US3447215A - Production of random dyed pile textiles - Google Patents
Production of random dyed pile textiles Download PDFInfo
- Publication number
- US3447215A US3447215A US648652A US3447215DA US3447215A US 3447215 A US3447215 A US 3447215A US 648652 A US648652 A US 648652A US 3447215D A US3447215D A US 3447215DA US 3447215 A US3447215 A US 3447215A
- Authority
- US
- United States
- Prior art keywords
- yarns
- pile
- yarn
- dye
- random
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B11/00—Treatment of selected parts of textile materials, e.g. partial dyeing
- D06B11/002—Treatment of selected parts of textile materials, e.g. partial dyeing of moving yarns
- D06B11/0036—Treatment of selected parts of textile materials, e.g. partial dyeing of moving yarns specially disposed for a local treatment
Definitions
- a continuous pile yarn dyeing process prints a pseudorandom multi-color pattern on a sheet of yarns, fixes the dyes, shuffles the yarns for optimum spatial separation of those printed adjacently, washes and dries the yarns, dealigns the yarns pseudo-randomly, and forms them into pile in a backing sheet or web.
- the process can be moditied to dye in solid colors with certain attendant advantages.
- the field of the invention comprises generally the art of producing pile textiles including carpets, upholstery and apparel fabrics, wherein pile loops or cut pile yarns of different colors are distributed spatially in an apparently random manner.
- the invention is concerned with the technique of dyeing pile forming yarns by printing a pattern of differently colored segments upon a sheet of yarns, followed by the formation of pile in a backing sheet, usually by tufting the yarns and to a lesser extent by a form of knitting.
- the yarns pass through a printing station having means to print differently colored dye liquors upon irregularly spaced segments based on a specified color balance, the pattern repeating itself at well spaced intervals to produce the desired random efiect.
- This method has been proposed in one form or another as an alternative to a method in which the yarns are first knitted into tubing and then printed, after which the dyes are set or fixed and the tubing de-knitted.
- the dyed yarns are usually wound up on cones at some stage prior to formation of the pile.
- the cones are shuffled to separate adjacently printed yarns and loaded into a creel associated with a standard multi-needle tufting machine or some other suitable pile-forming machine.
- yarns are dyed in the prescribed colors, taken up on cones, stored and later transferred to a pile forming machine.
- a pile forming machine For economic reasons it is usually desirable to exhaust the cones before terminating the pile forming operation, during which time the pile forming machine is unavailable for other orders.
- the dyeing and pile forming steps are performed in independent operations, often some distance apart. Commonly, this procedure results in a time delay and a build-up of stored cones in job lots. This represents a substantial inventory commitment with an attendant risk of loss due to quickly changing conditions which take place in any fashion-influenced industry.
- the end product is superior to those previously produced as to yarn condition, reproducibility, color balance and spatial color distribution or randomness.
- FIG. 1 is a partially schematic view of a complete random dyeing and tufting apparatus operating according to a preferred process and embodiment of the invention.
- FIG. 2 is a plan view of the pseudo-random dye printing station 23 shown in the upper part of FIG. 1.
- FIG. 3 is a side elevation in section showing the dye liquor pans in FIG. 2.
- FIG. 4 is a side elevation viewed from the lower side of FIG. 2 showing the print bar drive mechanism.
- FIG. 5 is a diagrammatic representation of the yarn shuifler 26 shown in the lower part of FIG. 1.
- FIG. 6 is an exploded, partially schematic view of the tufting machine 32 shown in the lower part of FIG. 1, depicting its drive controls.
- a number of gray or undyed pile yarns 1 to 16 are withdrawn in a line or sheet 18 from a let-off roll 19 by a pair of continuously rotating drive rolls 20.
- the yarns are preferably of a continuous filament nylon or other synthetic of the type hitherto employed in tufted rugs and other textiles, although spun yarns may also be used. Wool, polyesters, acrylics, cottons and rayons are among the yarns in use in the tufting industry.
- the yarns may also be drawn from cones, if desired. They pass next over idlers 21 and 22 into a printing station designated generally at 23, the details of which are further described below.
- the sheet 18 From the printing station the sheet 18 enters a steam heated dye fixation column 24 where the dye colors are set or fixed in the yarns. For a predetermined period of time the yarns remain at a controlled temperature within the column 24, being ordinarily continuously fed into it at th top and withdrawn from it at the bottom.
- the yarns are then threaded in a predetermined manner through a shufiler 26 where optimum spatial separation is afforded between adjacently printed yarns, as hereinafter more fully described.
- the sheet passes through a conventional washer 28 which removes unwanted dye liquor components shown for simplicity as a single-stage unit although in practice several similar stages are usually preferred, as is well known.
- the yarns pass through a drier-dealigner 30 in which the moisture content is reduced to an optimum uniform level for tufting and the yarns are also longitudinally shifted or dealigned to add a further randomizing factor.
- the yarns pass to a tufting machine 32 into which a web 33 of suitable backing material is fed from a draft roll 34.
- the backing material may be woven jute for rugs, or any other backing material commonly employed in tufted textiles.
- Tufted fabric 36 is withdrawn continuously into a scray or on to a take-up roll for further manufacturing operations of the usual type including coating with latex or other suitable binders, and doublebacking if desired.
- the first portion preferably comprises a pad 38 consisting of a pair of driven rubber rolls 40 forming a bit through which the sheet 18 passes.
- the bit is filled with a base dye liquor by suitable conventional means such as a pressure feed system (not shown) to maintain a quantity of dye liquor 42 above the bite.
- suitable conventional means such as a pressure feed system (not shown) to maintain a quantity of dye liquor 42 above the bite.
- the yarns then pass under an idler 44 and through an array of spaced, polished steel idler tension rolls 46 whose function is primarily to maintain tension on the yarns as they pass next through a number of printing units 46, 48 and 50.
- the printing units respectively include dye pans 52, 54 and 56 containing different colored dye liquors 58, 60 and 62 (FIGS. 2, 3 and 4) maintained at the desired liquid levels by conventional means.
- the pans are supported on a platform forming an integral part of a frame 66 (FIG. 2).
- a number of ball bearings 68 are fastened to the frame in pairs aligned with and above the pans.
- Print bar drive shafts 70, 72 and 74 are mounted in these hearings and are continuously driven by sprockets 76, 78 and 80 if differing diameters, interconnected by chains 82 and 84. The entire system of chains and sprockets is driven by a motor 86 through a drive chain 88.
- Pairs of circular flanges 90, 92 and 94 are respectively secured by keys or set screws to the shafts 70, 72 and 74.
- Round polished stainless steel print bars 96, 98 and 100 are fastened between the flanges near their peripheral edges on axes parallel with the respective shafts 70, 72 and 74.
- the levels of the dye liquors are sufiiciently high to cause thorough wetting of the print bars as they rotate with the shafts.
- Pairs of restraining bars 102 are mounted in the frame 66 and situated between the adjacent print units to restrain the sheet 18 which passes between them moving in the direction indicated by the arrow in FIG. 3.
- the parts are so related that each print bar, after immersion in the dye liquor, makes contact with the yarns and deflects them with a light pressure between the adjacent bars 102 for a portion of each revolution, thereby printing a segment of each yarn approximately equal in length to, or slightly greater than, the arc of contact at the point of maximum deflection.
- a further feature of the printing units is that the print bars 96, 98 and 100 are spaced different distances from their corresponding drive shafts, while each shaft is driven at a different predetermined corresponding angular speed such that the linear velocity of its print bar equals that of the yarns in every case.
- each print bar makes a touching, non-sliding contact with the yarns during a finite dwell time of suflicient duration to transfer the dye liquor without smearing it upon the yarns.
- This method eliminates the need for backup means for pressure or impact of the printing means upon the yarns, as is found in the prior art systems. As a result, the dye liquor is more uniformly applied to the yarns and more uniformly penetrates the fibers with the aid of capillary action.
- each of the print bars has the same linear speed as the yarns, but rotates on a shaft having a different angular speed than the others, an irregular periodic pattern of colors is applied to the yarns.
- This pattern can be rendered more complex by the addition of more printing units and colors, plural print bars on one or more units, or helical-shaped print bars of various different pitches. In a typical case the pattern cycle repeats itself at intervals spaced many feet apart and the repetitions are not discernible in the tufted product.
- the yarns pass from the printing station 23 through a set of spaced chain-driven polished steel print drive rolls 104 which deliver the sheet to the dye fixation column 24.
- the purpose of these rolls is to drive the yarns frictionally at a uniform speed without passing them through a nip or bite, which would cause smearing of the dye liquors.
- a number of rolls is ordinarily necessary to drive the yarns in this way without slippage.
- the dye fixation column 24 will not be described in detail because this unit is of a conventional form. It will suflice to say that it includes an inner chamber or space 106 into which the yarns fall in random plaits and a steam jacket 108 suitably supplied with about thirteen pounds of steam pressure. Ordinarily, the dyes are fixed in the yarns within 20 minutes or less under these conditions.
- the fabric helps to prevent snarling of the yarns around the rolls or tangling as they are withdrawn from the column.
- FIG. 5 Details of the shuffler 26 are shown in FIG. 5. For purposes of illustration, a sheet 18 of only sixteen yarns has been shown, although in practice it is common to use around 1152 yarn ends in a carpet of 12 to 15 feet width, and in any case the number of yarn ends is not limited by the method herein disclosed.
- the purpose of the shufiler is to overcome certain occasional undesired variations in pattern and color intensity across the width of the sheet 18. These variations result from conditions such as variable exhaustion of the dyes in the pad 38 or Within the individual pans 58, 60 and 62. It is desired to prevent any resulting pattern by separating the yarns that were adjacent or nearly adjacent when passing through the printing units.
- the third column is the sum of the first two columns. It will be seen that in no case is a pair of yarns, adjacent when leaving the shufiler, printed with fewer than three intervening yarns between them. 'Ihs condition is equally as satisfactory as that of the pairs of yarns leaving the shufller with three intervening yarns, which are printed adjacently.
- a pair of parallel perforated distribution plates 114 and 116 is used.
- Each of these plates has a square configuration of holes 118 through which the yarns are threaded is a systematic manner. It will be noted that the lower plate 116 is angularly oriented in relation to the plate 114 to prevent the yarns from touching one another between the plates. The number of holes on a side in each configuration equals the square root of the total as previously discussed.
- This unit includes a housing 118 defining a chamber 120 through which air, preferably heated, is continuously circulated.
- the yarns pass over a number of chain-driven rolls 122 respectively designated a, b, c and d, arrayed at the entrance to the housing, and a number of chain-driven rolls 124 respectively designated e, f, g and h, arrayed at the exit.
- the rolls 122 and 124 define a number of paths of different length over which the yarns may travel in passing from an idler 126 to an idler 128.
- the number of possible paths in the illustrated example is thirty-two, these paths having fifteen different lengths, of which ten include three passes through the drier and five include five passes.
- the shortest path has the sequence a, c and the longest path has the sequence e, b, g, d.
- each of the sixteen yarns except for two may travel a path of distinct length between the idlers 126 and 128.
- the yarns are preferably wrapped over the rolls in a systematic manner. The result is a pseudorandorn longitudinal shift'between the yarns in relation to their relative positions when passing through the printing units.
- rolls 122 and 124 may be employed according to the number of paths desired, or certain paths such as the diagonal sequences 1, g, and e, It may be eliminated if desired.
- the roll axes may be placed in a square or rectangular configuration in place of the illustrated arrangement in which the axes are located at the apexes of equilateral triangles. The square configuration would produce ten paths of distinct length, of which five would include three passes through the drier and five would include five passes.
- the yarns may be divided into as many groups as there are such paths, and the yarns in each group may be wrapped over the same path or over paths of equal length.
- the preferred system is to divide the total number of yarns by the number of paths of different length provided and to select for each path the yarns in positions separated by the quotient obtained. Thus for 58 ends and ten paths, every sixth yarn would be selected for each available path, and so on. Generally, this provides sufficient dealignment to prevent patterning of the colors such as ribbed effects and the like.
- a number of perforated separator plates like the plates 114 and 116 in FIG. 5 are preferably located between the several units.
- the separator plates have been omitted from the drawing for simplicity of illustration.
- the yarns may be threaded through the plates in the pattern shown by the plate 114.
- Behind the shufiler they may be threaded through the plates in the pattern shown by the plate 116.
- the separator plates may have more holes in one dimension than in the other, for example two rows of eight holes each in the illustrated case as these plates are not intended for shuttling the yarns. Like considerations apply when a greater number of yarn ends is used.
- the tufting machine has the usual main drive shaft 134 which has four power takeofis: a flywheel crank drive 136 for reciprocally stroking the tufting needles 138, a chain or link belt drive 140 for rotating the yarn feed rolls 132, a chain drive 142 for rotating a backing feed drive roll 144, and a chain drive 146 driving a worm-cam mechanism 147 for longitudinally reciprocating a backing feed backup roll 148.
- the rolls 144 and 148 are situated in cooperating relationship for pulling the tufted product therebetween through the line of needles, as is commonly done.
- Conventional tufting machines employ a constant needle stroke rate, usually using an alternating current motor belted to the main drive shaft.
- the present machine employs a variable speed direct current motor 150 connected to this shaft by a V-belt 152.
- the drive 140 is connected as in a conventional machine through a variable pitch pulley mechanism 154 to the yarn feed rolls 132.
- this mechanism is employed to vary the rate of yarn feed.
- this mechanism has a different function, namely, to maintain a constant rate of yarn feed by compensating for any variations made in the speed of the shaft 134.
- the present machine differs from a conventional machine in that it is adapted to maintain a constant rate of yarn feed under all operating conditions. This speed is determined for the machine as a whole, and is dictated by the time and temperature relationships controlling the dye fixation process in the column 24.
- the needle stroke rate is varied by changing the speed of the motor 150, while at the same time readjusting the mechanism 154 to maintain a constant rate of yarn feed.
- the number of tufts per inch is determined by the speed of the roll 144 which is variable by means of a handwheel 156 and an associated variable speed means 158.
- the parts 156 and 158 are of conventional form. It will also be noted that in the present machine any change in the speed of the motor 150 also affects the number of tufts per inch. It will be seen that full flexibility is obtained in tufting fabrics of any desired number of tufts per inch and pile depth.
- the manufacturing process herein described is fully adaptable to the production of solid color tufted textiles, in which case the pad 38 may be employed without the printing units 46, 48 and 50.
- a product of very uniform color is obtained by use of the shuffier 26 and dealigning features which insure the separation of yarns passing adjacently through the pad and also the dealignment of yarn segments that pass through the pad at the same moment of time. This tends to prevent any patterning effect that might arise either from variations in the composition of the dye liquor at various locations along the pad, or from variations in the composition of the dye liquor as a function of time.
- Iclaim 1. The method of producing a pile fabric which comprises the steps of feeding a number of pile forming yarns to a common dyeing unit, feeding the yarns so dyed to a dye fixation unit and withdrawing them therefrom at a predetermined rate,
- said predetermined arrangement consists in separation of adjacently printed yarns by a number of positions substantially equal to the square root of the number of yarns.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Treatment Of Fiber Materials (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
June 3, 1969 o so 3,447,215
PRODUCTION OF RANDOM DYED FILE TEXTILES Filed June 26, 1967 1 Sheet of 4 FIGI INVENTOR.
JOHN G. TILLOTSON BY i 2! K I: (1/- ATTORNEYS June 3, 1969 J. G. TILLOTSON 3,447,215
PRODUCTION 0F RANDOM DYED FILE TEXTILES Filed June 26, 1967 Sheet Z of 4 FIG. 3 23 as v 88 FIG.4
INVENTOR.
OHN G. TILLOTSON 4/1/ 7 9L ATTORNEYS June 1969 J. G. TILLOTSON 3,
PRODUCTION OF RANDOM DYED FILE TEXTILES Filed June 26, 1967 Sheet 3 of 4 /W7/ C /H/ O FIG. 5
INVENTOR. JOHN G. Tl LLOTSON ATTORNEYS June 1969 J. G. TILLOTSON 3,447,215
PRODUCTION OF RANDOM DYED PILE TEXTILES Filed June 26, 1967 Sheet 4 of 4 *IHIHIH l 1547 3 I32 Pitch Pulley Mechanism L I50 VOfiOblC Speed I MoTor L FIG. 6
INVENTOR.
JOHN G. TILLOTSON BY I p 1 ATTORNEYS United States Patent 3,447,215 PRODUCTION OF RANDOM DYED PILE TEXTILES John G. Tillotson, Dalton, Ga., assignor to Advance Finishing, Inc., Dalton, Ga., a corporation of Georgia Filed June 26, 1967, Ser. No. 648,652 Int. Cl. D02g; D04h 11/00 US. Cl. 28-75 14 Claims ABSTRACT OF THE DISCLOSURE A continuous pile yarn dyeing process prints a pseudorandom multi-color pattern on a sheet of yarns, fixes the dyes, shuffles the yarns for optimum spatial separation of those printed adjacently, washes and dries the yarns, dealigns the yarns pseudo-randomly, and forms them into pile in a backing sheet or web. The process can be moditied to dye in solid colors with certain attendant advantages.
Background of the invention The field of the invention comprises generally the art of producing pile textiles including carpets, upholstery and apparel fabrics, wherein pile loops or cut pile yarns of different colors are distributed spatially in an apparently random manner.
More specifically, the invention is concerned with the technique of dyeing pile forming yarns by printing a pattern of differently colored segments upon a sheet of yarns, followed by the formation of pile in a backing sheet, usually by tufting the yarns and to a lesser extent by a form of knitting. The yarns pass through a printing station having means to print differently colored dye liquors upon irregularly spaced segments based on a specified color balance, the pattern repeating itself at well spaced intervals to produce the desired random efiect. This method has been proposed in one form or another as an alternative to a method in which the yarns are first knitted into tubing and then printed, after which the dyes are set or fixed and the tubing de-knitted. In either case the dyed yarns are usually wound up on cones at some stage prior to formation of the pile. In a subsequent step the cones are shuffled to separate adjacently printed yarns and loaded into a creel associated with a standard multi-needle tufting machine or some other suitable pile-forming machine.
These earlier methods have presented certain difiiculties including patterning of the colors as evidenced by barr, herring-bone or striated effects and the like. Also, the condition of the yarns is generally adversely affected by winding them upon cones. This results from friction between the yarns and variable tension temperature and moisture content which also produce variations in the crimp of the fibers which are evident when the yarns are fed into a tufting machine.
To produce a rug or other fabric to order the foregoing processes, yarns are dyed in the prescribed colors, taken up on cones, stored and later transferred to a pile forming machine. For economic reasons it is usually desirable to exhaust the cones before terminating the pile forming operation, during which time the pile forming machine is unavailable for other orders. The dyeing and pile forming steps are performed in independent operations, often some distance apart. Commonly, this procedure results in a time delay and a build-up of stored cones in job lots. This represents a substantial inventory commitment with an attendant risk of loss due to quickly changing conditions which take place in any fashion-influenced industry.
Furthermore, there has been substantial difiiculty in duplicating an order after intermediate orders have been 3,447,215 Patented June 3, 1969 This invention solves many of the foregoing problems as well as similar problems found with solid color pile textiles, by a continuous process starting with undyed yarns and ending with a pile textile. This process ensures close control over the dyeing or printing of the yarns and permits them to be fed directly to the pile forming machine with optimum uniformity and condition as to tension, crimp control and humidity, and without friction or intermediate winding upon cones. Furthermore, the yarns are placed in random or pseudo-random orientation by effective and uniformly reproducible procedures, ensuring a uniformly high quality product and an accurately reproducible color balance and spatial distribution. The linking of the dyeing and pile forming steps eliminates time delays and related inventory problems, permits rapid reloading from let-offs or creels of undyed yarns, and ensures efficient use of the dyeing and pile forming equipment.
The end product is superior to those previously produced as to yarn condition, reproducibility, color balance and spatial color distribution or randomness.
Brief description of the drawing FIG. 1 is a partially schematic view of a complete random dyeing and tufting apparatus operating according to a preferred process and embodiment of the invention.
FIG. 2 is a plan view of the pseudo-random dye printing station 23 shown in the upper part of FIG. 1.
FIG. 3 is a side elevation in section showing the dye liquor pans in FIG. 2.
FIG. 4 is a side elevation viewed from the lower side of FIG. 2 showing the print bar drive mechanism.
FIG. 5 is a diagrammatic representation of the yarn shuifler 26 shown in the lower part of FIG. 1.
FIG. 6 is an exploded, partially schematic view of the tufting machine 32 shown in the lower part of FIG. 1, depicting its drive controls.
Description of the preferred embodiment Referring to FIG. 1, a number of gray or undyed pile yarns 1 to 16 (FIG. 5) are withdrawn in a line or sheet 18 from a let-off roll 19 by a pair of continuously rotating drive rolls 20. The yarns are preferably of a continuous filament nylon or other synthetic of the type hitherto employed in tufted rugs and other textiles, although spun yarns may also be used. Wool, polyesters, acrylics, cottons and rayons are among the yarns in use in the tufting industry. The yarns may also be drawn from cones, if desired. They pass next over idlers 21 and 22 into a printing station designated generally at 23, the details of which are further described below.
From the printing station the sheet 18 enters a steam heated dye fixation column 24 where the dye colors are set or fixed in the yarns. For a predetermined period of time the yarns remain at a controlled temperature within the column 24, being ordinarily continuously fed into it at th top and withdrawn from it at the bottom.
The yarns are then threaded in a predetermined manner through a shufiler 26 where optimum spatial separation is afforded between adjacently printed yarns, as hereinafter more fully described. Then, the sheet passes through a conventional washer 28 which removes unwanted dye liquor components shown for simplicity as a single-stage unit although in practice several similar stages are usually preferred, as is well known.
Next, the yarns pass through a drier-dealigner 30 in which the moisture content is reduced to an optimum uniform level for tufting and the yarns are also longitudinally shifted or dealigned to add a further randomizing factor.
Finally, the yarns pass to a tufting machine 32 into which a web 33 of suitable backing material is fed from a draft roll 34. The backing material may be woven jute for rugs, or any other backing material commonly employed in tufted textiles. Tufted fabric 36 is withdrawn continuously into a scray or on to a take-up roll for further manufacturing operations of the usual type including coating with latex or other suitable binders, and doublebacking if desired.
Referring more particularly to the printing station 23, the first portion preferably comprises a pad 38 consisting of a pair of driven rubber rolls 40 forming a bit through which the sheet 18 passes. The bit is filled with a base dye liquor by suitable conventional means such as a pressure feed system (not shown) to maintain a quantity of dye liquor 42 above the bite. The yarns then pass under an idler 44 and through an array of spaced, polished steel idler tension rolls 46 whose function is primarily to maintain tension on the yarns as they pass next through a number of printing units 46, 48 and 50.
The printing units respectively include dye pans 52, 54 and 56 containing different colored dye liquors 58, 60 and 62 (FIGS. 2, 3 and 4) maintained at the desired liquid levels by conventional means. The pans are supported on a platform forming an integral part of a frame 66 (FIG. 2). A number of ball bearings 68 are fastened to the frame in pairs aligned with and above the pans. Print bar drive shafts 70, 72 and 74 are mounted in these hearings and are continuously driven by sprockets 76, 78 and 80 if differing diameters, interconnected by chains 82 and 84. The entire system of chains and sprockets is driven by a motor 86 through a drive chain 88.
Pairs of circular flanges 90, 92 and 94 are respectively secured by keys or set screws to the shafts 70, 72 and 74. Round polished stainless steel print bars 96, 98 and 100 are fastened between the flanges near their peripheral edges on axes parallel with the respective shafts 70, 72 and 74. The levels of the dye liquors are sufiiciently high to cause thorough wetting of the print bars as they rotate with the shafts.
Pairs of restraining bars 102 (FIG. 3) are mounted in the frame 66 and situated between the adjacent print units to restrain the sheet 18 which passes between them moving in the direction indicated by the arrow in FIG. 3. The parts are so related that each print bar, after immersion in the dye liquor, makes contact with the yarns and deflects them with a light pressure between the adjacent bars 102 for a portion of each revolution, thereby printing a segment of each yarn approximately equal in length to, or slightly greater than, the arc of contact at the point of maximum deflection.
A further feature of the printing units is that the print bars 96, 98 and 100 are spaced different distances from their corresponding drive shafts, while each shaft is driven at a different predetermined corresponding angular speed such that the linear velocity of its print bar equals that of the yarns in every case. Thus each print bar makes a touching, non-sliding contact with the yarns during a finite dwell time of suflicient duration to transfer the dye liquor without smearing it upon the yarns. This method eliminates the need for backup means for pressure or impact of the printing means upon the yarns, as is found in the prior art systems. As a result, the dye liquor is more uniformly applied to the yarns and more uniformly penetrates the fibers with the aid of capillary action.
It will be seen that since each of the print bars has the same linear speed as the yarns, but rotates on a shaft having a different angular speed than the others, an irregular periodic pattern of colors is applied to the yarns. This pattern can be rendered more complex by the addition of more printing units and colors, plural print bars on one or more units, or helical-shaped print bars of various different pitches. In a typical case the pattern cycle repeats itself at intervals spaced many feet apart and the repetitions are not discernible in the tufted product.
The yarns pass from the printing station 23 through a set of spaced chain-driven polished steel print drive rolls 104 which deliver the sheet to the dye fixation column 24. The purpose of these rolls is to drive the yarns frictionally at a uniform speed without passing them through a nip or bite, which would cause smearing of the dye liquors. A number of rolls is ordinarily necessary to drive the yarns in this way without slippage.
The structure and operation of the dye fixation column 24 will not be described in detail because this unit is of a conventional form. It will suflice to say that it includes an inner chamber or space 106 into which the yarns fall in random plaits and a steam jacket 108 suitably supplied with about thirteen pounds of steam pressure. Ordinarily, the dyes are fixed in the yarns within 20 minutes or less under these conditions.
The yarns continuously withdrawn from the bottom of the column and pass over a number of guide rolls 110, between which a piece of Teflon coated fabric 112 has been suitably folded. The fabric helps to prevent snarling of the yarns around the rolls or tangling as they are withdrawn from the column.
Details of the shuffler 26 are shown in FIG. 5. For purposes of illustration, a sheet 18 of only sixteen yarns has been shown, although in practice it is common to use around 1152 yarn ends in a carpet of 12 to 15 feet width, and in any case the number of yarn ends is not limited by the method herein disclosed. The purpose of the shufiler is to overcome certain occasional undesired variations in pattern and color intensity across the width of the sheet 18. These variations result from conditions such as variable exhaustion of the dyes in the pad 38 or Within the individual pans 58, 60 and 62. It is desired to prevent any resulting pattern by separating the yarns that were adjacent or nearly adjacent when passing through the printing units.
All adjacently printed yarns should be Well separated as they enter the tufting machine. Yarns separated by a single yarn when printed should also be reasonably well separated, although not necessarily to the same extent as adjacently printed yarns. Yarns separated by two yarns when printed require less separation, and so on. It has been found that these criteria are most ideally met by shuffling the yarns to different relative positions as shown in FIG. 5. At the top of FIG. 5 the yarns are shown entering the shufiler in their relative arrangement as printed, and are consecutively numbered. They are then rearranged by the shuflier with consecutively numbered yarns spaced four positions apart, this number being the square root of the total number of yarns.
By this arrangement, the resulting separation of the yarns in the l6-end illustrated case is shown by the following table:
Smallest number Weighted effective Number of yarns intervening of yarns intervenseparation after shuttling ing when printed after shuffling The third column is the sum of the first two columns. It will be seen that in no case is a pair of yarns, adjacent when leaving the shufiler, printed with fewer than three intervening yarns between them. 'Ihs condition is equally as satisfactory as that of the pairs of yarns leaving the shufller with three intervening yarns, which are printed adjacently.
It can also be shown that less ideal separations would occur in certain instances if the adjacently printed yarns were distributed with a spacing either more or less than four positions. Further, this principle of shuffling applies generally to any number of yarn ends, namely, that the adjacently printed yarns shall be distributed to positions spaced according to the square root of the total number of yarn ends. For the ll52-end case previously discussed, yarn 1 is distributed to the first position, yarn 2 to the 34th position, yarn 3 to the 68th position, and so on.
To carry out this arrangement without rubbing contact between the yarns, a pair of parallel perforated distribution plates 114 and 116 is used. Each of these plates has a square configuration of holes 118 through which the yarns are threaded is a systematic manner. It will be noted that the lower plate 116 is angularly oriented in relation to the plate 114 to prevent the yarns from touching one another between the plates. The number of holes on a side in each configuration equals the square root of the total as previously discussed.
Alternatively, in some cases effective separation is obtained by dividing the total number of yarns into two or more groups, each group being shuflied as above according to the square root of the number of yarns in that group.
Following the washing station 28 previously described, the shuffled yarns enter the drier-dealigner 30. This unit includes a housing 118 defining a chamber 120 through which air, preferably heated, is continuously circulated.
The yarns pass over a number of chain-driven rolls 122 respectively designated a, b, c and d, arrayed at the entrance to the housing, and a number of chain-driven rolls 124 respectively designated e, f, g and h, arrayed at the exit. The rolls 122 and 124 define a number of paths of different length over which the yarns may travel in passing from an idler 126 to an idler 128.
The number of possible paths in the illustrated example is thirty-two, these paths having fifteen different lengths, of which ten include three passes through the drier and five include five passes. The shortest path has the sequence a, c and the longest path has the sequence e, b, g, d. Thus each of the sixteen yarns except for two may travel a path of distinct length between the idlers 126 and 128. The yarns are preferably wrapped over the rolls in a systematic manner. The result is a pseudorandorn longitudinal shift'between the yarns in relation to their relative positions when passing through the printing units.
More or fewer rolls 122 and 124 may be employed according to the number of paths desired, or certain paths such as the diagonal sequences 1, g, and e, It may be eliminated if desired. Also, the roll axes may be placed in a square or rectangular configuration in place of the illustrated arrangement in which the axes are located at the apexes of equilateral triangles. The square configuration would produce ten paths of distinct length, of which five would include three passes through the drier and five would include five passes.
If there are fewer paths of distinct length than there are yarns, the yarns may be divided into as many groups as there are such paths, and the yarns in each group may be wrapped over the same path or over paths of equal length. The preferred system is to divide the total number of yarns by the number of paths of different length provided and to select for each path the yarns in positions separated by the quotient obtained. Thus for 58 ends and ten paths, every sixth yarn would be selected for each available path, and so on. Generally, this provides sufficient dealignment to prevent patterning of the colors such as ribbed effects and the like.
It will be noted that it is possible to select only paths having portions of equal length within the dryer, in which case every yarn is dried for an equal period of time within the chamber 120, making either three or five passes through the chamber, as selected. If more paths are used the conditions are so adjusted that sufficient drying is obtained with the least number of passes taken by any of the yarns.
Throughout the continuous path of the yarns from the let-off roll 19 to the idler 128, care is taken to prevent the yarns from becoming entangled with one another. To this end, a number of perforated separator plates like the plates 114 and 116 in FIG. 5 are preferably located between the several units. The separator plates have been omitted from the drawing for simplicity of illustration. In front of the shufiler 26, the yarns may be threaded through the plates in the pattern shown by the plate 114. Behind the shufiler they may be threaded through the plates in the pattern shown by the plate 116. If desired, the separator plates may have more holes in one dimension than in the other, for example two rows of eight holes each in the illustrated case as these plates are not intended for shuttling the yarns. Like considerations apply when a greater number of yarn ends is used.
As the yarns pass over an idler upon leaving the dryer-dealigner, they are returned to the straight-line arrangement shown at the bottom of FIG. 5, and pass into the nip of feed rolls 132 forming a part of the tufting machine 32. This machine is of conventional construction except for certain features of its drive system shown in FIG. 6. In this figure the conventional mechanisms have been shown schematically for simplicity of illustration.
The tufting machine has the usual main drive shaft 134 which has four power takeofis: a flywheel crank drive 136 for reciprocally stroking the tufting needles 138, a chain or link belt drive 140 for rotating the yarn feed rolls 132, a chain drive 142 for rotating a backing feed drive roll 144, and a chain drive 146 driving a worm-cam mechanism 147 for longitudinally reciprocating a backing feed backup roll 148. The rolls 144 and 148 are situated in cooperating relationship for pulling the tufted product therebetween through the line of needles, as is commonly done.
Conventional tufting machines employ a constant needle stroke rate, usually using an alternating current motor belted to the main drive shaft. However, the present machine employs a variable speed direct current motor 150 connected to this shaft by a V-belt 152.
The drive 140 is connected as in a conventional machine through a variable pitch pulley mechanism 154 to the yarn feed rolls 132. In a conventional machine this mechanism is employed to vary the rate of yarn feed. In the present machine, however, this mechanism has a different function, namely, to maintain a constant rate of yarn feed by compensating for any variations made in the speed of the shaft 134.
Thus the present machine differs from a conventional machine in that it is adapted to maintain a constant rate of yarn feed under all operating conditions. This speed is determined for the machine as a whole, and is dictated by the time and temperature relationships controlling the dye fixation process in the column 24.
The needle stroke rate is varied by changing the speed of the motor 150, while at the same time readjusting the mechanism 154 to maintain a constant rate of yarn feed.
The number of tufts per inch is determined by the speed of the roll 144 which is variable by means of a handwheel 156 and an associated variable speed means 158. The parts 156 and 158 are of conventional form. It will also be noted that in the present machine any change in the speed of the motor 150 also affects the number of tufts per inch. It will be seen that full flexibility is obtained in tufting fabrics of any desired number of tufts per inch and pile depth.
The reciprocation of the backing which is accomplished by the mechanism 147, causes each line of tufting to assume a zigzag configuration, which generally enhances the random effect of the textile previously described. Since the last mentioned feature is obtained in a conventional manner it is not further described herein.
As an alternative to the foregoing drive arrangement, it is possible to employ a constant speed drive for the feed rolls 132 with a variable speed drive connection therefrom to the drive shaft 134. The previously described arrangement is preferred, however, because it affords a ready means for adjusting the speed of the feed rolls 132 to compensate for any slight variations that may be made for any reason in the overall rate of feed of the yarns through the machine.
The manufacturing process herein described is fully adaptable to the production of solid color tufted textiles, in which case the pad 38 may be employed without the printing units 46, 48 and 50. A product of very uniform color is obtained by use of the shuffier 26 and dealigning features which insure the separation of yarns passing adjacently through the pad and also the dealignment of yarn segments that pass through the pad at the same moment of time. This tends to prevent any patterning effect that might arise either from variations in the composition of the dye liquor at various locations along the pad, or from variations in the composition of the dye liquor as a function of time.
Iclaim: 1. The method of producing a pile fabric which comprises the steps of feeding a number of pile forming yarns to a common dyeing unit, feeding the yarns so dyed to a dye fixation unit and withdrawing them therefrom at a predetermined rate,
shuffiing the yarns by feeding them from the dye fixation unit in a predetermined arrangement adapted for separation of adjacently dyed yarns,
dealigning the yarns by feeding them over paths of different length to a common position,
and forming each yarn so fed into a continuous pile chain in a backing sheet at said predetermined rate.
2. The method according to claim 1, in which the yarns are pad dyed.
3. The method according to claim 1, in which said predetermined arrangement consists in separation of adjacently dyed yarns by a number of positions substantially equal to the square root of the number of yarns.
4. The method according to claim 1, in which the rate of feed of the yarns in the pile forming step is maintained constant and the backing sheet is fed at a variable rate controlled in relation thereto.
5. The method according to claim 4, in which pile loops are formed at a rate which is varied in relation to the rate of feed of the yarns.
8 6. The method according to claim 1, in which said predetermined rate is a function of the time and temperature conditions Within the dye fixation unit.
7. The method according to claim 1, in Which the yarns are restrained out of mutual contact after being withdrawn from the dye fixation unit.
8. The method of producing a pile fabric which comprises the steps of feeding a number of pile forming yarns While printing thereon a pattern of segments of different dye liquors, said dye liquors being applied in substantially the same pattern to substantially all of the yarns,
feeding the yarns so printed to a dye fixation unit and withdrawing them therefrom at a predetermined rate,
shufiling the yarns by feeding them from the dye fixation unit in a predetermined arrangement adapted for separation of adjacently printed yarns,
dealigning the yarns by feeding them over paths of different length to a common position,
and forming each yarn so fed into a continuous pile chain in a backing sheet at said predetermined rate.
9. The method according to claim 8, in which the yarns are pad dyed before printing said patterns thereon.
10. The method according to claim 8, in which said predetermined arrangement consists in separation of adjacently printed yarns by a number of positions substantially equal to the square root of the number of yarns.
11. The method according to claim 8, in which the rate of feed of the yarns in the pile forming step is maintained constant and the backing sheet is fed at a variable rate controlled in relation thereto.
12. The method according to claim 11, in which the pile loops are formed at a rate which is varied in relation to the rate of feed of the yarns.
13. The method according to claim 8, in which said predetermined rate is a function of the time and temperature conditions within the dye fixation unit.
14. The method according to claim 8, in which the yarns are restrained out of mutual contact after being withdrawn from the dye fixation unit.
References Cited UNITED STATES PATENTS 1,990,907 2/1935 Kellogg 112-79 3,395,432 8/1968 Hasler et al 281 LOUIS K. RIMRODT, Primary Examiner.
' U.S. c1. X.R. 112-79
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64865267A | 1967-06-26 | 1967-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3447215A true US3447215A (en) | 1969-06-03 |
Family
ID=24601656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US648652A Expired - Lifetime US3447215A (en) | 1967-06-26 | 1967-06-26 | Production of random dyed pile textiles |
Country Status (5)
Country | Link |
---|---|
US (1) | US3447215A (en) |
BE (1) | BE717189A (en) |
DE (1) | DE1760731C3 (en) |
FR (1) | FR1582884A (en) |
GB (2) | GB1229854A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623440A (en) * | 1967-10-31 | 1971-11-30 | Singer Cobble Ltd | Tufting |
US3800565A (en) * | 1972-08-31 | 1974-04-02 | Singer Co | Continuous yarn dyeing machine |
US5503096A (en) * | 1994-01-26 | 1996-04-02 | Milliken Research Corporation | Process for forming a tufted pile fabric formed from spun and filament space-dyed yarn |
EP3633090A1 (en) * | 2018-10-04 | 2020-04-08 | Gitalia Jacquard S.r.l. | Machine and method for manufacturing printed yarns |
IT202000003713A1 (en) * | 2020-02-21 | 2021-08-21 | Luca Mencarelli | MACHINE AND PROCEDURE FOR COLORING YARNS |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1990907A (en) * | 1933-07-21 | 1935-02-12 | Mohawk Carpet Mills Inc | Method and apparatus for producing pile fabrics |
US3395432A (en) * | 1965-02-13 | 1968-08-06 | Singer Cobble Ltd | Apparatus for producing a textile fabric |
-
1967
- 1967-06-26 US US648652A patent/US3447215A/en not_active Expired - Lifetime
-
1968
- 1968-06-25 GB GB1229854D patent/GB1229854A/en not_active Expired
- 1968-06-25 GB GB1229855D patent/GB1229855A/en not_active Expired
- 1968-06-25 DE DE1760731A patent/DE1760731C3/en not_active Expired
- 1968-06-26 BE BE717189D patent/BE717189A/xx unknown
- 1968-06-26 FR FR1582884D patent/FR1582884A/fr not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1990907A (en) * | 1933-07-21 | 1935-02-12 | Mohawk Carpet Mills Inc | Method and apparatus for producing pile fabrics |
US3395432A (en) * | 1965-02-13 | 1968-08-06 | Singer Cobble Ltd | Apparatus for producing a textile fabric |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623440A (en) * | 1967-10-31 | 1971-11-30 | Singer Cobble Ltd | Tufting |
US3800565A (en) * | 1972-08-31 | 1974-04-02 | Singer Co | Continuous yarn dyeing machine |
US5503096A (en) * | 1994-01-26 | 1996-04-02 | Milliken Research Corporation | Process for forming a tufted pile fabric formed from spun and filament space-dyed yarn |
EP3633090A1 (en) * | 2018-10-04 | 2020-04-08 | Gitalia Jacquard S.r.l. | Machine and method for manufacturing printed yarns |
IT202000003713A1 (en) * | 2020-02-21 | 2021-08-21 | Luca Mencarelli | MACHINE AND PROCEDURE FOR COLORING YARNS |
Also Published As
Publication number | Publication date |
---|---|
DE1760731A1 (en) | 1972-01-05 |
DE1760731B2 (en) | 1974-01-24 |
DE1760731C3 (en) | 1974-08-15 |
GB1229854A (en) | 1971-04-28 |
FR1582884A (en) | 1969-10-10 |
BE717189A (en) | 1968-12-02 |
GB1229855A (en) | 1971-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0891437B1 (en) | Improved printed flocked pile fabric and method for making same | |
US3529447A (en) | Process and apparatus for the continuous treatment of textile materials | |
US3808618A (en) | Method for continuous dyeing of yarns | |
US3621780A (en) | Production of random dyed pile textiles | |
US3981163A (en) | Apparatus for treating yarns | |
US3800565A (en) | Continuous yarn dyeing machine | |
US3898035A (en) | Method for treating yarns | |
US3447215A (en) | Production of random dyed pile textiles | |
US7674301B2 (en) | Yarn and fabric with zones of variable heat set character | |
US3789469A (en) | Yarn treating method | |
US4271688A (en) | Apparatus for treating plaited yarns | |
US3503232A (en) | Yarn dyeing | |
US3491561A (en) | Random printing of yarns or threads | |
EP0091549B1 (en) | Method for the simultaneous sizing and drafting of a series of continuous thermoplastic yarns with substantially parallel filaments, for use in fabric production | |
US3762867A (en) | Textile printing method | |
EP0143288B1 (en) | A method for the obtaining of chains or fractions wound on beams, starting from a series of continuous, partially-drafted, thermoplastic yarns | |
US3908247A (en) | Apparatus for conveying elongated material such as textile material | |
US3180004A (en) | Apparatus for heat treatment of textured yarn warp sheets and method | |
US4185364A (en) | Method of making multicolored yarn | |
EP0144617B1 (en) | A method for the obtaining of chains or fractions wound on beams, starting with a series of continuous, partially-drafted, thermoplastic yarns | |
US3879966A (en) | Continuous yarn dyeing machines | |
US3585821A (en) | Apparatus for preparing dyed textile warps | |
US590245A (en) | stokes | |
US20040096657A1 (en) | Multi-colored monofilament yarn and textile formed therefrom | |
US3561235A (en) | Textile dyeing apparatus |