US3444418A - Frequency modulation tube with a surrounding magnetic system - Google Patents

Frequency modulation tube with a surrounding magnetic system Download PDF

Info

Publication number
US3444418A
US3444418A US570659A US3444418DA US3444418A US 3444418 A US3444418 A US 3444418A US 570659 A US570659 A US 570659A US 3444418D A US3444418D A US 3444418DA US 3444418 A US3444418 A US 3444418A
Authority
US
United States
Prior art keywords
tube
magnetic system
connection
high frequency
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US570659A
Other languages
English (en)
Inventor
Herbert Sarnezki
Eberhard Ade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3444418A publication Critical patent/US3444418A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy

Definitions

  • the invention relates to a velocity-modulated tube such as klystrons and traveling wave tubes with a surrounding magnetic system, which permits a changing of the tube by opening the system into mirror symmetrical halves and in which there is rigidly installed at least one high frequency connecting line for the tube.
  • Underlying the invention is the problem of designing a microwave electron beam tube with a cooperable magnetic system, which can be opened in such a way that changing of the tube in the system can be readily accomplished in a simple manner.
  • the high frequency connecting lines be constructed to simultaneously function as a carrier and centering element for the tube in the magnetic system.
  • a microwave tube system presents the important advantage that in changing the tube in the magnetic system, other than the high frequency connections, no additional connections for the tube attachment have to be released, as the high frequency contacting elements simultaneously provide the means for fastening of the tube.
  • the manual operations necessary for the tube change are thereby simplified, which can be considered equivalent to a reduction of the drop-out time resulting from the tube change.
  • the high frequency connection lines are aligned in the plug-in direction of the tube and arranged within one of the two halves of the magnet system additional space can be saved within the magnetic system.
  • Elongated traveling wave tubes especially those of relatively high power, ordinarily have a high frequency connection terminal at each of the tube ends.
  • a high frequency connection terminal at each of the tube ends.
  • traveling wave tubes frequently are provided with coaxial line terminals.
  • one of the two high frequency terminals for the tube be assembled in the magnetic system as a movable coaxial line plug connection, in which the outer conductor of a coaxial line mounted in the magnetic system has an annular recess on the face of its free end bounded at one side by .a rim portion composed of resilient lamellae, into which is inserted the outer conductor of a coaxial line section con nected with the tube shell.
  • the inner conductor of such coaxial line section is here constructed as a resilient contact clip which receives the free end of the inner conductor of the coaxial line mounted in the magnetic system.
  • FIG. 1 is a schematic, exploded view of a magnetic system and tube structure utilizing the invention
  • FIG. 2 is a longitudinal section of a plug connector in accordance with the invention.
  • FIG. 3 is a view similar to FIG. 1 of a structure for use with tubes having centrally disposed tube connections.
  • FIG. 1 illustrates the construction and arrangement according to the invention of a traveling Wave tube with the cooperative magnetic system.
  • Reference numeral 1 designates a schematically represented hollow magnet structure, which is hinged to form two symmetrical halves, permitting it to be opened by movement according to the arrow 2.
  • a high frequency connection line 3 In one of the two halves of the magnet structure 1 there is rigidly installed, perpendicular to the separation plane of the structure, a high frequency connection line 3, by means of which the high frequency connection with the high frequency output 4 of the tube 5 is established.
  • the high frequency line 3 can be a coaxial line or a hollow conductor. Its position determines the centering of the tube 5 in the magnet structure 1.
  • a flange 6 which carries two externally threaded guide studs 7.
  • Cooperable with the guide studs 7 are two guide holes 8 disposed in a flange 9, which is mounted on the output side high frequency connection 4 of the tube and is firmly connected with the shell of tube 5.
  • the end flange 9 is secured to the flange 6 on the connecting line 3 by two internally threaded mounting nuts or knobs 10.
  • the high frequency contacting between the high frequency connection 4 and the connection line 3 can be constructed as a flange contact or a coaxial external contact connection. With flange contacts, the knobs 10 in addition to fixing the tube position, also effect the necessary contact pressure, while in coaxial external contacts the knobs 10 merely fix the tub in position.
  • the high frequency connection line 11 for the input side high frequency connection 12 of the tube 5 corresponds in basic design to that of the high frequency connection at the tube output.
  • the high frequency connection line 11, however, should be slightly movable according to the double arrow 13, in axial direction of the tube 5, in order to be able to compensate for heat expansion of tube 5 occurring in operation.
  • the adjacent end of the high frequency connection line 11 must also be slightly movable transversely to the tube axis, to compensate for tolerances in the parallelism of the flanges 6 and 9.
  • a changing of the tube 5 in the magnet structure 1 is a very simple operation.
  • the magnet system is first opened, following which the voltage feed supply means (not represented) and the mounting knobs 10 are loosened.
  • the tube then can immediately be taken out of the magnet structure 1, whereupon a new tube 5 is inserted, in the direction of the arrow 14 along the dot-dash lines 15, on the guide studs 7 and the mounting knobs 10 are screwed onto the studs 7. Thereupon it remains merely necessary to attach the voltage feed supply means and close the magnetic system.
  • the tube base 16 with the contacts for the voltage feed supply advantageously is so arranged that it is substantially axially aligned in tube plug-in direction 14.
  • the contacting with the tube base 16 can there be eflected by means of a manually connectable plug.
  • the air cooling feed and lead-off connections (not shown) for the collector of the tube 5, in the event the latter is enclosed by an air cooling casing 17, as illustrated.
  • the high frequency connection lines 3 and 11 can be connected externally of the magnet structure 1 by means of suitable known standard plug connections 18 to a high frequency circuit of the usual type, Which standard plug connections do not have to be released in the tube changing operation.
  • the line connected with the high-frequency connecting line 3 can be rigid, and may, for example, be a rigid coaxial line 19.
  • the connecting line 11 for the tube input expediently utilizes a flexible cable 29, which participates in the possible movements of the connection line 11. If nevertheless there is required a rigid outside line for the tube input, the movement of the connecting line 11 can be compensated for in a known manner, for example, over a so-called carden connecting structure.
  • Such a cardan coaxial structure is then expediently arranged in the magnet structure between the flange 6 and the standard plug connection 18.
  • FIG. 2 illustrates a plug connection suitable for this purpose, disposed between two coaxial lines 21 and 22, in which the line 21 corresponds to the high frequency connection line 11 of FIG. 1 and the line 22 corresponds to the input-side high frequency connection 12 connected with the shell of tube 5.
  • the outer conductor of the coaxial line 21 is provided at its open end face with a recess 23 which is bounded on its inner surface of generation by a series of resilient contact springs or lamellae 25.
  • the free end of the outer conductor of the coaxial line 22, of wedge form in axial cross section, is adapted to be inserted in the recess 23, while the inner conductor, in the form of a resilient contact clip 24, receives the end of the inner conductor of the coaxial line 21.
  • the contact springs 25, which are situated on the inside of the annular recess 23, or springs 25' forming the contact clip 24, provide the desired compensation of operating and manufacturing tolerances of the tube. It should be noted that the coaxial line plug connection illustrated in FIG. 2 is of importance, independently of the present invention, in applications where movements can occur between two coaxial lines to be connected with one another.
  • FIG. 3 illustrates a further example of construction of the invention and in particular for a velocity-modulated tube 26, in which the high frequency connections are arranged in the middle of the tube and extend parallel to one another outwardly from the tube shell.
  • the corresponding high frequency connection lines in the magnet structure 1 are spatially grouped into a single unit with a single flange 27.
  • two guide rods 28, on which guide tubes 29, carried by the tube 26, are slidable.
  • the guide rods 28 are each provided with a threaded bore, so that the tube 26 can be secured in its inserted position on the guide rods 28 by means of threaded knobs 30.
  • the two knobs 30 do not, in this case, merely fix the tube in position, but also produce the necessary contact pressure to effect the operative connection of the hollow conductor flange element between the connection installed in the magnet structure and the high frequency connection terminals of the tube 26.
  • the invention is not limited only to the examples of construction illustrated.
  • other means are utilized for the centering and supporting of the tube in the system.
  • What is of particular importance is the connection between the high frequency connections of the tube and the connection lines installed in the magnet system, in addition to its normal function of the high frequency contacting, simultaneously fulfills the purpose of supporting and centering the tube in the magnetic field Without requiring any further fastening means.
  • a velocity-modulated tube with a surrounding magnetic system which can be opened for the changing of the tube, comprising a velocity-modulated tube structure, a magnetic system constructed in the form of two mirrorimage symmetrical halves, at least one high-frequency connection, for the tube, which is rigidly mounted in the magnetic system, said high-frequency connection line being constructed to center, and simultaneously provide support for said tube structure within the magnetic system.
  • a velocity-modulated tube according to claim I having high-frequency connections which are rigidly connected to the tube shell and terminate in free end flange means, and base means on the free end of the cooperable tube carrying and centering connection line in the magnetic system, provided with the means for the centering and supporting of the cooperable end flange means of said tube structure.
  • a velocity-modulated tube wherein said base means carries at least two guide studs, the cooperable end flange means at the tube side being provided with cooperable guide holes disposed to receive the respective guide studs, and forming said centering and supporting means.
  • a velocity-modulated tube according to claim 4 wherein the base of the tube structure is provided with contacts for the voltage feed connections, which extend in the same direction as said high-frequency connection of the tube shell.
  • a magnetic system for a velocity-modulated tube comprising a magnet system of a size to receive such a tube therein, said system being divided into two mirrorimage symmetrical halves, one of said halves containing all the necessary high-frequency connection lines for such a velocity-modulated tube disposed in said magnet system, with such lines extending perpendicularly to the separating plane of the magnet system.
  • a magnet system according to claim 9 with a flange contact between the movable connection line and the cooperable high-frequency connection of the tube, wherein the movable connection line is arranged for a slight movement transversely to the tube axis, aes well as in a longitudinal direction of the tube.
  • a line plug connection for two abutting coaxial line ends each having an outer conductor and a coaxially disposed inner conductor, in which the outer conductor of one coaxial line is provided with an annular recess in the end face thereof, which is defined at one side thereof by a series of resilient lamellae, into which recess is inserted the free end of the outer conductor of the other coaxial line, which free end is of generally wedge-shape in axial cross section, the free end of the inner conductor of the last-mentioned coaxial line being constructed in the form of a resilient contact clip which receives the adjacent end of the inner conductor of the first-mentioned coaxial line.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Plasma Technology (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
US570659A 1965-08-09 1966-08-05 Frequency modulation tube with a surrounding magnetic system Expired - Lifetime US3444418A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES0098738 1965-08-09

Publications (1)

Publication Number Publication Date
US3444418A true US3444418A (en) 1969-05-13

Family

ID=7521694

Family Applications (1)

Application Number Title Priority Date Filing Date
US570659A Expired - Lifetime US3444418A (en) 1965-08-09 1966-08-05 Frequency modulation tube with a surrounding magnetic system

Country Status (5)

Country Link
US (1) US3444418A (fr)
DE (1) DE1491464B2 (fr)
GB (1) GB1150148A (fr)
NL (1) NL6610046A (fr)
SE (1) SE333198B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593059A (en) * 1968-12-12 1971-07-13 Siemens Ag Partially integrated velocity-modulated tube structure and housing therefor
US3716746A (en) * 1970-07-24 1973-02-13 Siemens Ag Klystron
US4000438A (en) * 1974-10-17 1976-12-28 Siemens Aktiengesellschaft Electron beam collector for transit time tubes, in particular medium power traveling wave tubes and a process for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784339A (en) * 1947-06-25 1957-03-05 Rca Corp Electron discharge devices of the growing wave type
US3045202A (en) * 1954-08-12 1962-07-17 Shapiro Gustave High frequency coaxial coupling
US3188515A (en) * 1961-06-05 1965-06-08 Bell Telephone Labor Inc Beam collector with auxiliary collector for repelled or secondarily-emitted electrons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784339A (en) * 1947-06-25 1957-03-05 Rca Corp Electron discharge devices of the growing wave type
US3045202A (en) * 1954-08-12 1962-07-17 Shapiro Gustave High frequency coaxial coupling
US3188515A (en) * 1961-06-05 1965-06-08 Bell Telephone Labor Inc Beam collector with auxiliary collector for repelled or secondarily-emitted electrons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593059A (en) * 1968-12-12 1971-07-13 Siemens Ag Partially integrated velocity-modulated tube structure and housing therefor
US3716746A (en) * 1970-07-24 1973-02-13 Siemens Ag Klystron
US4000438A (en) * 1974-10-17 1976-12-28 Siemens Aktiengesellschaft Electron beam collector for transit time tubes, in particular medium power traveling wave tubes and a process for producing same

Also Published As

Publication number Publication date
GB1150148A (en) 1969-04-30
SE333198B (sv) 1971-03-08
DE1491464A1 (de) 1969-10-02
NL6610046A (fr) 1967-02-10
DE1491464B2 (de) 1971-09-23

Similar Documents

Publication Publication Date Title
JP2918352B2 (ja) 空間電界電力結合器
US2800605A (en) Traveling wave electron discharge devices
US3444418A (en) Frequency modulation tube with a surrounding magnetic system
US2786959A (en) Traveling wave tubes
US2802135A (en) Traveling wave electron tube
US3096457A (en) Traveling wave tube utilizing a secondary emissive cathode
US2634383A (en) Cavity resonator high-frequency electron discharge device
US3775709A (en) Improved output window structure for microwave tubes
US2890419A (en) Switch tube device for waveguides
US4013917A (en) Coupled cavity type slow-wave structure for use in travelling-wave tube
US2698421A (en) Wave guide seal and filter structure
US2435804A (en) Cavity resonator magnetron device
US3344306A (en) Klystron having temperature modifying means for the electrodes therein and the focusing magnetic circuit
US3441793A (en) Reverse magnetron having a circular electric mode purifier in the output waveguide
US3076122A (en) Magnetron device
CA2057127C (fr) Dispositif de couplage d'un systeme de lignes coaxiales
US3082351A (en) Crossed-field amplifier
US2758243A (en) Electron beam tubes
US3480887A (en) System of enclosures and connectors for microwave circuits
US3284660A (en) High frequency electron discharge device
US3109952A (en) High intensity short arc lamp having an annular cathode shield
US2761116A (en) Contact member for disc-shaped electrode connections
JPH06310044A (ja) 電子ビーム装置
GB1199189A (en) Electrostatically Focused Microwave Tubes
US3248601A (en) Collinear input and output couplers, each using rectangular guide to ridge guide to transmission line conversion, for traveling wave tube