US3446717A - Cathodic treatment of metals in chromate solution to form protective coating thereon - Google Patents

Cathodic treatment of metals in chromate solution to form protective coating thereon Download PDF

Info

Publication number
US3446717A
US3446717A US412330A US3446717DA US3446717A US 3446717 A US3446717 A US 3446717A US 412330 A US412330 A US 412330A US 3446717D A US3446717D A US 3446717DA US 3446717 A US3446717 A US 3446717A
Authority
US
United States
Prior art keywords
chromate
metals
treatment
aluminum
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US412330A
Inventor
James Thomson Farquhar
Rosemary Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Associated Chemical Companies Ltd
Original Assignee
Associated Chemical Companies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associated Chemical Companies Ltd filed Critical Associated Chemical Companies Ltd
Application granted granted Critical
Publication of US3446717A publication Critical patent/US3446717A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising

Definitions

  • the chromate may be one of the group of calcium, strontium, barium, zinc, cadmium, aluminum, ferric iron or lead chromates.
  • the invention relates to the treatment of metals for the purpose of inhibiting corrosion.
  • metal as used herein includes alloys.
  • the present invention provides a process for the treatment of metal surfaces wherein the metal to be treated is placed in an aqueous acid-reacting electrolyte which is at least saturated with a chromate and a direct current is passedthrough the electrolyte, the metal to be treated constituting the cathode.
  • the process also permits the reduction of a portion of the chromate deposited, so that some of the chromium is in the trivalent state and this enhances the bonding of the metal surface.
  • the nature of the anode is not critical provided that it does not react deleteriously with the electrolyte.
  • the anode may conveniently be lead but other materials such as platinum or carbon may be used.
  • the process of the invention can be conducted at any convenient temperature up to the boiling point of the electrolyte.
  • Metal surfaces which have been treated by the process of the invention include those of a variety of grades of iron and steel, zinc and zinc alloys including zinc coated articles such as galvanized steel, cadmium and cadmium plated goods, aluminum both in pure and alloy form and tin plated goods.
  • the process of the invention is particularly applicable to ferrous metals, aluminum and magnesium, including alloys containing ose or more of the metals iron, aluminum and magnesium.
  • treatment can be very rapid.
  • the optimum time of treatment may vary from a few seconds to several hours and no advantage accrues by more prolonged treatment.
  • the time required for treatment is largely dependent upon the current density.
  • Current densities which can be used vary from less than one ampere per sq. ft. in which case treatment would require many hours, to several hundred amperes per sq. ft. allowing treatment in a few seconds.
  • the chromates which can be used in the process of the invention are those which have a greater solubility in acid than in neutral solution.
  • Preferably sparingly soluble chromates are used and examples of these are the chromates of calcium, strontium, barium, zinc, cadmium, copper, ferric iron and lead.
  • metals treated resist corrosion to a far greater degree than before treatment.
  • mild steel treated according to the invention may be stored under damp conditions for considerable periods before corrosion takes place.
  • metals such as zinc or aluminum or their alloys can be made much more resistant to corrosion in environments in which they would normally corrode.
  • such materials can be given substantial protection against marine atmospheres by means of the process of the invention.
  • metals treated by it may be painted without the necessity of any further pre-treatment such as with a phosphate composition and without the use of any priming paint.
  • EXAMPLE 1 A sheet of mild steel 6 in. X 4 in. was suspended in 2 liters of solution containing 250 g. of chromic acid to which 380 g. of calcium chromate had been added. A lead sheet 7 in. x 5 in. was suspended on each side of the steel plate about 1 in. distant from it. A direct current of 60 amperes was passed between the steel and lead sheets for one minute, the steel being used as cathode. The steel sheet on withdrawal from the bath was washed with water and dried in a stream of warm air.
  • EXAMPLE 2 A sheet of mild steel was treated as described in Example 1 except that the electrolyte consisted of 450 g.
  • EXAMPLE 3 A strip of mild steel in. wide was passed continuously through an electrolyte contained in a ceramic trough 6 in. wide, 6 in. deep and 4 ft. long. The strip was kept submerged as it passed through the trough by passing through a system of rollers. Also submerged in the trough were two strips of lead 5 /2 in. wide and 3 /2 ft. long, supported in such a manner that the steel strip passed in a parallel course between, and about half an inch distant from them.
  • the electrolyte consisted of 5 kg. of zinc oxide and 12 kg. of chromic acid thoroughly stirred with water to give approximately liters of solution.
  • a direct current was applied between the steel and lead strips using the former as cathode and a current corresponding to some 275 amperes per sq. ft. of steel surface submerged in the electrolyte was passed.
  • the steel strip was drawn through the bath at approximately twelve feet per minute and as it emerged, it was squeegeed.
  • EXAMPLE 4 A sheet of mild steel was treated as described in Example 1 except that the electrolyte consisted of 750 g. of chromic acid and 300 g. of copper oxide made up to 2 liters with water and thoroughly stirred.
  • EXAMPLE 5 A sheet of mild steel was treated as described in Example 1 except that the electrolyte consisted of 350 g. of chromic acid and 100 g. of freshly precipitated aluminum hydroxide made up to 2 liters with water and thoroughly stirred.
  • EXAMPLE 6 A rod of aluminum metal /8 in. in diameter and 2 ft. long was suspended concentrically inside a lead tube 2 /2 in. in internal diameter and 2 /2 ft. long and closed at its lower end.
  • the lead tube was filled to within 2 inches of the top with a suspension of barium chromate made by mixing g. of barium hydroxide with 400 g. of chromic acid and making up to 4 liters by the addition of water.
  • the aluminum rod was in such a position that it was completely submerged.
  • a direct current of 20 amperes was passed for 5 seconds between the lead tube and the aluminum rod using the latter as cathode. After removing from the electrolyte the aluminum rod was washed, dried and painted directly with a high grade gloss paint. Examination of the painted rod by accelerated corrosion tests and by prolonged exposure to marine atmospheres indicated that the paint layer was not less stable than when applied to a similar aluminum surface previously prepared by conventional means.
  • a galvanized steel wire (14 gauge) was drawn through a bath consisting of 2 g. of barium hydroxide, 20 g. of chromic acid and 200 mls. of water in a mild steel vessel.
  • the wire entered the foot of the bath through a polytetrafluoroethylene gland and passed vertically upwards over a pulley provided above the liquid level. The length of wire submerged at any one time was about five inches.
  • a current of amperes was passed between the wire and the steel vessel, the wire being the cathode, was drawn through the bath at approximately 30 ft. per minute. On leaving the bath the wrie was washed in water and dried in warm air.

Description

United States Patent US. Cl. 20458 6 Claims ABSTRACT OF THE DISCLOSURE A process for producing a protective coating on meals by cathodic treatment in an acidic chromic acid solution saturated with a metallic chromate. The chromate may be one of the group of calcium, strontium, barium, zinc, cadmium, aluminum, ferric iron or lead chromates.
The invention relates to the treatment of metals for the purpose of inhibiting corrosion. The term metal as used herein includes alloys.
The use of sparingly soluble chromates of calcium, zinc, lead or other metals in priming compositions for the treatment of metal surfaces is widespread. The mechanism by which chromates are capable of protecting labile metal surfaces is complex, but is probably dependent on the oxidizing power of the chromate which maintains a film of oxide on the surface of the metal. It is usually assumed that the chromate employed should have a small degree of water solubility so that in moist conditions traces of chromate can dissolve, and this provides a mechanism by which the chromate can obtain an intimate contact with the metal surface.
The present invention provides a process for the treatment of metal surfaces wherein the metal to be treated is placed in an aqueous acid-reacting electrolyte which is at least saturated with a chromate and a direct current is passedthrough the electrolyte, the metal to be treated constituting the cathode.
This causes a light deposit of a chromate to be laid down on the metal surface under treatment in such a way as to ensure intimate contact between the chromate and the metal. The process also permits the reduction of a portion of the chromate deposited, so that some of the chromium is in the trivalent state and this enhances the bonding of the metal surface.
The nature of the anode is not critical provided that it does not react deleteriously with the electrolyte. The anode may conveniently be lead but other materials such as platinum or carbon may be used.
It is believed that during the process the pH at the surface of the metal under treatment is raised by the normal mechanism of electrolytic conduction and the result is that chromate precipitates on the metal surface. At the same time some degree of reduction of the chromate may take place, but this is advantageous as already stated.
In order to conduct the process tothe greatest advantage it is preferred to carry out the electrolysis in a solution of a chromate in chromic acid. Since we operate under conditions such that the electrolyte is fully saturated with respect to the chromate employed, in theory an infinitely small rise in pH will result in the deposition of chromate and in this way the precipitation takes place right on the metal surface and the chromate thus becomes intimately associated with that surface. We have found that the further from the saturation point of the electro- 3,446,717 Patented May 27, 1969 lyte the poorer are the results obtained. This is no doubt because under unsaturated conditions a time elapses between the liberation of hydroxyl ions at the metal surface and the precipitation of chromate. During this time some difi'usion may occur which will result in the precipitation of chromate at some distance from the metal surface giving rise to poor adhesion.
The process of the invention can be conducted at any convenient temperature up to the boiling point of the electrolyte.
Metal surfaces which have been treated by the process of the invention include those of a variety of grades of iron and steel, zinc and zinc alloys including zinc coated articles such as galvanized steel, cadmium and cadmium plated goods, aluminum both in pure and alloy form and tin plated goods. However, the process of the invention is particularly applicable to ferrous metals, aluminum and magnesium, including alloys containing ose or more of the metals iron, aluminum and magnesium.
One of the advantages of the process is that to obtain the desired effect, treatment can be very rapid. The optimum time of treatment may vary from a few seconds to several hours and no advantage accrues by more prolonged treatment. The time required for treatment is largely dependent upon the current density. Current densities which can be used vary from less than one ampere per sq. ft. in which case treatment would require many hours, to several hundred amperes per sq. ft. allowing treatment in a few seconds.
The chromates which can be used in the process of the invention are those which have a greater solubility in acid than in neutral solution. Preferably sparingly soluble chromates are used and examples of these are the chromates of calcium, strontium, barium, zinc, cadmium, copper, ferric iron and lead.
After treatment by the process of the invention we find that the metals treated resist corrosion to a far greater degree than before treatment. For example mild steel treated according to the invention may be stored under damp conditions for considerable periods before corrosion takes place. In addition we find that metals such as zinc or aluminum or their alloys can be made much more resistant to corrosion in environments in which they would normally corrode. In particular, we find that such materials can be given substantial protection against marine atmospheres by means of the process of the invention.
One of the particular attractions of the process is that metals treated by it may be painted without the necessity of any further pre-treatment such as with a phosphate composition and without the use of any priming paint. We have found that many metals and in particular steel and aluminum may be sprayed with paint after treatment by the process of the invention and the metals are as satisfactory in use as when given conventional and much more expensive treatment prior to painting.
The following examples illustrate the invention.
EXAMPLE 1 A sheet of mild steel 6 in. X 4 in. was suspended in 2 liters of solution containing 250 g. of chromic acid to which 380 g. of calcium chromate had been added. A lead sheet 7 in. x 5 in. was suspended on each side of the steel plate about 1 in. distant from it. A direct current of 60 amperes was passed between the steel and lead sheets for one minute, the steel being used as cathode. The steel sheet on withdrawal from the bath was washed with water and dried in a stream of warm air.
EXAMPLE 2 A sheet of mild steel was treated as described in Example 1 except that the electrolyte consisted of 450 g.
of chromic acid and 150 g. of hydrated lime made up to 2 liters with water and thoroughly stirred.
EXAMPLE 3 A strip of mild steel in. wide was passed continuously through an electrolyte contained in a ceramic trough 6 in. wide, 6 in. deep and 4 ft. long. The strip was kept submerged as it passed through the trough by passing through a system of rollers. Also submerged in the trough were two strips of lead 5 /2 in. wide and 3 /2 ft. long, supported in such a manner that the steel strip passed in a parallel course between, and about half an inch distant from them. The electrolyte consisted of 5 kg. of zinc oxide and 12 kg. of chromic acid thoroughly stirred with water to give approximately liters of solution. A direct current was applied between the steel and lead strips using the former as cathode and a current corresponding to some 275 amperes per sq. ft. of steel surface submerged in the electrolyte was passed. The steel strip was drawn through the bath at approximately twelve feet per minute and as it emerged, it was squeegeed.
EXAMPLE 4 A sheet of mild steel was treated as described in Example 1 except that the electrolyte consisted of 750 g. of chromic acid and 300 g. of copper oxide made up to 2 liters with water and thoroughly stirred.
EXAMPLE 5 A sheet of mild steel was treated as described in Example 1 except that the electrolyte consisted of 350 g. of chromic acid and 100 g. of freshly precipitated aluminum hydroxide made up to 2 liters with water and thoroughly stirred.
EXAMPLE 6 A rod of aluminum metal /8 in. in diameter and 2 ft. long was suspended concentrically inside a lead tube 2 /2 in. in internal diameter and 2 /2 ft. long and closed at its lower end. The lead tube was filled to within 2 inches of the top with a suspension of barium chromate made by mixing g. of barium hydroxide with 400 g. of chromic acid and making up to 4 liters by the addition of water. The aluminum rod was in such a position that it was completely submerged. A direct current of 20 amperes was passed for 5 seconds between the lead tube and the aluminum rod using the latter as cathode. After removing from the electrolyte the aluminum rod was washed, dried and painted directly with a high grade gloss paint. Examination of the painted rod by accelerated corrosion tests and by prolonged exposure to marine atmospheres indicated that the paint layer was not less stable than when applied to a similar aluminum surface previously prepared by conventional means.
4 EXAMPLE 7 A galvanized steel wire (14 gauge) was drawn through a bath consisting of 2 g. of barium hydroxide, 20 g. of chromic acid and 200 mls. of water in a mild steel vessel. The wire entered the foot of the bath through a polytetrafluoroethylene gland and passed vertically upwards over a pulley provided above the liquid level. The length of wire submerged at any one time was about five inches. A current of amperes was passed between the wire and the steel vessel, the wire being the cathode, was drawn through the bath at approximately 30 ft. per minute. On leaving the bath the wrie was washed in water and dried in warm air.
What is claimed is:
1. In the process of cathodically electro coating metal articles having a metal surface selected from the group consisting of ferrous metals, zinc and zinc base alloys, cadmium and cadmium base alloys, aluminum and aluminum base alloys, and tin and tin base alloys, with a non-metallic protective coating, in an aqueous chromic acid electrolyte having an acid pH, the improvement comprising utilizing as the chromic acid electrolyte an acid aqueous electrolyte consisting essentially of chromic acid which is at least saturated with at least one chromate selected from the group consisting of the chromates of calcium, strontium, barium, zinc, cadmium, aluminum, copper, ferric iron, and lead.
2. The process of claim 1 wherein said article is a steel surfaced article.
3. The process of claim 1 wherein said metal article is a zinc surfaced article.
4. The process of claim 1 wherein said metal article is an aluminum surfaced metal article.
5. The process of claim 1 wherein said chromate is selected from the group consisting of calcium, zinc, copper, aluminum, and barium.
6. The process of claim 5 wherein a lead anode is used.
References Cited UNITED STATES PATENTS 2,042,611 1/1936 Lukens 20451 2,445,155 7/1948 Saukaitis 1486.2 2,746,915 5/1956 Giesker et a1. 20456 3,288,691 11/1966 Yonezaki et al. 20456 HOWARD S. WILLIAMS, Primary Exailziner.
G. L. KAPLAN, Assistant Examiner.
US. Cl. X.R. 2045 6
US412330A 1963-12-04 1964-11-19 Cathodic treatment of metals in chromate solution to form protective coating thereon Expired - Lifetime US3446717A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB47917/63A GB1106292A (en) 1963-12-04 1963-12-04 Improvements in or relating to the treatment of metals

Publications (1)

Publication Number Publication Date
US3446717A true US3446717A (en) 1969-05-27

Family

ID=10446725

Family Applications (1)

Application Number Title Priority Date Filing Date
US412330A Expired - Lifetime US3446717A (en) 1963-12-04 1964-11-19 Cathodic treatment of metals in chromate solution to form protective coating thereon

Country Status (5)

Country Link
US (1) US3446717A (en)
BE (1) BE656339A (en)
DE (1) DE1496712A1 (en)
GB (1) GB1106292A (en)
SE (1) SE322957B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094750A (en) * 1977-10-05 1978-06-13 Northrop Corporation Cathodic deposition of oxide coatings
US4432845A (en) * 1982-07-20 1984-02-21 Kawasaki Steel Corporation Method of producing tin-free steel sheets having improved resistance to retorting treatment
US5219617A (en) * 1989-09-19 1993-06-15 Michigan Chrome And Chemical Company Corrosion resistant coated articles and process for making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042611A (en) * 1932-02-03 1936-06-02 United Chromium Inc Control of chromium plating solutions
US2445155A (en) * 1944-10-03 1948-07-13 American Chem Paint Co Protection of cupriferous surfaces
US2746915A (en) * 1951-10-15 1956-05-22 Autoyre Co Inc Electrolytic metal treatment and article
US3288691A (en) * 1962-06-13 1966-11-29 Yawata Iron & Steel Co Method of electrolytically chemically treating metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042611A (en) * 1932-02-03 1936-06-02 United Chromium Inc Control of chromium plating solutions
US2445155A (en) * 1944-10-03 1948-07-13 American Chem Paint Co Protection of cupriferous surfaces
US2746915A (en) * 1951-10-15 1956-05-22 Autoyre Co Inc Electrolytic metal treatment and article
US3288691A (en) * 1962-06-13 1966-11-29 Yawata Iron & Steel Co Method of electrolytically chemically treating metals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094750A (en) * 1977-10-05 1978-06-13 Northrop Corporation Cathodic deposition of oxide coatings
US4432845A (en) * 1982-07-20 1984-02-21 Kawasaki Steel Corporation Method of producing tin-free steel sheets having improved resistance to retorting treatment
US5219617A (en) * 1989-09-19 1993-06-15 Michigan Chrome And Chemical Company Corrosion resistant coated articles and process for making same
US5492766A (en) * 1989-09-19 1996-02-20 Michigan Chrome And Chemical Company Corrosion resistant coated articles and process for making same

Also Published As

Publication number Publication date
DE1496712A1 (en) 1969-06-19
BE656339A (en) 1965-03-16
SE322957B (en) 1970-04-20
GB1106292A (en) 1968-03-13

Similar Documents

Publication Publication Date Title
ES8105402A1 (en) Electro-co-deposition of corrosion resistant nickel/zinc alloys onto steel substrates
US3772165A (en) Method of treating surfaces of steel products
US3167403A (en) Base materials coated with an alloy of aluminum and manganese
US2623847A (en) Black chromium plating
US2733199A (en) Electrolytic treatment of metal
US3816082A (en) Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced
US4427499A (en) Process for surface treatment of stainless steel sheet
US2275223A (en) Rustproof material and process
US3895969A (en) Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions
US3479260A (en) Treatment for ferrous surfaces
US3446717A (en) Cathodic treatment of metals in chromate solution to form protective coating thereon
US3268422A (en) Electroplating bath containing aluminum and manganese-bearing materials and method of forming aluminummanganese alloy coatings on metallic bases
US3511759A (en) Method and electrolytes for electro-depositing black chromium
Fratesi et al. Corrosion resistance of Zn-Co alloy coatings
US3838024A (en) Method of improving the corrosion resistance of substrates
US3364057A (en) Metal hydroxide intermediate coating for metal
US3729396A (en) Rhodium plating composition and method for plating rhodium
US2780592A (en) Electrolytic treatment of metal surfaces
US2230602A (en) Method of coating metals with lead
US2499231A (en) Method of producing surface conversion coatings on zinc
US2769774A (en) Electrodeposition method
US3616303A (en) Electrolytic treatment of nonferrous metals
US3620939A (en) Coating for magnesium and its alloys and method of applying
US2463483A (en) Protection of metallic objects by galvanic action
US3567599A (en) Electrochemical treatment of ferrous metal