orifices with the axial centers of the yarn bearing surfaces of the feed and take-up rollers; and
FIG. 6 is a schematic View of a portion of FIG. 5 showing the drive mechanism for the feed and take-up rollers.
Referring to FIG. 1, the improved bulky yarn of this invention can be made from an untextured yarn or strand of continuous filament fibers of any origin. Glass fibers are particularly adapted for use in forming the bulky product of this invention. It is to be understood that the term yarn, as used in this specification and the claims appended hereto, refers to a bundle of continuous filament fibers, twisted or untwisted. The filaments prior to being treated are generally parallel and are densely compacted into a yarn having a uniform average diameter, indicated by reference numeral 10a.
As seen in FIG. 2, the novel product of this invention comprises a generally linear, relatively dense core section, designated by reference numeral 10b, and a plurality of surface waves designated by reference numeral 11. The surface waves 11 occur randomly along the length of the yarn and have generally equal forward and reverse slopes Within each wave. As seen in FIG. 3, the waves Ila-11c extend radially outwardly from the core section 10b in all directions so that the bulk or waves of the improved yarn extends radially outwardly from the center of the core section 10b by a substantially equal amount in all directions. The core section is further characterized by the presence of randomly occurring holes or splits, designated by reference letter X, formed by a separation of the core section filaments into distinct groups.
Each of the waves 11 is comprised of a group of filaments taken from the core section 10b on either side of the wave. The group of filaments forming the waves appear to lie on the opposite side of the core section from which the wave emerges so that the waves are bound in place by the main body of filaments of the core section. Within each wave 11, the individual filaments are of varying length so that each wave is comprised of a number of filaments which are spaced apart, extending from the outermost filament 12 of the wave 11a and extending radially inwardly toward the core section 1011.
In addition to the fact that the waves 11a-11c extend in all directions from the center of the core section 10b, as seen in FIG. 3, each of these waves, from its crest, such as from filament 12 in wave 11:! to the core section 10b, is substantially greater in depth than the diameter of the core section 10b. Thus the novel yarn product is quite bulky in relation to its untextured source, shown in FIG. 1, and has surface characteristics distinct from that source and also from prior art yarn. Furthermore, because the Waves 11 are comprised of a number of loosely compacted and spaced apart filaments, this bulkiness is imparted by displacement of relatively few filaments, so that the substantial majority of the filaments from the source yarn remain in the core section 10b.
Because the improved product of this invention is characterized by absence of broken fibers or staple and also by the absence of closed or crunodal loops, it has vastly superior qualities of tensile strength and the ability to retain its bulk when placed under tension than prior art bulky yarns. Adjacent waves 11 are not formed of the same selected filaments but are composed of a different group of filaments coming out of the core area 11b. A relatively large number of filaments remains in the core section 10b from wave to wave and each wave retains its separate identity from the adjacent waves because its included filaments are returned to and gripped by the relatively closely packed core section 10b.
EXAMPLE 1 A continuous filament fibrous glass yarn comprised of a single strand of filaments having an average diameter of 0.00029 inch with a 1/0 Z twist was run through a fluid jet, of the type described in my copending application Ser. No. 407,758, originally filed Oct. 30, 1964, now U.S. Patent 3,381,346 supplied with air at p.s.i.g. The yarn was fed to and taken-up from the jet in an apparatus similar to that shown in FIGS. 4-6. The exit speed of the bulked yarn from the jet was 3,000 feet per minute.
The bulked yarn made in this example had a breaking strength of 2.6 pounds and, under microscopic inspection, Was found to be characterized by the absence of broken filaments and by the presence of the undulatory Wavelike surface convolutions shown in FIG. 1. The bulkiness of the product was uniform throughout the length of the test samples. It appeared that the surface fibers of a particular wave returned on each side of the wave to the opposite side of a relatively dense core portion and that the height of the waves from their outermost fiber or crest to the core portion was substantially greater than the diameter of the core portion itself. Samples in accordance with this example were further characterized by the absence of closed or crunodal loops.
Woven textile products using the bulked yarn of this example had a uniform surface characteristic due to the uniformity of the bulked yarn. The yarn of this example may be Woven as is or may be given an additional twist prior to weaving.
The relationship between linear yarn speed and amount of energy available to texture successive increments of yarn passing through the jet from the fluid turbulence directly affects the configuration of the bulked yarn, as previously stated. A series of tests was conducted on the apparatus and under the conditions set forth in Example 1 above upon the same yarn, with changes made only in the exit speed of the bulked yarn and in the air pressure supplied to the jet. These tests and the appearance of the resulting product under microscopic inspection are summarized below:
Air pressure Exit speed of Appearance of the bulked prodto jet bulked yarn uct is characterized by Example (p.s.i.g.) (f.p.m.)
2 40 300 Many small closed loops; many broken ends.
3 4O 1, 000 Bulkier wave-like arches; some smaller loops; some broken ends.
4 40 2, 000 Long, shallow arches of few filaments; few broken ends.
5 60 300 Many closed loops and rings;
broken ends.
6 60 1, 000 Some closed loops and rings;
broken ends.
7 60 2, 000 Long arches, few closed loops;
randomly occurring broken ends.
8 80 300 Many small closed loops; many broken ends; little relative bulk.
9 80 1, 000 Mang closed loops; many broken en s.
10 80 2, 000 Many closed loops; randomly occdurring arches; some broken en s.
1 1 80 3, 000 N 0 closed loops; successive wave-like arches of substantial lateral height; no broken ends.
1 Repeated from above.
From the description of the bulked product formed in Examples 1-10 above, it will be apparent that, as the amount of turbulence or fluid pressure applied to the jet increases, the linear yarn speed must also be increased to provide a product having few broken ends or closed loops. Furthermore, inspection of the product of Example 1 indicated that it was superior to any other product produced at lower fluid pressures or linear yarn speeds. Consequently, the yarn of this invention is due to (a) very high turbulence which is capable of agitating and separating groups of surface filaments and pushing these groups laterally away from the body of the yarn and (b) high rates of yarn travel by which successive increments of yarn are passed through the turbulent zone at a speed sufiicient to prevent filament breakage or formation of closed or crunodal loops. Such high speeds in excess of 2000 f.p.m. have been impossible to attain prior to the development of the apparatus of this invention, described below in detail.
Referring to FIGS. 4, 5 and 6, the preferred embodiment of an apparatus for textun'ng a yarn in accordance with the concepts of this invention is shown in detail. Referring particularly to FIG. 4, a horizontal platform 13 supports a vertically extending housing 14 and a winder mechanism 15. Extending below the support platform 13 is a yarn supply, generally designated by reference numeral 16 and a liquid sizing applicator 17 whose function will be subsequently explained.
A fluid jet 18 having an inlet orifice 19 and an outlet orifice 20 with a general axial passage 21 extending therethrough is secured to the front face of the housing 14 with a fluid supply line 22 connected to a source of fluid or air pressure (not shown).
The construction and operation of such fluid jets are well known in the prior art. The jet used in this apparatus may be of the type disclosed in U.S. Patent 2,994,438 but is preferably of the type disclosed in my copending application, Ser. No. 407,758, originally filed Oct. 30, 1964, now U.S. Patent 3,381,346.
A pair of double diameter, coaxial yarn feed and takeup rollers 23 and 24 are secured to rotating shafts 25 and 26, respectively, which shafts 25 and 26 are journaled for rotation on parallel axes in the housing 14 by suitable bearings 27 and 28, schematically shown in FIG. 5.
As shown in phantom in FIG. 6, a suitable drive mechanism such as an electric motor M is connected by a belt 29 to a pulley 30 which is secured to the shaft 25. A second belt 31 extends around a second pulley (not shown) secured to the shaft 25 and around a pulley 32 secured to the shaft 26. Clockwise rotation of the motor, in the direction shown by the arrow in FIG. 6 will turn both the yarn feed and take-up rollers 23 and 24 in the same clockwise direction.
As will be subsequently explained, it is important that the peripheral or surface speed of each of the rollers 23 and 24 be identical at corresponding points on their surfaces. If the rollers 23 and 24 are of the same size, the pulleys connecting the drive belts 29 and 31 should also be of the same size. If the rollers 23 and 24 are of a different size, the size of their corresponding pulleys should be adjusted so that the surface or peripheral speed of the rollers 23 and 24 is the same for corresponding points on their outer diameters.
Assuming that each of the rollers 25 and 26 have identical dimensions in this preferred embodiment, each of these rollers includes a first cylindrical section 33 having a diameter D and a second coaxially secured cylindrical section 34 having a diameter d which is smaller than the diameter D. When the cylindrical sections 33 of D diameter are used to feed yarn to the jet 18 and the cylindrical sections 34 of d diameter are used to withdraw the textured yarn from the jet 18, it will be seen that, because the cylindrical sections 33 and 34 are coaxial and are turned at the same angular speed, the peripheral speed of the sections 33, due to the larger diameter, will cause the yarn to be fed to the jet 18 at a linear speed in excess of the speed with which the bulk yarn is withdrawn from the jet 18 by the sections 34. Thus this amount of overfeed is determined by the ratio of the diameters, D/d. In the preferred embodiment, this ratio is such that the amount of overfeed is 10%, or D/ d equals 1.10.
The positioning of the inlet orifice 19 and outlet orifice 20 of the jet 18 in relation to the external yarn bearing surfaces of the cylindrical sections 33 and 34 of the rollers 23 and 24 is important to assure that the apparatus is capable of feeding and withdrawing yarn to and from the jet 18 at high speed. As best seen in FIGS. 4 and 5, the axial passage 21, which connects the inlet and outlet orifices 19 and 20 and is hereinafter referred to as the axis of the jet 18, lies in a plane which is tangential to the outer or yarn bearing surface of the larger cylindrical section 33 of the roller 23. As further seen in these figures, a line passing through the outlet orifice 20 and normal to the axis of the jet is tangential to the outer surface of the smaller cylindrical section 34 of the roller 24. It has been determined that effective high speed yarn texturing can be best accomplished by removing the yarn immediately after it leaves the jet, at a right angle from the axis of the jet. It has further been determined that the preferred direction of entry of yarn being fed to the inlet orifice 19 of the jet 18 is in a direction which is only slightly displaced from the axis of the jet 18.
Referring to FIG. 5, it will be seen that the jet 20 and its axis, as shown, is slightly titled =or cocked from the vertical. This angular placement 'of the jet accomplishes three things. First, it places the inlet orifice 19 of the jet in a plane normal to the rotational axes of the rollers 23 and 24 and passing through the midpoint of the yarn bearing surface of the cylindrical section 33 of the roller 23 so that yarn supported on this surface at its middle is directed downwardly directly into the jet orifice 19. Secondly, it places the outlet orifice 20 of the jet 18 in a plane normal to the rotational axes of the rollers 23 and 24 and passing through the midpoint of the yarn bearing surface of the smaller cylindrical section 34 of the roller 24 so that yarn being drawn from the jet will pass from the outlet orifice 20 directly to the midpoint of the outer surface on the cylindrical section 34 of the roller 24. Thirdly, it places the axis of the jet 18 at an angle to the direction of yarn entering the jet 18 through the inlet orifice 19 to remove this entering yarn from the blow-back from the jets. As previously stated, it is desirable to avoid feeding the untextured yarn directly into the small amount of air which is blown back through the yarn inlet orifice 19 when producing the bulky yarns of this invention due to the fact that the blow-back apparently causes a small amount of yarn opening or flufling prior to striking the principal zone of turbulence within the jet. The angle between the jet axis and the direction of the entering yarn, a, as shown in FIG. 5, is preferably about 10 which is sufi'icient to avoid the jet blow-back and yet permit the yarn to be fed into the interior of the jet 18 without striking, at a large angle, the edges of the inlet orifice 19 or other portions in the throat of the jet 18.
With the yarn feed and take-up rollers 23 and 24 and the jet positioned by the housing 14 as described, yarn from the yarn supply 16 is directed through a yarn guide or pigtail 35 upwardly, thence around and between the outer surfaces of the larger cylindrical sections 33 of each of the rollers 23 and 24. As used in this specification and appended claims, the expression around and between" the yarn feed and take-up rollers 23 and 24 defines the path of the yarn shown in FIG. 4 in which the yarn is led around the remote outer surface of one of the rollers thence directly to the other roller, thence around its remote outer surface and back, without directly encircling either of the individual rollers 23 or 24. The untextured yarn is directed around and between the outer surfaces of the cylindrical sections 33 a number of times sufficient to provide enough engagement with these surfaces to prevent slippage as the yarn is being withdrawn from the yarn supply 16 when the rollers are driven at high speed.
The yarn is directed from the surface of the section 33 of the roller 23 downwardly to the inlet orifice 19 of the jet 18, through the jet 18 and then from the outlet orifice 20 directly to the outer surface of the cylindrical section 35 of the roller 24. The yarn is then directed around and between the cylindrical sections 34 of both rollers 23 and 24 for a sufiicient number of turns to insure against slipping as the yarn is withdrawn from the jet when the rollers 23 and 24 are driven at high speed. In practice, it has been determined that approximately 4-6 turns around and between each of the pairs of cylindrical sections 33 and 34 is suflicient to insure against slipping.
From the surface of the cylindrical section 34 of the roller 23 the textured yarn is led downwardly to a yarn guide or roller 36 which is rotatably secured upon the free end of a pivoted tension sensing arm 37 which is a part of the constant tension winder mechanism 15.
Constant tension Winders such as those commercially available from a number of manufacturers include a tension sensing mechanism, such as a tension arm 37, which, through electrical or electrical-mechanical controls will vary the winding speed of the yarn package on its mandrel in accordance with variations in the tension of the yarn being wound. The textured yarn, after being led around the roller 36, is taken directly to a yarn package 38, wound on a mandrel 39 of the constant tension winder which includes a traverse mechanism 40. As seen in FIG. 4, the yarn leaving or passing by the roller 36 is contacted by the lowermost portion of a liquid size applicator 17.
The application of size to the bulked yarn after it leaves the jet '18 is desirable in certain instances to partially assist in holding the bulked waves 11 in place and further lock the filaments in their relation to one another. It is also desirable in assuring a uniform pack-age buildup on the mandrel 39 and prevents drafting or flattening of the bulked yarn. Suitable liquid sizing may be starch, hot melt or solvent type coatings presently commercially available from a number of sources.
In lieu of the application of an appropriate size to the bulked yarn leaving the jet 18, as described above, the bulked yarns may be heat set or thermally relaxed by passing them through a zone of heat sufficient to fix them in their bulked or undulatory configurations. In the case of fibrous glass yarns, an elongate mufile furnace or open flame having a sufficiently high temperature to set the individual filaments may be used. This, of course, must be done prior to applying an appropriate size which may be added after the heat setting.
While the apparatus and method of this invention as heretofore described has most advantageous use in the texturing of glass yarns, they can also be used advantageously in the texturing of nylon, rayon, polyester or other organic or inorganic yarns. Additionally, composite yarns made up of continuous glass fibers and other fibers such as resin fibers of polyethylene, tetrafiuoroethylene or a polyamide can also be texturized by the present technique and then heat set. In this regard the resin fibers can be selectively heat set to lock in the textured condition of the glass fibers with the glass uneffected by the heat. The resin fibers can also be heated to a plastic condition to effect cohesion of the resin fibers to the glass fibers.
Through the use of at least two yarn feed and take-up rollers 23 and 24 which are driven in synchronism, i.e., so that corresponding points on their yarn bearing surfaces of their cylindrical sections 33 and 34 have the same peripheral speed, it is possible to insure a constant amount of overfeed of the yarn into the jet in relation to the yarn withdrawn therefrom due to the difference in the diameters D and d. Also through the use of at least two rollers, it is possible to position the jet 18 with respect to the yarn bearing surfaces of each of the rollers so that yarn is fed to the jet in a direction lying within a plane passing through the axis of the jet but displaced by the angle a from the axis of the jet to avoid blow-back. It is further possible to withdraw the yarn from the jet orifice 20 in a direction normal to the axis of the jet. It is obvious that such an arrangement could not be accomplished with a single double diameter roller because the jet 18 could not be positioned to maintain these relationships.
The principle of using at least two driven feed rollers can be eflectively utilized in a system in which separate yarn sources are combined in a fluid jet to produce a composite bulky product. In a process which combines two separate yarn sources, such as is disclosed in US. Patent 2,869,967, one source of untextured yarn is overfed to the jet at a first rate while a second source is overfed to the jet at a second rate which is faster than the first overfeed rate. The first and second yarns, which may be designated as core and effect yarns, are combined within the jet so that the core yarns maintain generally untextured and linear configurations While the effect yarns, which are overfed at a great rate, form the surface convolutions which give bulk to the composite product. In combining core and effect yarns at high speed, the diificulty of avoiding the blow-back from the jet inlet orifice and in positioning the take-up roller to withdraw the combined yarn from the jet outlet orifice at the right angle to the axis of the jet is also important. Accordingly, the concept of using at least two combined feed and take-up rollers of this invention can be used in an apparatus designed to combine core and effect yarns into a single bulked yarn. In such an apparatus, each of the feed and take-up rollers would include three coaxial cylindrical sections of diflFerent diameter. The first feed section for the eifect yarn would have the greatest diameter, the second feed section for the core yarn would have an intermediate size diameter and the third section for the takeup of the composite yarn would have the smallest diameter. Such an arrangement would fix the two separate overfeed ratios due to the diameter differences. Similarly, a jet could be positioned in relation to the feed and take-up surface so that the yarn is withdrawn from the outlet orifice at an angle normal to the axis of the jet and so that the entering yarn from each of the core and effect feed roll surfaces is directed to the jet in a direction slightly displaced from the axis of the jet.
The apparatus shown in FIGS. 4 through 6 is capable of obtaining higher speeds in feeding and withdrawing yarn to and from a fluid jet at a fixed rate of overfeed than have heretofore been obtainable with other prior art drive and take-up mechanisms. In addition to the advantages of economy through fast production, the apparatus described, due to its ability to feed yarn through the area of fluid turbulence within the jet at such high speed, produces a different texturing action which results in the novel product characterized by the absence of broken filaments, the absence of crunodal loops, and the presence of undulatory waves comprised of selected ones of the filaments in the core area which return to the core area on either side of each wave and remain bound in place by relatively dense compaction of the core area which remains intact throughout the process.
As previously stated, fabrics, woven or unwoven, comprised of the improved bulked yarn of this invention are characterized by the appearance and texture of cotton, silk or woolen fabric. Because of the lofty or open nature of these yarns, fabrics composed of it also have superior wetting or impregnation characteristics when used as reinforcing in fiber-reinforced plastics. Resin laminates made of a plurality of resin impregnated fabric layers have better lamination strength due to thorough penetration or impregnation of the resin into the individual yarns of the fabric and due to the lateral extension of the lofted fibers toward the interfaces of the lamination or adjacent layers of fabric.
I claim:
1. A method of producing a bulky textile product comprising the steps of:
feeding a strand of densely grouped, generally parallel filaments into a zone of fluid turbulence at a speed greater than the speed at which such strand is withdrawn from said zone,
supplying fluid under sufficient pressure to said zone to create turbulent energy suflicient to separate groups of filaments of said strand, the speed of said strand through said zone being sufliciently high that only a portion of the filaments are separated from the strand as groups having wave-like arches in succesive increments of such strand but insuflicient to break such groups or to distort such groups into closed loops, with other portions of said strand filaments remaining together in a densely grouped core, and
withdrawing such bulky product from said zone under a constant tension insuflicient to remove such wavelike arches of said groups.
2. The method of claim 1 wherein said continuous filament yarn is removed from said turbulent zone at a linear speed greater than 2,000 feet per minute.
3. The method of claim 1 wherein such fluid'is supplied to said zoone at a pressure greater than 60 pounds per square inch.
4. The method of claim 1 wherein such fluid supplied under pressure is air.
5. The method of claim 1 wherein such fluid is supplied at said zone at 60-80 pounds per square inch and said yarn is withdrawn from said enclosed zone at a linear speed between 2,000 and 3,000 feet per minute.
6. A method of bulking a strand of densely grouped,
generally parallel filaments all extending lengthwise of the strand which comprises:
passing said strand lengthwise through a filament agitation zone provided by fluid turbulence created by an enclosed fluid jet, supplying fluid under pressure greater than p.s.i.g., at a linear speed exceeding 2,000 feet per minute, to separate a number of filaments from said strand, the rate of travel through said zone being suflicient to permit the transfer of energy to the filaments in said zone for separation of said filaments and formation of such separated filaments into undulating waves extending laterally from the remainder of said strand successively along its length with said remainder retaining its densely grouped configuration, with said rate of travel not permitting the formation of closed loops in such separated filaments.
References Cited UNITED STATES PATENTS 2,783,609 3/1957 Breen 57--140 2,852,906 9/1958 Breen 57-34 2,874,443 2/1959 Griset 28-1 2,884,756 5/1959 Head 5734 2,958,112 11/1960 Hall 28-1 2,959,909 11/ 1960 Suhterland et a1. 57-140 2,982,082 5/1961 Pool 5734 3,053,038 9/1962 Weiss et a1. 57--34 3,084,413 4/ 1963 Hallden 28l 3,110,151 ll/1963 Bunting et al. 57-157 I OHN PETRAKES, Primary Examiner.
US. Cl. X.R.
US605700A 1966-05-18 1966-12-29 Method of bulking yarn Expired - Lifetime US3448500A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US551091A US3411287A (en) 1966-05-18 1966-05-18 Fancy yarn
US60570066A 1966-12-29 1966-12-29

Publications (1)

Publication Number Publication Date
US3448500A true US3448500A (en) 1969-06-10

Family

ID=27069653

Family Applications (1)

Application Number Title Priority Date Filing Date
US605700A Expired - Lifetime US3448500A (en) 1966-05-18 1966-12-29 Method of bulking yarn

Country Status (16)

Country Link
US (1) US3448500A (en)
JP (1) JPS5125494B1 (en)
AT (1) AT299019B (en)
BE (1) BE698562A (en)
BR (1) BR6789464D0 (en)
CH (1) CH469110A (en)
CS (1) CS177005B2 (en)
DE (1) DE1710652A1 (en)
DK (1) DK126661B (en)
FI (1) FI48109C (en)
FR (1) FR1523024A (en)
GB (2) GB1181004A (en)
IL (1) IL27906A (en)
LU (1) LU53690A1 (en)
NL (2) NL150526B (en)
SE (1) SE331153B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678549A (en) * 1969-03-17 1972-07-25 Rhodiaceta Process for the manufacture of high-bulk yarn
US3763526A (en) * 1971-07-26 1973-10-09 Owens Corning Fiberglass Corp Apparatus for clearing and texturing linear material
US3775228A (en) * 1971-06-08 1973-11-27 Owens Corning Fiberglass Corp Composite linear elements
US3832840A (en) * 1972-08-10 1974-09-03 Owens Corning Fiberglass Corp Fibrous product and apparatus for and method of producing
US3900302A (en) * 1972-08-10 1975-08-19 Owens Corning Fiberglass Corp Method for producing glass fiber bulk product
US4009563A (en) * 1973-11-10 1977-03-01 Bayer Aktiengesellschaft Apparatus for false-twisting synthetic filament yarns
US4570312A (en) * 1983-11-29 1986-02-18 Whitener Jr Charles G Method and apparatus for producing entangled yarn
US20170355550A1 (en) * 2014-12-26 2017-12-14 Toray Industries, Inc. Method of manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909516A1 (en) * 1989-03-22 1990-01-04 Hirschburger Maschinen Gmbh AIR TEXTURING MACHINE
DE4130059C2 (en) * 1991-09-10 1996-04-04 Zinser Textilmaschinen Gmbh Machine for the treatment of synthetic, multifilament continuous filaments

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783609A (en) * 1951-12-14 1957-03-05 Du Pont Bulky continuous filament yarn
US2852906A (en) * 1951-12-14 1958-09-23 Du Pont Method and apparatus for producing bulky continuous filament yarn
US2874443A (en) * 1953-05-12 1959-02-24 Du Pont Method and apparatus for crimping yarn
US2884756A (en) * 1953-01-12 1959-05-05 Eastman Kodak Co Apparatus and method for producing bulk yarn
US2958112A (en) * 1956-08-16 1960-11-01 Du Pont Yarn-treating apparatus
US2959909A (en) * 1957-04-01 1960-11-15 American Enka Corp Bulked yarn and method for producing same
US2982082A (en) * 1954-10-20 1961-05-02 British Celanese Production of voluminous yarn
US3053038A (en) * 1957-12-06 1962-09-11 Heberlein Patent Corp Method and apparatus for texturing yarns
US3084413A (en) * 1961-11-01 1963-04-09 Du Pont Yarn fluid treatment apparatus
US3110151A (en) * 1961-05-26 1963-11-12 Du Pont Process for producing compact interlaced yarn

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783609A (en) * 1951-12-14 1957-03-05 Du Pont Bulky continuous filament yarn
US2852906A (en) * 1951-12-14 1958-09-23 Du Pont Method and apparatus for producing bulky continuous filament yarn
US2884756A (en) * 1953-01-12 1959-05-05 Eastman Kodak Co Apparatus and method for producing bulk yarn
US2874443A (en) * 1953-05-12 1959-02-24 Du Pont Method and apparatus for crimping yarn
US2982082A (en) * 1954-10-20 1961-05-02 British Celanese Production of voluminous yarn
US2958112A (en) * 1956-08-16 1960-11-01 Du Pont Yarn-treating apparatus
US2959909A (en) * 1957-04-01 1960-11-15 American Enka Corp Bulked yarn and method for producing same
US3053038A (en) * 1957-12-06 1962-09-11 Heberlein Patent Corp Method and apparatus for texturing yarns
US3110151A (en) * 1961-05-26 1963-11-12 Du Pont Process for producing compact interlaced yarn
US3084413A (en) * 1961-11-01 1963-04-09 Du Pont Yarn fluid treatment apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678549A (en) * 1969-03-17 1972-07-25 Rhodiaceta Process for the manufacture of high-bulk yarn
US3775228A (en) * 1971-06-08 1973-11-27 Owens Corning Fiberglass Corp Composite linear elements
US3763526A (en) * 1971-07-26 1973-10-09 Owens Corning Fiberglass Corp Apparatus for clearing and texturing linear material
US3832840A (en) * 1972-08-10 1974-09-03 Owens Corning Fiberglass Corp Fibrous product and apparatus for and method of producing
US3900302A (en) * 1972-08-10 1975-08-19 Owens Corning Fiberglass Corp Method for producing glass fiber bulk product
US4009563A (en) * 1973-11-10 1977-03-01 Bayer Aktiengesellschaft Apparatus for false-twisting synthetic filament yarns
US4570312A (en) * 1983-11-29 1986-02-18 Whitener Jr Charles G Method and apparatus for producing entangled yarn
US20170355550A1 (en) * 2014-12-26 2017-12-14 Toray Industries, Inc. Method of manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle
US10676311B2 (en) * 2014-12-26 2020-06-09 Toray Industries, Inc. Method of manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle

Also Published As

Publication number Publication date
GB1181005A (en) 1970-02-11
GB1181004A (en) 1970-02-11
DK126661B (en) 1973-08-06
NL6706852A (en) 1967-11-20
FR1523024A (en) 1968-04-02
IL27906A (en) 1970-08-19
NL150526B (en) 1976-08-16
DE1710652A1 (en) 1972-05-25
SE331153B (en) 1970-12-14
BR6789464D0 (en) 1973-06-14
CS177005B2 (en) 1977-07-29
NL7610810A (en) 1977-01-31
JPS5125494B1 (en) 1976-07-31
FI48109B (en) 1974-02-28
FI48109C (en) 1974-06-10
CH469110A (en) 1969-02-28
NL161515B (en) 1979-09-17
BE698562A (en) 1967-11-17
NL161515C (en) 1980-02-15
LU53690A1 (en) 1968-02-21
AT299019B (en) 1972-06-12

Similar Documents

Publication Publication Date Title
US3079746A (en) Fasciated yarn, process and apparatus for producing the same
US3009309A (en) Fluid jet twist crimping process
US3279164A (en) Fluid jet process for twisting yarn
US3822543A (en) Spun-like yarn and method of manufacturing same
US5497608A (en) Short fiber and continuous filament containing spun yarn-like composite yarn
US3079745A (en) Fluid twiste apparatus for twisting yarn
US5008992A (en) Method of producing a bulked composite yarn
US3448500A (en) Method of bulking yarn
US2999351A (en) Bulky yarn
US3188713A (en) Apparatus for processing crosssection yarn
US3410077A (en) Bulky yarn
US4345425A (en) Process for making bulky textured multifilament yarn
US3488670A (en) Method and apparatus for yarn treatment
USRE27717E (en) Fluid jet process for twisting yarn
US4674273A (en) Method to texturize synthetic yarns
US5417046A (en) Method of manufacturing a composite yarn having a spandex core and a texturized thermoplastic covering
US3936996A (en) Method and apparatus for production of false twist textured composite yarn
CA2147870C (en) Making textile strands
US3411287A (en) Fancy yarn
US3823541A (en) Effect voluminous yarn
US4346552A (en) Bulky textured multifilament yarn
US3795096A (en) Product and process
US4024700A (en) Bulky yarn
US4162607A (en) Entangled yarns
US4542619A (en) Core yarn and method and apparatus for making