US3440051A - Oxonol dyes for light filtering layers in photographic elements - Google Patents

Oxonol dyes for light filtering layers in photographic elements Download PDF

Info

Publication number
US3440051A
US3440051A US478003A US3440051DA US3440051A US 3440051 A US3440051 A US 3440051A US 478003 A US478003 A US 478003A US 3440051D A US3440051D A US 3440051DA US 3440051 A US3440051 A US 3440051A
Authority
US
United States
Prior art keywords
light
acid
layers
dye
dyes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US478003A
Inventor
Joseph Bailey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB13379/60A external-priority patent/GB933466A/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3440051A publication Critical patent/US3440051A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1809Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety
    • C07C273/1818Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety from -N=C=O and XNR'R"
    • C07C273/1827X being H
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/825Photosensitive materials characterised by the base or auxiliary layers characterised by antireflection means or visible-light filtering means, e.g. antihalation
    • G03C1/83Organic dyestuffs therefor
    • G03C1/832Methine or polymethine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • This invention relates to new dyes and more particularly to photographic elements containing these dyes in lightscreening layers.
  • Such a light-screening substance may be in a layer overlying a light-sensitive emulsion or overlying two or more light-sensitive emulsions; or it may be in a light-sensitive emulsion for the purpose of modifying a light record in such emulsion or for protecting an overlying light-sensitive emulsion or emulsions from the action of light of wavelengths absorbed by such lightscreening substance; or it may be in a layer not containing a light-sensitive substance but arranged between two light-sensitive emulsions; or it may be in a layer serving as a backing on an element having one or more light- I sensitive emulsions (for example, to reduce halation).
  • light-screening substances are often required (a) in overcoatings upon photographic elements to protect the light-sensitive emulsion or emulsions from the action of light which it is not desired to record, e.g., ultraviolet light in the case of still or moving pictures, especially color pictures, (b) in layers arranged between differentially color sensitized emulsions, e.g., to protect red and green sensitive emulsions from the action of blue light, and (c) in backings forming the so-called antihalation layers on either side of a transparent support carrying the light-sensitive emulsion or emulsions.
  • the element contains a color sensitized emulsion on color sensitized emulsions
  • light-screening substances which can readily be rendered ineffective, i.e., decolorized or destroyed and removed prior to or during or after photographic processing.
  • Another object is to provide new symmetrical acid oxonol dyes which are readily mordanted in light-screening layers so that they will not diffuse into adjacent emulsion layers and dyes which are readily bleached by conventional processing solutions without removing the light-screening layer containing them.
  • Another object is to provide a new class of light-screening filter layers which are valuable for use in photographic elements as interlayer-s between two sensitive silver halide emulsion layers, between the support and a sensitive silver halide emulsion layer, as a layer over a sensitive silver halide layer or as an antihalation layer behind the support.
  • Another object is to provide a method for preparing new symmetrical oxonol dyes.
  • R is a carboxyalkyl group in which the car-boxy substituent is attached to an alkyl group having from 1 to 2 carbon atoms such as methyl and ethyl;
  • R is a member selected from the class consisting of an alkyl group having from 1 to 8 carbon atoms, such as methyl, benzyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, hexyl, octyl, cyclohexyl, etc., an aryl group, such as phenyl, Z-methylphenyl, Z-methoxyphenyl, 2,4-dimethylphenyl, etc.;
  • n is an integer of from 1 to 3;
  • X is a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms such as methyl, ethyl, propyl, butyl, etc., such that not more than one X
  • My dyes are valuable for use in photographic lightsensitive materials employing one or more sensitive silver halide layers.
  • the dyes can be used to make light-screening layers including antihal-ation layers with or without dyes of other classes and can be incorporated readily in colloidal binders used for forming such layers. They are especially useful in gelatin layers lying adjacent to silver halide layers, since the dyes can be mordanted with organic polymeric substances to form excellent nonwandering characteristics in gelatin while the dyes can be readily bleached without the need for removing the layers containing them. Bleaching of the dyes occurs when the layer is treated with alkaline solutions containing sodium sulfite such as photographic developing solutions.
  • My dyes can be mordanted in layers coated in contact with light-sensitive silver halide emulsion layers since the dyes have very good stability at the pH of most sensitive silver halide emulsions (about 6.3) and have little or no undesirable eifect on silver halide. Consequently, the dyes may be used as light-screening dyes in layers coated directly on top of sensitive silver halide emulsion layers or between two sensitive silver halide emulsion layers or between the support and a sensitive silver halide emulsion layer or on the back of the support as an antihalation layer.
  • Example l.-Bis( 1-n-butyl-3-carboxymethylhexahydro- 2,4,6-trioxo--pyrimidine) pentamethinoxonol l-n-butyl-3-carboxymethylbarbituric acid (3.6 grams), glutaconic aldehyde dianilide hydrochloride (2.13 grams), ethanol (30 cc.) and triethylamine (8.4 cc.) were heated on the steam bath for 20 minutes. The dye solution was chilled and acidified with concentrated hydrochloric acid (12 cc.) and the solution was poured into water (750 cc.). The precipitated dye was collected, washed with water and dried. The product which weighed 3 grams (73%) melted at 88 C.
  • the dye in water had an absorption maximum at 590 m Analysis.Calcd for C H N O C, 55.0%; H, 5.5%; N, 10.2%. Found: C, 55.3%; H, 6.2%; N, 10.05%.
  • the dye in ethanol had an absorption maximum at 592 mp.
  • Example 3 Bis( l-carboxymethyl-3-cyclohexylhexahydro-2,4,6-trioxo-5-pyrimidine) pentamethinoxonol Prepared similarly to Example 1 using a proportional amount of 1-carboxymethyl-3-cyclohexylbarbituric acid instead of l-n-butyl-3-carboxymethylbarbituric acid. The dye was obtained in yield, it melted at 120 and had an absorption maximum in ethanol at 592 m Analysis.Calcd for C H N O N, 9.4%. Found: N, 9.2%.
  • Example 4 Bis( l-carboxymethylhexahydro-3-phenyl- 2,4,6-trioxo-5-pyrimidine pentamethinoxonol This dye was prepared similarly to Example 2 using 1 anilino 5 anilo 3 --methyl 1,3 pentadiene HBr in place of glutaconicaldehyde dianilide HCl. The dye was obtained in 86% yield, it had an absorption maximum in ethanol at 614 mp.
  • Example 7 Bis l-n-butyl-3-carboxymethylhexahydro- 2,4,6-trioxo-5-pyrimidine)trimethinoxonol Prepared similarly to Example 6 using a proportional amount of 1-n-butyl-3-carboxymethylbarbituric acid in place of l-carboxymethyl-3-n-octylbarbiturlc acid. The dye was obtained in 60% yield, melted at 66 and had an absorption maximum in ethanol at 493 my.
  • N-ethoxycarb onylmethyl-N-n-octylurea C H OOC-CH -NH-CO-NH c 11,.
  • Ethoxycarbonylmethyl isocyanate (Ann. 1948, 562, 76) (17.5 grams) in benzene (25 cc.) was treated with noctylamine (17.5 grams) in benzene (25 cc.). There was a temperature rise on mixing and the solution was maintained at room temperature overnight. The solvent was distilled olf and the product solidified on cooling. It weighed 33.5 grams (96%), MP. 57 C.
  • N-tertiarybutyl-N-ethoxycarbonylmethylurea N-ethoxycarbonylmethyl-N'-n-hexylurea
  • N -benzyl-N-ethoxycarbonylmethylurea N-ethoxycarbonylmethyl-N'-o-methoxyphenylurea.
  • the product was obtained as a pale yellow viscous oil. It weighed 22.6 grams (69%), B.P. 204-210/ 0.08
  • the light-screening layers of my invention are prepared by coating on the photographic element or on its support, by methods well known in the art, a water solution of the dye, a hydrophilic colloid binder and a coating aid such as saponin.
  • a basic mordant to this solution to render the acid dye nonwandering.
  • agents to harden the colloidal binder material so that the light-screening layer will remain intact in the photographic element during and following the processing operation.
  • the pH of the coating solution is adjusted when necessary to a level that is compatible with the lightsensitive emulsion layed by the usual methods.
  • the proportions of dye, colloidal binder, mordant, hardener, coating aid used in making my light-screening layers may be varied over wide ranges and will depend upon the specific requirements of the photographic element being produced. The methods used to determine the optimum composition are well known in the art and need not be described here.
  • the light-sensitive layer or layers and the light-screening layer or layers of the photographic elements may be coated on any suitable support material used in photography such as cellulose nitrate, cellulose acetate, synthetic resin, paper, etc.
  • Hydrophilic colloidal materials used as binders include collodion, gum arabic, cellulose ester derivatives such as alkyl esters of carboxylated cellulose, hydroxy ethyl cellulose, carboxy methyl hydroxy ethyl cellulose, synthetic resins, such as the amphoteric copolymers described by Clavier et al. in US. Patent 2,949,442, issued Aug. 16, 1960, polyvinyl alcohol, and others well known in the art.
  • the above-mentioned amphoteric copolymers are made by polymerizing the monomer having the formula:
  • OHz CR OOH wherein R represents an atom of hydrogen or a methyl group, and a salt of a compound having the general formula:
  • R has the above-mentioned meaning, such as an allylamine salt.
  • These monomers can further by polymerized with a third unsaturated monomer in an amount of to 20% of the total monomer used, such as an ethylene monomer that is copolymerizable with the two principal monomers.
  • the third monomer may contain neither a basic group nor an acid group and may, for example, be vinyl acetate, vinyl chloride, acrylonitrile, methacrylonitrile, styrene, acrylates, methacrylates, acrylamide, methacrylamide, etc.
  • polymeric gelatin substitutes examples include copolymers of allylamine and methacrylic acid; copolymers of allylamine, acrylic acid and acrylamide; hydrolyzed copolymers of allylamine, methacrylic acid and vinyl acetate; copolymers of allylamine, acrylic acid and styrene; the copolymer of allylamine, methacrylic acid and acrylonitrile, etc.
  • My dyes are generally added to the water-permeable colloidal binder in water solution.
  • it may be advantageous to form an alkali metal salt of the dye by dissolving the dye in a dilute aqueous alkali metal carbonate solution, for example.
  • a coating aid such as saponin, is added to the dyed colloidal suspension before coating it as a layer on the photographic element.
  • the dyes are advantageously mordanted with a suitable basic mordant added to the colloidal suspension before coating.
  • Basic mordants that may be used include the basic mordants described by Minsk in- U.S. 2,882,156, issued Apr. 14, 1959, prepared by condensing a polyvinyl-0x0- compound such as a polyacrolein, a poly- -methylacrolein, a polyvinyl alkyl ketone, such as polyvinyl methyl ketone, polyvinyl ethyl ketone, polyvinyl propyl ketone, polyvinyl butyl ketone, etc., or certain copolymers containing acrolein, methacrolein, or said vinyl alkyl ketone components, for example, 1 to 1 molar ratio copolymers of these components with styrene or alkyl methacrylates wherein the alkyl group contains from 1 to 4 carbon atoms, such as methyl, ethyl, propyl, or butyl methacrylates in the proportions from about .25 to 5 parts
  • Patent 2,675,316 prepared by reacting addition polymers containing carboxyl groups with a basic dialkylamino compound, for example, N-dialkyl amine ethyl esters of polymers or copolymers containing carboxyl groups; the addition type polymers containing periodically occurring quaternary groups of Sprague et al., US. 2,548,564, issued Apr. 10, 1951, including quaternary ammonium salts of vinyl substituted azines such as vinylpyridine and its homologs such as vinylquinoline, vinylacridine, and vinyl derivatives of other six-membered heterocyclic ring compounds containing hydrogen atoms.
  • These addition polymers include 2-vinylpyridine polymer metho-p-toluenesulfonate, 4-vinylpyridine polymer methop-toluenesulfonate.
  • Hardening materials that may be used to advantage include such hardening agents as formaldehyde; a halogen-substituted aliphatic acid such as mucobromic acid as described in White, US. Patent 2,080,019, issued May 11, 1937; a compound having a plurality of acid anhydride groups such as 7,8-diphenylbicyclo(2,2,2)-7-octene- 2,3,5,6-tetra-carboxylic dianhydride, or a dicarboxylic or a disulfonic acid chloride such as terephthaloyl chloride or naphthalene-1,5-disulfonyl chloride as described in Allen and Carroll, US.
  • hardening agents as formaldehyde
  • a halogen-substituted aliphatic acid such as mucobromic acid as described in White, US. Patent 2,080,019, issued May 11, 1937
  • a compound having a plurality of acid anhydride groups such as 7,
  • a dialdehyde or a sodium bisulfite derivative thereof such as ,B-methyl glutaraldehyde bis-sodium bisulfi-te as described in Allen and Burness, U.S. patent application Ser. No. 556,031, filed Dec. 29, 1955 and now abandoned; a bis-aziridine carboxamide such as trimethylene bis(1- aziridine carboxamide) as described in Allen and Webster, US. Patent 2,950,197, issued Aug. 23, 1960; or 2,-3-dihydroxydioxane as described in Jeffreys, U.S. Patent 2,870,013, isued Jan. 20, 1959.
  • the photographic element utilizing my light-screening layers have light-sensitive emulsion layers containing silver chloride, silver bromide, silver chlorobromide, silver iodide, silver bromoiodide, silver chlorobromoiodide, etc., as the light-sensitive material. Any lightsensitive silver halide emulsion layers may be used in these photographic elements.
  • the silver halide emulsion may be sensitized by any of the sensitizers commonly used to produce the desired sensitometric characteristics.
  • My invention is further illustrated by the following examples describing the preparation of photographic elements containing my light-screening layers.
  • Example 20 An aqueous solution was made up which contained 4.54 g. of gelatin, .91 g. of polyta-methyl allyl-N-guanidylketimine), .153 g. of saponin, and .302 g. of bis(1-butyl-3- carboxymethylhexahydro 2,4,6 trioxo-S-pyrimidine) pentamethinoxonol to a total weight of g. at a pH of 6.1. This solution was coated on clear cellulose acetate film support at 4.6 g. per sq. ft.
  • the resulting coating was overcoated with a fine-grained silver chlorobromide emulsion with panchromatic sensitization at 'a silver coverage at 257 milligrams of silver per sq. ft.
  • a control was coated on clear support.
  • Halation latitude Clear Blue Green Red lfiianrpanama"'" light-screening layer 1. 67 86 1. 74 2. 36
  • Example 21 0.5 gram of the dye of Example 2 was dissolved in 1% aqueous sodium carbonate and added to a 5% gelatin solution containing 0.5 gram polyvinylpyridinium methop-toluenesulfonate. The pH of the solution was adjusted to 6.5. This dyed gelatin solution was then coated on top of a sensitive silver halide emulsion of the kind used for X-ray photography at the rate of 25.5 mg. of dye per square foot. Two such coated materials were made from exactly the same emulsion and dyed gelatin solution and measurements made on the products are shown below as A and B, along with the measurements on the same prodnet but omitting the dye from the gelatin.
  • the column headed Safety Factor are relative measurements of the inverse of the effective sensitivity of the material when exposed to the red component of light transmitted by a Wratten 6B Darkroom Safelight, which contains an amber coloured filter transmitting light in the range of 570 to 700 m with a maximum transmission at a wavelength of 595 m
  • the Safety Factor was calculated as the antilogarithm of the inverse of the logarithm of the speed measured as the exposure required to give a density of .02 above the fog density.
  • FIGS. 1, 2, and 3 represent greatly enlarged cross-sectional views of light-sensitive photographic elements containing my light-absorbing water-permeable colloid layers.
  • FIG. 1 shows light-screening layer 10 consisting of gelatin containing bis(1-carboxymethylhexahydro-3-n-octyl- 2,4,6-trioxo-5-pyrimidine)pentamethinoxonol mordanted with polyvinylpyridinium metho-p-toluenesulfpnate coated over light-sensitive silver halide emulsion layer 11 which is coated on support 12.
  • FIG. 2 shows light-sensitive silver halide emulsion layer 13 coated over light-screening layer 14 consisting of gelatin containing bis(1-butyl-3-carboxymethylhexahydro- 2,4,6-trioxo-5-pyrimidine)pentamethinoxonol mordanted with ot-methyl allyl-N-guanidylketimine coated over support 15.
  • FIG. 3 shows light-sensitive silver halide emulsion layer 16 coated on support 17 bearing antihalation backing layer 18 consisting of gelating containing bis(1-butyl- 3 carboxymethylhexahydro 2,4,6-trioxo-5-pyrimidine) pentamethinoxonol mordanted with a-methyl vallyl-N- guanidylketimine.
  • the symmetrical, acid oxonol dyes of my invention are valuable for preparing light-screening layers for making light-sensitive photographic elements containing silver halide emulsion layers.
  • the light-screening layers containing my dyes are used to advantage either over the lightsensitive silver halide emulsion layers, between the lightsensitive silver halide emulsion layer and the support, between two different light-sensitive layers, or as an antihalation backing layer.
  • My dyes are characterized by having maximum light absorption at desirable wavelengths.
  • a novel light-sensitive photographic element comprising at least one layer containing a sensitive silver halide emulsion and at least one layer containing a dye having the formula:
  • Z represents the nonmetallic atoms necessary to complete a 1-carboxyalkyl-3-hydrocarbon substituted hexahydro-2,4,6-trioxo-5-pyrimidine nucleus and n is an integer of from 1 to 3.
  • a novel light-sensitive photographic element comprising at least one layer containing a sensitive silver halide emulsion and at least one layer containing the dye from 1 t0 8 carbon atoms and an aryl group; and n is having the formula: an integer from 1 to 3.
  • R is a carboxymethyl group
  • R is a member 10 selected from the class consisting of an alkyl group having 260-2402 PEI-1050 Patent No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

April 22, 1969 J. BAILEY 3,440,051
I OXONOL DYES FOR LIGHT FILTERING LAYERS IN PHOTOGRAPHIC ELEMENTS Original Filed March 27, 1961 GELATI/V CONTAIN/N6 51s [7-cARB0xYMEr/4YL HEXAHYORO '3'!) 'OCTYL 2,4, 6 TRIOXO '5 PYRIMIO/NE I PEN TAMETHINOXONOL LIGHT SENSITIVE SILVER HAL IOE EMULSION SUPPOR T LIGHT SENSITIVE SILVER HAL/OE EMULSION GEL/1 TIN CON IAIN/N6 BISD-BUTY' 3' CARBOXY- ME THYLHEXAHYDRO'Z, 4,6 TR/OX0 5' PYRIMIDINE I PENTAMET'HINOXONOL SUPPORT LIGHT SENSITIVE SILVER HAL/DE EMULSION GELA 7'IN CON TA/NING BIS [I-BUTYL "3 CARBOXY- METHYL HEXAHYDRO 2,4, 6' TRIOXO 5 PYRIMIO/NE) PEN T4 ME THINOXONOL JOSEPH BAILEY INVENTOR.
A 7' TOIPNEY United States Patent j 3,440,051 OXONOL DYES FOR LIGHT FILTERING LAYERS IN PHOTOGRAPHIC ELEMENTS Joseph Bailey, Wealdstone, Harrow, England, assignor to Eastman Kodak Company, Rochester, N.Y., a corporation of New Jersey Original application Mar. 27, 1961, Ser. No. 98,709, now Patent No. 3,247,127. Divided and this application June 25, 1965, Ser. No. 478,003 Claims priority, application Great Britain, Apr. 14, 1960, 13,37 9/ 60 Int. Cl. G03c 1/84 US. C]. 9684 2 Claims This is a division of US. patent application Ser. No. 98,709, Oxonol Dyes for Light Filtering Layers in Photographic Elements, filed Mar. 27, 1961, now Patent No. v
This invention relates to new dyes and more particularly to photographic elements containing these dyes in lightscreening layers.
It is known that photographic elements require for many purposes to have light-screening substances incorporated therein. Such a light-screening substance may be in a layer overlying a light-sensitive emulsion or overlying two or more light-sensitive emulsions; or it may be in a light-sensitive emulsion for the purpose of modifying a light record in such emulsion or for protecting an overlying light-sensitive emulsion or emulsions from the action of light of wavelengths absorbed by such lightscreening substance; or it may be in a layer not containing a light-sensitive substance but arranged between two light-sensitive emulsions; or it may be in a layer serving as a backing on an element having one or more light- I sensitive emulsions (for example, to reduce halation).
In particular, light-screening substances are often required (a) in overcoatings upon photographic elements to protect the light-sensitive emulsion or emulsions from the action of light which it is not desired to record, e.g., ultraviolet light in the case of still or moving pictures, especially color pictures, (b) in layers arranged between differentially color sensitized emulsions, e.g., to protect red and green sensitive emulsions from the action of blue light, and (c) in backings forming the so-called antihalation layers on either side of a transparent support carrying the light-sensitive emulsion or emulsions.
In most cases and especially where the element contains a color sensitized emulsion on color sensitized emulsions, it is particularly desirable to employ light-screening substances which do not affect the general sensitivity or the color sensitivity of light-sensitive emulsions with which they may come into contact. It is also particularly desirable to employ light-screening substances which do not substantially diffuse from the layers or coatings in which they are incorporated, either during the manufacture of the element or on storing it or in photographically processing it. Finally it is generally necessary to employ light-screening substances which can readily be rendered ineffective, i.e., decolorized or destroyed and removed prior to or during or after photographic processing. For many purposes it is particularly convenient to employ light-screening substances which are rendered inefiective by one of the photographic baths employed in processing the element after exposure, such as a photographic developing bath or fixing bath. The decoloration or destruction of the light-screening dye will hereinafter be referred to as bleaching.
Numerous substances have been employed as lightscreening materials for the purposes indicated above. Among the dyes used are the oxonal dyes. Oxonol dyes known in the past have not absorbed light of the wavelength desired. Previously known oxonol dye-mordant combinations, however, which are sufficiently nonwan- 3,440,051 Patented Apr. 22, 1969 dering to use in layers in contact with emulsion layers, are bleached only with difliculty or not at all during normal processing of the film. Those known combinations which bleach more easily are not sufficiently nonwandering so the dye migrates to the emulsion layers with a consequent deleterious efiect upon the sensitometric properties of the film. In some instances where the lightscreening dye has been mordanted to make it sufficiently nonwandering, the dye does not bleach satisfactorily in the processing baths and it has been necessary to remove the light-screening layer itself from the photographic element to eliminate the unwanted residual dye.
It is therefore an object of my invention to provide a new class of symmetrical oxonol dyes which have their maximum absorption of light at the wavelength desired.
Another object is to provide new symmetrical acid oxonol dyes which are readily mordanted in light-screening layers so that they will not diffuse into adjacent emulsion layers and dyes which are readily bleached by conventional processing solutions without removing the light-screening layer containing them.
Another object is to provide a new class of light-screening filter layers which are valuable for use in photographic elements as interlayer-s between two sensitive silver halide emulsion layers, between the support and a sensitive silver halide emulsion layer, as a layer over a sensitive silver halide layer or as an antihalation layer behind the support.
Another object is to provide a method for preparing new symmetrical oxonol dyes.
Still other objects will become apparent from the following specification and claims.
I have found that the above objects are accomplished by using symmetrical oxonol dyes represented by the following formula:
E OH z z wherein Z represents the non-metallic atoms necessary to complete a 1 carboxyalkyl 3 hydrocarbon substituted hexahydro-2,4,6-trioxo-5-pyrimidine nucleus and rt is an integer of from 1 to 3.
Particularly advantageous dyes of my invention may be represented by the following formula:
R; 0 on R,
I ia g 0 III:
wherein R is a carboxyalkyl group in which the car-boxy substituent is attached to an alkyl group having from 1 to 2 carbon atoms such as methyl and ethyl; R is a member selected from the class consisting of an alkyl group having from 1 to 8 carbon atoms, such as methyl, benzyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, hexyl, octyl, cyclohexyl, etc., an aryl group, such as phenyl, Z-methylphenyl, Z-methoxyphenyl, 2,4-dimethylphenyl, etc.; n is an integer of from 1 to 3; X is a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms such as methyl, ethyl, propyl, butyl, etc., such that not more than one X is an alkyl group.
My dyes are valuable for use in photographic lightsensitive materials employing one or more sensitive silver halide layers. The dyes can be used to make light-screening layers including antihal-ation layers with or without dyes of other classes and can be incorporated readily in colloidal binders used for forming such layers. They are especially useful in gelatin layers lying adjacent to silver halide layers, since the dyes can be mordanted with organic polymeric substances to form excellent nonwandering characteristics in gelatin while the dyes can be readily bleached without the need for removing the layers containing them. Bleaching of the dyes occurs when the layer is treated with alkaline solutions containing sodium sulfite such as photographic developing solutions.
My dyes can be mordanted in layers coated in contact with light-sensitive silver halide emulsion layers since the dyes have very good stability at the pH of most sensitive silver halide emulsions (about 6.3) and have little or no undesirable eifect on silver halide. Consequently, the dyes may be used as light-screening dyes in layers coated directly on top of sensitive silver halide emulsion layers or between two sensitive silver halide emulsion layers or between the support and a sensitive silver halide emulsion layer or on the back of the support as an antihalation layer.
Representative dyes of my invention and their preparation are illustrated by the following examples which are not intended to limit by invention.
Example l.-Bis( 1-n-butyl-3-carboxymethylhexahydro- 2,4,6-trioxo--pyrimidine) pentamethinoxonol l-n-butyl-3-carboxymethylbarbituric acid (3.6 grams), glutaconic aldehyde dianilide hydrochloride (2.13 grams), ethanol (30 cc.) and triethylamine (8.4 cc.) were heated on the steam bath for 20 minutes. The dye solution was chilled and acidified with concentrated hydrochloric acid (12 cc.) and the solution was poured into water (750 cc.). The precipitated dye was collected, washed with water and dried. The product which weighed 3 grams (73%) melted at 88 C.
The dye in water had an absorption maximum at 590 m Analysis.Calcd for C H N O C, 55.0%; H, 5.5%; N, 10.2%. Found: C, 55.3%; H, 6.2%; N, 10.05%.
Example 2.Bis(1-carboxymethylhexahydro-3-n-octyl- 2,4,6-trioxo-5-pyrimidine) pentamethinoxonol l-carboxymethyl-3-n-octylbarbituric acid (17.9 grams), glutaconic aldehyde dianilide hydrochloride (8.5 grams), ethanol (120 cc.) and triethylamine (33.6 cc.) were heated under reflux for twenty minutes. The reaction mixture was chilled and treated with concentrated hydrochloric acid (48 cc.) and the solution was poured into water -(3 liters). The dye was collected, washed with water and dried. It weighed 18 grams (91%) and melted at 131 C.
The dye in ethanol had an absorption maximum at 592 mp.
Analysis.Calcd for C H N O C, 59.7%; H, 6.9%; N, 8.4%. Found: C, 59.8%; H, 7.1%; N, 8.7%.
Example 3 .Bis( l-carboxymethyl-3-cyclohexylhexahydro-2,4,6-trioxo-5-pyrimidine) pentamethinoxonol Prepared similarly to Example 1 using a proportional amount of 1-carboxymethyl-3-cyclohexylbarbituric acid instead of l-n-butyl-3-carboxymethylbarbituric acid. The dye was obtained in yield, it melted at 120 and had an absorption maximum in ethanol at 592 m Analysis.Calcd for C H N O N, 9.4%. Found: N, 9.2%.
Example 4.- Bis( l-carboxymethylhexahydro-3-phenyl- 2,4,6-trioxo-5-pyrimidine pentamethinoxonol This dye was prepared similarly to Example 2 using 1 anilino 5 anilo 3 --methyl 1,3 pentadiene HBr in place of glutaconicaldehyde dianilide HCl. The dye was obtained in 86% yield, it had an absorption maximum in ethanol at 614 mp.
Example 6.Bis( l-carboxymethylhexahydro-3-n-octyl 2,4,6-trioxo-5-pyrimidine)trimethinoxonol l-carboxymethyl-3-n-octy1barbituric acid (1.5 gram), fl-ethoxyacroleinacetal (0.9 gram), pyridine (2.5 cc.) and triethylamine (1.4 cc.) were heated under reflux for 5 minutes. The reaction mixture was chilled, poured into water cc.) and acidified with concentrated HCl when the product separated as an oil which solidified on chilling. The dye was collected by filtration and recrystallized from methanol. It weighed 0.8 gram (50%), melted at 219 and had an absorption maximum in methanol at 492 In t.
Analysis.-Calcd for C H N O C, 58.9%; H 7.0%; N, 8.9%. Found: C, 60.0%; H, 7.15%; N, 9.5%.
Example 7.Bis l-n-butyl-3-carboxymethylhexahydro- 2,4,6-trioxo-5-pyrimidine)trimethinoxonol Prepared similarly to Example 6 using a proportional amount of 1-n-butyl-3-carboxymethylbarbituric acid in place of l-carboxymethyl-3-n-octylbarbiturlc acid. The dye was obtained in 60% yield, melted at 66 and had an absorption maximum in ethanol at 493 my.
Analysis.Calcd for C23H23N401o, H20: C, H, 5.6%; N, 10.4%. Found: C, 51.0%; H, 5.9%; N, 10.1%.
Example 8 .Bis( 1-carboxymethyl-3-cyclohexylhexahydro-2,4,6-trioxo-5-pyrimidine trimethinoxonol 5 HOOC-OHz HO CHz-COOH N-C 0 -I1I\ 0o C=OHCH=CHO /oo 10 N-C o 0 C-N 5 11 0111:
Prepared similarly to Example 6 using a proportional amount of 1-carboxymethyl-3-cyclohexylbarbituric acid in place of l-carboxymethyl-3-n-octylbar-bituric acid. The dye was obtained in 63% yield, melted at 170 and had an absorption maximum in ethanol at 494 mu.
Analysis.-Calcd for C27H32N4O10I N, Found: N, 9.9%.
Example 9.Bis( l-carboxymethylhexahydro-3 -noctyl-2,4,6-trioxo-5-pyrimidine)methinoxonol HO CHg-COOH Example 10.Bis(1 tertiarybutyl 3 carboxymethylhexahydro 2,4,6 trioxo 5 pyrimidine) pentamethinoxonol,
Example 11.--Bis(1 carboxymethyl 3 n hexylhexahydro 2,4,6 trioxo 5 pyrimidine)pentamethinox- 5 onol,
Example 12.--Bis(1 benzyl 3 carboxymethylhexahydro 2,4,6 trioxo 5 pyrimidine)pentamethinoxonol,
Example 13.Bis(1 carboxymethylhexahydro 3 omethoxyphenyl 2,4,6 trioxo 5 pyrimidine)pentamethinoxonol,
Example 14.Bis(1 tertiarybutyl 3 carboxymethylhexahydro 2,4,6 trioxo 5 pyrimidine)trimethinoxonol,
Example 15.Bis(l carboxymethyl 3 n hexylhexahydro 2,4,6 trioxo 5 pyrimidine)trimethinoxonol,
Example 16.--Bis(1 'benzyl 3 carboxymethylhexahydro 2,4,6 trioxo 5 pyrimidine)trimethinoxonol,
Example 17.-Bis(1 car-boxymethylhexahydro 3 omethoxyphenyl 2,4,6 trioxo 5 pyrimidine)trimethinoxonol,
Example 18.--Bis(1 n butyl 3 carboxymethylhexahydro 2,4,6 trioxo 5 pyrimidine)methinoxonol, Example 19.Bis(1 tertiarybutyl 3 carboxymethylhexahydro 2,4,6 trioxo 5 pyrimidine)methinoxonol.
The intermediates used in preparing my dyes were synthesized according to the following procedures WhlCh are typical and will illustrate the methods used to prepare intermediates for other dyes of my invention.
N-ethoxycarb onylmethyl-N-n-octylurea C H OOC-CH -NH-CO-NH c 11,.
Ethoxycarbonylmethyl isocyanate(Ann. 1948, 562, 76) (17.5 grams) in benzene (25 cc.) was treated with noctylamine (17.5 grams) in benzene (25 cc.). There was a temperature rise on mixing and the solution was maintained at room temperature overnight. The solvent was distilled olf and the product solidified on cooling. It weighed 33.5 grams (96%), MP. 57 C.
Analysis.-Calcd for C H N O C, 60.4%; H, 10.1%; N, 10.8%. Found: C, 59.8%; H, 10.1%; N, 10.8%.
N-n-butyl-N'-ethoxycarbonylmethylurea C H OOC-CH -NH-CO-NH-C H It was obtained in the same way 'as the above compound using a proportional amount of n-butylamine in place of n-octylamine. -It yield) was obtained as very low melting colourless needles.
Analysis.-Calcd for C H N O N, 13.9%. Found: N, 13.3%.
N-ethoxycarbonylmethyl-N'-phenylurea C H OOC -CH -NH -CO 'NH'C H It was obtained similarly to the above using a proportional amount of aniline in place of n-octylamine. It (72% yield) was obtained as colourless needles, M.P. l08109 C.
N-cyclohexyl-N'-ethoxycarb onylurea C2H5OOC CH2 CGHH It was obtained similarly to the above using a proportional amount of cyclohexylamine in place of n-octylamine. It (70% yield) was obtained as long colourless needles, M.P. l21122.
Other intermediates according to the invention include:
N-tertiarybutyl-N-ethoxycarbonylmethylurea, N-ethoxycarbonylmethyl-N'-n-hexylurea, N -benzyl-N-ethoxycarbonylmethylurea, N-ethoxycarbonylmethyl-N'-o-methoxyphenylurea.
1-ethoxycarbonylmethyl-3 -n-octylbarbituric acid GZH5O O C-CHzI N-C o 0 C 0H2 N-ethoxycarbonylmethyl-N'-n-octylurea (25.8 grams), malonic acid (11.5 grams), acetic anhydride (50 cc.) and acetic acid (50 cc.) were heated on a steam bath for three hours. The excess solvent was distilled off in vacuo and the residual oil was distilled in vacuo.
The product was obtained as a pale yellow viscous oil. It weighed 22.6 grams (69%), B.P. 204-210/ 0.08
Analysis.Calcd for C H O N C, 58.9%; H, 8.0%; N, 8.6%. Found: C, 57.5%; H, 8.1%; N, 8.35%.
1-n-butyl-3-ethoxycarbonylmethylbarbituric acid 02H O o 0 CH N-C o 00 /GHz N-o o (ihHn Prepared similarly to the above intermediate. It was obtained in 52% yield as a colourless viscous oil, B.P. 161 .l63 /O.2 mm.
Analysis.calcd for C12H18NZO5: C, H,
N, 10.3%. Found: C, 55.1%, H, 7.1%; N, 10.2%.
1-ethoxycarbonylmethyl-3-phenylbarbituric acid CzH5OOC-CH N-OO OH; NG
CaH
Prepared similarly to the above intermediate. It was obtained in 63% yield as a pale yellow viscous oil, B.P. .2162l8/'0.5 mm.
1-cyclohexyl-3-ethoxycarbonylmethylbarbituric acid N-GO aHn
Prepared similarly to the above intermediate. It was obtained in 83% yield as a pale yellow viscous oil, B.P. 178180/0.2 mm.
Other intermediates according to the invention include:
1-tertiarybutyl-3-ethoxycarbonylmethylbarbituric acid,
1-ethoxycarbonylmethyl-3-n-hexylbarbituric acid,
1-benzyl-3-ethoxycarbonylmethylbarbituric acid,
1-ethoxycarbonylmethyl-3-o-methoxyphenylbarbituric acid.
1-carboxymethyl-3-n-octylbarbituric acid NC o O C CH:
1 ethoxycarbonylmethyl 3 octylbarbituric acid (16 grams) was treated with aqueous sodium hydroxide cc., 40%) in Water (40 cc.). The solution was heated on the steam bath for 4 hours. Then the reaction mixture was chilled and acidified with concentrated hydrochloric acid. The separated oil was extracted with benzene. The benzene solution was concentrated and solid product was obtained by warming the residual gum with petroleum ether (B.P. 40-60). The product was collected and recrystallized from petroleum ether (B.P. 80-100 C.) as colourless shiny plates. The product weighed 9 grams (62%) and melted at 117.51l 8.5 C.
Analysis.Calcd for C H O N C, 56.4%; H, 7.4%; N, 9.4%. Found: C, 56.3%; H, 7.6%; N, 9.2%.
1-n-butyl-3-carboxymethylbarbituric acid HO O C C 112 To a solution of potassium hydroxide (6.65 grams) in methanol (75 cc.) was added 1-n-butyl-3-ethoxycarbonylmethylbarbituric acid (13.5 grams). The mixture was maintained overnight at room temperature when the solid potassium salt of the product precipitated. It was collected by filtration and washed with methanol. It was dissolved in Water and the solution acidified with hydrochloric acid. The separated oil was extracted with benzene. The benzene solution was concentrated and the residual oil purified by dissolution in ethyl acetate and treating the solution by the dropwise addition of petroleum ether (B.P. 60-80) until the product began to precipitate. After chilling, the colourless crystals were collected. The product weighed 4 grams (33%) and melted at 73-75 C.
Analysis.Calcd for C H O N C, 49.6%; H, 5.8%; N, 11.6%. Found: C, 50.0%; H, 6.0%; N, 11.35%.
Note: If the potassium salt did not separate from the reaction mixture the following procedure was adopted: The methanol solution of the reactants after standing overnight was concentrated and the residual solid potassium salt was dissolved in water and the solution acidified with hydrochloric acid. The separated oil was extracted with benzene. The benzene extract was washed twice with small amounts of water, separated and filtered. The benzene was distilled off in vacuo leaving the product as a viscous gum. It may be used in the dye synthesis without further purification. The yield by this procedure was 87%.
Prepared in a similar way to 1-n-butyl-3-carboxymethylbarbituric acid. It was obtained in 43% yield as colourless crystals, M.P.
Analysis.Calcd for C H N O C, 55.0%; H, 3.8%; N, 10.7%. Found: C, 54.3%; H, 4.5%; N, 10.6%.
1-carboxymethyl-3-cyclohexylbarbituric acid OC CH2 Hydrolysis was carried out in the same way as for 1- carboxymethyl-3-n-octylbarbituric acid. The product from acidification, however, was solid. It was collected by filtration and suspended in benzene, refiltered and washed with benzene and dried. It was obtained in 51% yield as colourless crystals, M.P.
Analysis.Calcd for C H N O C, 53.7%; H, 6.0%; N, 10.4%. Found: C, 53.6%; H, 5.85%; N, 10.7%.
Other intermediates according to the invention include:
1-tertiarybutyl-3-carboxymethylbarbituric acid, 1-carboxymethyl-3-n-hexylbarbituric acid, 1-benzyl-3-carboxymethylbarbituric acid, 1-carboxymethyl-3-o-methoxyphenylbarbituric acid.
The light-screening layers of my invention are prepared by coating on the photographic element or on its support, by methods well known in the art, a water solution of the dye, a hydrophilic colloid binder and a coating aid such as saponin. In addition to these materials it is advantageous to add a basic mordant to this solution to render the acid dye nonwandering. For most purposes it is desirable to add agents to harden the colloidal binder material so that the light-screening layer will remain intact in the photographic element during and following the processing operation. The pH of the coating solution is adjusted when necessary to a level that is compatible with the lightsensitive emulsion layed by the usual methods.
The proportions of dye, colloidal binder, mordant, hardener, coating aid used in making my light-screening layers may be varied over wide ranges and will depend upon the specific requirements of the photographic element being produced. The methods used to determine the optimum composition are well known in the art and need not be described here.
The light-sensitive layer or layers and the light-screening layer or layers of the photographic elements may be coated on any suitable support material used in photography such as cellulose nitrate, cellulose acetate, synthetic resin, paper, etc.
Hydrophilic colloidal materials used as binders include collodion, gum arabic, cellulose ester derivatives such as alkyl esters of carboxylated cellulose, hydroxy ethyl cellulose, carboxy methyl hydroxy ethyl cellulose, synthetic resins, such as the amphoteric copolymers described by Clavier et al. in US. Patent 2,949,442, issued Aug. 16, 1960, polyvinyl alcohol, and others well known in the art. The above-mentioned amphoteric copolymers are made by polymerizing the monomer having the formula:
OHz=CR OOH wherein R represents an atom of hydrogen or a methyl group, and a salt of a compound having the general formula:
wherein R has the above-mentioned meaning, such as an allylamine salt. These monomers can further by polymerized with a third unsaturated monomer in an amount of to 20% of the total monomer used, such as an ethylene monomer that is copolymerizable with the two principal monomers. The third monomer may contain neither a basic group nor an acid group and may, for example, be vinyl acetate, vinyl chloride, acrylonitrile, methacrylonitrile, styrene, acrylates, methacrylates, acrylamide, methacrylamide, etc. Examples of these polymeric gelatin substitutes are copolymers of allylamine and methacrylic acid; copolymers of allylamine, acrylic acid and acrylamide; hydrolyzed copolymers of allylamine, methacrylic acid and vinyl acetate; copolymers of allylamine, acrylic acid and styrene; the copolymer of allylamine, methacrylic acid and acrylonitrile, etc.
My dyes are generally added to the water-permeable colloidal binder in water solution. In some instances it may be advantageous to form an alkali metal salt of the dye by dissolving the dye in a dilute aqueous alkali metal carbonate solution, for example. Usually a coating aid, such as saponin, is added to the dyed colloidal suspension before coating it as a layer on the photographic element. The dyes are advantageously mordanted with a suitable basic mordant added to the colloidal suspension before coating.
Basic mordants that may be used include the basic mordants described by Minsk in- U.S. 2,882,156, issued Apr. 14, 1959, prepared by condensing a polyvinyl-0x0- compound such as a polyacrolein, a poly- -methylacrolein, a polyvinyl alkyl ketone, such as polyvinyl methyl ketone, polyvinyl ethyl ketone, polyvinyl propyl ketone, polyvinyl butyl ketone, etc., or certain copolymers containing acrolein, methacrolein, or said vinyl alkyl ketone components, for example, 1 to 1 molar ratio copolymers of these components with styrene or alkyl methacrylates wherein the alkyl group contains from 1 to 4 carbon atoms, such as methyl, ethyl, propyl, or butyl methacrylates in the proportions from about .25 to 5 parts by Weight of the said polymeric oxo-compound with one part by weight of an aminoguanidine compound such as aminoguanidine bicarbonate, aminoguanidine acetate, aminoguanidine butyrate, etc., the reaction products of polyvinylsulfonates with C-aminopyridines of Reynolds et al., US. 2,768,078, issued Oct. 23, 1956, prepared by reacting alkyl and aryl polyvinyl sulfonates prepared as described in our patents, US. 2,531,468 and US. 2,531,469, both dated Nov. 28, 1950, under controlled conditions with C-aminopyridines or alkyl group substituted C-aminopyridines such as Z-aminopyridine, 4-aminopyridine, the aminopicolines such as 2-amino-3-methylpyridine, 2-amino-4-methylpyridine, 2-amino 5 methylpyridine, 2-amino-6-methylpyridine and corresponding 4-aminomethyl derivatives which react in this reaction in exactly the same way, 2-amino-6-ethylpyridine, 2-amino- 6-butylpyridine, 2-amino-6-amylpyridine, etc., the various aminolutidines such as, for example, 4-amino-2, 6-dimethylpyridine and the various aminocollidines such as, for example, 2-amino-3-ethyl-4-methylpyridine, etc., the dialkylaminoalkyl esters or dialkylaminoalkylamino amides, e.g., such as those described by Carroll et al., US. Patent 2,675,316, issued Apr. 13, 1954, prepared by reacting addition polymers containing carboxyl groups with a basic dialkylamino compound, for example, N-dialkyl amine ethyl esters of polymers or copolymers containing carboxyl groups; the addition type polymers containing periodically occurring quaternary groups of Sprague et al., US. 2,548,564, issued Apr. 10, 1951, including quaternary ammonium salts of vinyl substituted azines such as vinylpyridine and its homologs such as vinylquinoline, vinylacridine, and vinyl derivatives of other six-membered heterocyclic ring compounds containing hydrogen atoms. These addition polymers include 2-vinylpyridine polymer metho-p-toluenesulfonate, 4-vinylpyridine polymer methop-toluenesulfonate.
Hardening materials that may be used to advantage include such hardening agents as formaldehyde; a halogen-substituted aliphatic acid such as mucobromic acid as described in White, US. Patent 2,080,019, issued May 11, 1937; a compound having a plurality of acid anhydride groups such as 7,8-diphenylbicyclo(2,2,2)-7-octene- 2,3,5,6-tetra-carboxylic dianhydride, or a dicarboxylic or a disulfonic acid chloride such as terephthaloyl chloride or naphthalene-1,5-disulfonyl chloride as described in Allen and Carroll, US. Patents 2,725,294 and 2,725,295, both issued Nov. 29, 1955; a cyclic 1,2-diketone such as cyclopentane-l,2-dione as described in Allen and Byers, US. Patent 2,725,305, issued Nov. 29, 1955; a bisester of methane-sulfonic acid such as 1,2-di(methanesulfonoxy) ethane as described in Allen and Laakso, US. Patent 2,726,162, issued Dec. 6, 1955; 1,3-dihydroxymethylbenzimidazol-2-one as described in July, Kott and Pollak, US. Patent 2,732,316, issued I an. 24, 1956; a dialdehyde or a sodium bisulfite derivative thereof, the aldehyde groups of which are separated by 2-3 carbon atoms, such as ,B-methyl glutaraldehyde bis-sodium bisulfi-te as described in Allen and Burness, U.S. patent application Ser. No. 556,031, filed Dec. 29, 1955 and now abandoned; a bis-aziridine carboxamide such as trimethylene bis(1- aziridine carboxamide) as described in Allen and Webster, US. Patent 2,950,197, issued Aug. 23, 1960; or 2,-3-dihydroxydioxane as described in Jeffreys, U.S. Patent 2,870,013, isued Jan. 20, 1959.
The photographic element utilizing my light-screening layers have light-sensitive emulsion layers containing silver chloride, silver bromide, silver chlorobromide, silver iodide, silver bromoiodide, silver chlorobromoiodide, etc., as the light-sensitive material. Any lightsensitive silver halide emulsion layers may be used in these photographic elements. The silver halide emulsion may be sensitized by any of the sensitizers commonly used to produce the desired sensitometric characteristics.
My invention is further illustrated by the following examples describing the preparation of photographic elements containing my light-screening layers.
Example 20 An aqueous solution was made up which contained 4.54 g. of gelatin, .91 g. of polyta-methyl allyl-N-guanidylketimine), .153 g. of saponin, and .302 g. of bis(1-butyl-3- carboxymethylhexahydro 2,4,6 trioxo-S-pyrimidine) pentamethinoxonol to a total weight of g. at a pH of 6.1. This solution was coated on clear cellulose acetate film support at 4.6 g. per sq. ft. The resulting coating was overcoated with a fine-grained silver chlorobromide emulsion with panchromatic sensitization at 'a silver coverage at 257 milligrams of silver per sq. ft. A control was coated on clear support. These film samples were exposed in an intensity scale sensitometer, then developed for 6 minutes in a developer having the composition:
washed and dried.
The following table gives the halation latitude determined for these film samples as the increase over normal required in Log E exposure to give a halation density of 0.1 in the center of a 0.008 inch wide unexposed line.
Halation latitude Clear Blue Green Red lfiianrpanama"'" light-screening layer 1. 67 86 1. 74 2. 36
It can be seen that a very marked improvement resulted in the halation protection in the spectral region in which the dye absorbed light. For panchromatic halation protection a combination of my dye with another dye would be preferable to give the complete protection desired. On processing, no residual dye stain from the mordan-t-dye undercoat remained.
Example 21 0.5 gram of the dye of Example 2 was dissolved in 1% aqueous sodium carbonate and added to a 5% gelatin solution containing 0.5 gram polyvinylpyridinium methop-toluenesulfonate. The pH of the solution was adjusted to 6.5. This dyed gelatin solution was then coated on top of a sensitive silver halide emulsion of the kind used for X-ray photography at the rate of 25.5 mg. of dye per square foot. Two such coated materials were made from exactly the same emulsion and dyed gelatin solution and measurements made on the products are shown below as A and B, along with the measurements on the same prodnet but omitting the dye from the gelatin.
The three products were exposed, developed in the developer of Examples 17 for 4 minutes and fixed in a hypo solution of Example 17 in the usual way and washed. The dyed layers were completely bleached by this treatment. In the following table, the column headed Safety Factor, are relative measurements of the inverse of the effective sensitivity of the material when exposed to the red component of light transmitted by a Wratten 6B Darkroom Safelight, which contains an amber coloured filter transmitting light in the range of 570 to 700 m with a maximum transmission at a wavelength of 595 m The Safety Factor was calculated as the antilogarithm of the inverse of the logarithm of the speed measured as the exposure required to give a density of .02 above the fog density.
Thus the Safety Factor to Wratten 6B Safelight for the photographic element protected with my light-screening layer was about twice as high as it was for the control.
The accompanying drawing containing FIGS. 1, 2, and 3 still further illustrates my invention. FIGS. 1, 2, and 3 represent greatly enlarged cross-sectional views of light-sensitive photographic elements containing my light-absorbing water-permeable colloid layers.
FIG. 1 shows light-screening layer 10 consisting of gelatin containing bis(1-carboxymethylhexahydro-3-n-octyl- 2,4,6-trioxo-5-pyrimidine)pentamethinoxonol mordanted with polyvinylpyridinium metho-p-toluenesulfpnate coated over light-sensitive silver halide emulsion layer 11 which is coated on support 12.
FIG. 2 shows light-sensitive silver halide emulsion layer 13 coated over light-screening layer 14 consisting of gelatin containing bis(1-butyl-3-carboxymethylhexahydro- 2,4,6-trioxo-5-pyrimidine)pentamethinoxonol mordanted with ot-methyl allyl-N-guanidylketimine coated over support 15.
FIG. 3 shows light-sensitive silver halide emulsion layer 16 coated on support 17 bearing antihalation backing layer 18 consisting of gelating containing bis(1-butyl- 3 carboxymethylhexahydro 2,4,6-trioxo-5-pyrimidine) pentamethinoxonol mordanted with a-methyl vallyl-N- guanidylketimine.
The symmetrical, acid oxonol dyes of my invention are valuable for preparing light-screening layers for making light-sensitive photographic elements containing silver halide emulsion layers. The light-screening layers containing my dyes are used to advantage either over the lightsensitive silver halide emulsion layers, between the lightsensitive silver halide emulsion layer and the support, between two different light-sensitive layers, or as an antihalation backing layer. My dyes are characterized by having maximum light absorption at desirable wavelengths. They are further characterized by being readily mordanted with basic mordants so that they will not wander into light-sensitive silver halide emulsion layers coated directly in contact with them and yet they are readily bleached in the light-screening layer by conven tional processing solutions which contain sodium sulfite. Furthermore, my dyes are characterized by having very good stability at the pH of most sensitive silver halide emulsions (about 6.3) and have little or no undesirable effect on the sensitivity of the silver halide emulsion layer even when they are used in direct contact with them.
The invention has been described in detail with parti cular reference to preferred embodiments thereof but it will be understood that variations and modifications can be etfected within the spirit and scope of the invention as described hereinabove and as defined in the appended claims.
I claim:
1. A novel light-sensitive photographic element comprising at least one layer containing a sensitive silver halide emulsion and at least one layer containing a dye having the formula:
wherein Z represents the nonmetallic atoms necessary to complete a 1-carboxyalkyl-3-hydrocarbon substituted hexahydro-2,4,6-trioxo-5-pyrimidine nucleus and n is an integer of from 1 to 3.
2. A novel light-sensitive photographic element comprising at least one layer containing a sensitive silver halide emulsion and at least one layer containing the dye from 1 t0 8 carbon atoms and an aryl group; and n is having the formula: an integer from 1 to 3.
R1 o OH R1 1 1. No references clted.
5 0:0 C=CH(0H=CH)n-1 C\ NORMAN G. TORCHIN, Primary Examiner.
1 R. H. SMITH, Assistant Examiner. R2 0 (i R3 US. Cl. X.R.
wherein R is a carboxymethyl group; R is a member 10 selected from the class consisting of an alkyl group having 260-2402 PEI-1050 Patent No.
Inventor(s) It is certified that error appears in the above-identified patent UNITED STATES PATENT OFFICE Dated Joseph Bailey 22 April and that said Letters Patent are hereby corrected as shown below:
a.- oxonol nun-l.
Column 1, line 47, "on" should be or In the application, see page 2, line 2.
Column 1, line 69, "oxonal" should be Column 3, Example 1, lines 25-30, last part of the formula, HO (|3H .C0OH
N -c/ co F C H HO CH .COOH
I I 2 GN -C CO In the application, see page 2, line 22.
should be In the application, see page 6, formula of Example 1.
90-1050 UNITED STATES PATENT OFFICE m CERTIFICATE OF CORRECTION Patent No. a 3 'O,051. Dated 22 April 1-969 Inventor(s) eph Bailey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3, Example 2, approximately lines l-7-53, last part of formula,
" OH CH2.CO0H should be I I N -e \GO HO CH .COOH
2 I /C---N -C \GO I s u In the application, see page 6, formula of Example 2.
UNITED STATES PATENT OFFICE (569) CERTIFICATE OF CORRECTION Patent No. J sQ Dated 22 April 1.969
Inventor(s) Joseph Bailey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column line L, after "80" insert In the application, see page 7, Example 3, fourth line under the formula.
Column Example 7, approximately lines 6 +-7l, last part of formula,
HO CH2.GOOH H should be I I --N 43 0 0R -N I CL+H9 H0 CH2.C0OH
I I c--- N oC--N I CLH9 In the application, see page 9, formula of Example 7.
2 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,440,051. Dated 22 April 1969 Inventor(s) ph Bailey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 5, Example 9, line 32, 3--octylbarbituric" should be 3-n-octylbarbituric In the application, see page 10, Example 9, first line under formula.
Column 9, line 22, "by" should/ be be In the application, see page 18, line l3 from the bottom of the page. Column 10, line 37, "Kott" should be Knott In the application, see page 21, line 10.
Column 12, line 12, "metho-p-toluenesulfpnate" should be metho-p--toluenesulfonate In the application, see page 24, line 5 from the bottom of the page.
Column 12, line 23, gelating" should be gelatin In the application, see page 25, line 5.
Signed and sealed this 18th day of May 1971 (SEAL) Attest:
EDWARD M. FLETCHER,JR. WILLIAM E SCHUYLER, JR. Attestlng Officer Commissoner of Patents

Claims (1)

1. A NOVEL LIGHT-SENSITIVE PHOTOGRAPHIC ELEMENT COMPRISING AT LEAST ONE LAYER CONTAINING A SENSITIVE SILVER HALIDE EMULSION AND AT LEAST ONE LAYER CONTAINING A DYE HAVING THE FORMULA:
US478003A 1960-04-14 1965-06-25 Oxonol dyes for light filtering layers in photographic elements Expired - Lifetime US3440051A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB13379/60A GB933466A (en) 1960-04-14 1960-04-14 Improvements in dyes and their use in photography

Publications (1)

Publication Number Publication Date
US3440051A true US3440051A (en) 1969-04-22

Family

ID=10021891

Family Applications (2)

Application Number Title Priority Date Filing Date
US98709A Expired - Lifetime US3247127A (en) 1960-04-14 1961-03-27 Light-absorbing water-permeable colloid layer containing an oxonol dye
US478003A Expired - Lifetime US3440051A (en) 1960-04-14 1965-06-25 Oxonol dyes for light filtering layers in photographic elements

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US98709A Expired - Lifetime US3247127A (en) 1960-04-14 1961-03-27 Light-absorbing water-permeable colloid layer containing an oxonol dye

Country Status (1)

Country Link
US (2) US3247127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653905A (en) * 1968-05-21 1972-04-04 Agfa Gevaert Nv Oxonol dyes in filter and anti-halation layers
US3778273A (en) * 1971-06-30 1973-12-11 Agfa Gevaert Ag Photographic material
EP0269227A2 (en) * 1986-10-07 1988-06-01 Konica Corporation Method for common development processing of two kinds of light-sensitive silver halide photographic material
US5922523A (en) * 1995-11-30 1999-07-13 Eastman Kodak Company Filter dyes for photographic elements
US6183944B1 (en) 1995-11-30 2001-02-06 Eastman Kodak Company Aggregated dyes for radiation-sensitive elements

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097916A (en) * 1965-10-19 1968-01-03 Kodak Ltd Photographic materials
US3480436A (en) * 1966-08-29 1969-11-25 Eastman Kodak Co Antihalation compositions containing pentamethine oxonol dyes in aromatic alcohols
US3652284A (en) * 1968-11-04 1972-03-28 Eastman Kodak Co Photographic silver halide emulsion containing a methine dye
JPS52111618A (en) * 1976-03-16 1977-09-19 Hitachi Kiden Kogyo Kk Induction motor controller
JPS5949537A (en) * 1982-09-14 1984-03-22 Konishiroku Photo Ind Co Ltd Method for processing silver halide photosensitive material
US5139930A (en) * 1984-04-20 1992-08-18 Konishiroku Photo Industry Co., Ltd. Silver halide photographic light-sensitive material
JPS61148448A (en) * 1984-12-21 1986-07-07 Konishiroku Photo Ind Co Ltd Treatment of silver halide color photographic sensitive material
JPS61170742A (en) * 1985-01-24 1986-08-01 Konishiroku Photo Ind Co Ltd Method for processing silver halide color photographic sensitive material
US4725529A (en) 1985-04-30 1988-02-16 Konishiroku Photo Industry Co., Ltd. Developing inhibitor arrangment in light-sensitive silver halide color photographic materials
AU590563B2 (en) 1985-05-16 1989-11-09 Konishiroku Photo Industry Co., Ltd. Method for color-developing a silver halide color photographic light-sensitive material
US5354646A (en) * 1986-03-26 1994-10-11 Konishiroku Photo Industry Co., Ltd. Method capable of rapidly processing a silver halide color photographic light-sensitive material
EP0252550B1 (en) * 1986-07-08 1990-03-07 Agfa-Gevaert N.V. Colour photographic motion picture projection film element
EP0313051B1 (en) 1987-10-20 1996-06-12 Fuji Photo Film Co., Ltd. Silver halide photographic material
US5035986A (en) * 1989-01-30 1991-07-30 Fuji Photo Film Co., Ltd. Silver halide color photographic material
JPH04296747A (en) * 1991-03-26 1992-10-21 Konica Corp Silver halide photographic sensitive material
US5314796A (en) * 1992-04-02 1994-05-24 Konica Corporation Silver halide color photographic light sensitive material
JP3124663B2 (en) * 1993-03-24 2001-01-15 富士写真フイルム株式会社 Silver halide photographic materials
US5451494A (en) * 1994-04-28 1995-09-19 Eastman Kodak Company Photographic elements containing acyl substituted oxonol dyes
JP3238005B2 (en) * 1994-06-24 2001-12-10 三菱製紙株式会社 Silver halide photographic materials
US5928849A (en) * 1996-07-31 1999-07-27 Eastman Kodak Company Black and white photographic element
US5965333A (en) * 1998-03-10 1999-10-12 Eastman Kodak Company Thermal recording element
CA2362085A1 (en) * 1999-02-04 2000-08-10 Adnan M. M. Mjalli Method of synthesizing barbituric acid derivatives and their use for the synthesis of chemical libraries
EP1035428A3 (en) 1999-03-02 2005-07-27 Fuji Photo Film Co., Ltd. Optical logic device and optical memory device
JP4137771B2 (en) 2002-11-29 2008-08-20 富士フイルム株式会社 Optical information recording medium and novel oxonol compound
US8012383B2 (en) * 2002-12-12 2011-09-06 Sumitomo Chemical Company, Limited Method for producing polarizing film
CN101166794A (en) 2005-11-11 2008-04-23 富士胶片株式会社 Cationic compound, dye compound, method for using the same and optical information recording medium
WO2007114196A1 (en) 2006-03-28 2007-10-11 Fujifilm Corporation Conductive film, method for producing same, and light-transmitting electromagnetic shielding film
US8513878B2 (en) 2006-09-28 2013-08-20 Fujifilm Corporation Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode
JP5207728B2 (en) 2006-12-21 2013-06-12 富士フイルム株式会社 Conductive film and manufacturing method thereof
JP5588597B2 (en) 2007-03-23 2014-09-10 富士フイルム株式会社 Manufacturing method and manufacturing apparatus of conductive material
EP2009977A3 (en) 2007-05-09 2011-04-27 FUJIFILM Corporation Electromagnetic shielding film and optical filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE434433A (en) * 1938-05-19
NL60064C (en) * 1941-05-22
US2534654A (en) * 1946-01-11 1950-12-19 Polaroid Corp Ultraviolet absorbing filter
US2533472A (en) * 1947-01-17 1950-12-12 Eastman Kodak Co Unsymmetrical oxonol filter and antihalation dyes
US2614940A (en) * 1948-12-31 1952-10-21 Gen Aniline & Film Corp Ultraviolet light absorbing film
US2533206A (en) * 1949-02-24 1950-12-12 Eastman Kodak Co Process for preparing oxonol dyes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653905A (en) * 1968-05-21 1972-04-04 Agfa Gevaert Nv Oxonol dyes in filter and anti-halation layers
US3778273A (en) * 1971-06-30 1973-12-11 Agfa Gevaert Ag Photographic material
EP0269227A2 (en) * 1986-10-07 1988-06-01 Konica Corporation Method for common development processing of two kinds of light-sensitive silver halide photographic material
EP0269227A3 (en) * 1986-10-07 1989-09-13 Konishiroku Photo Industry Co. Ltd. Method for common development processing of two kinds of light-sensitive silver halide photographic material
US5922523A (en) * 1995-11-30 1999-07-13 Eastman Kodak Company Filter dyes for photographic elements
US6183944B1 (en) 1995-11-30 2001-02-06 Eastman Kodak Company Aggregated dyes for radiation-sensitive elements
US6291149B1 (en) 1995-11-30 2001-09-18 Eastman Kodak Company Aggregated dyes for radiation-sensitive elements
US6300046B1 (en) 1995-11-30 2001-10-09 Eastman Kodak Company Aggregated dyes for radiation-sensitive elements
US6306567B1 (en) 1995-11-30 2001-10-23 Eastman Kodak Company Aggregated dyes for radiation-sensitive elements
US6342339B2 (en) 1995-11-30 2002-01-29 Eastman Kodak Company Aggregated dyes for radiation-sensitive elements

Also Published As

Publication number Publication date
US3247127A (en) 1966-04-19

Similar Documents

Publication Publication Date Title
US3440051A (en) Oxonol dyes for light filtering layers in photographic elements
US3282699A (en) Photographic elements containing bleachable mordanted dye layers
US3761270A (en) Photographic element composition and process
US3615432A (en) Energy-sensitive systems
US3312550A (en) Processing photographic elements containing developing agent
US3547638A (en) N,n-disubstituted amino-methylthiocarboxylic acids and use thereof as antifoggants in photographic emulsions
US2719086A (en) Photographic element
US2816028A (en) Polymeric gentisamide antistain agents for color photography
US3364028A (en) Photographic material containing yellow fog-preventing agents
US3038805A (en) Non-polymeric open-chain sensitizers
US3629274A (en) Merocyanine dyes and photographic materials prepared therewith
GB1560378A (en) Dispersion of photographic additvies
US3455693A (en) Mordants for use in dyed filter layers
US3266897A (en) Antifoggant agents for photography
US3260601A (en) Dyes for photographic filter and antihalation layers
US4446216A (en) Photographic material
US3791830A (en) Silver halide photographic element containing a reaction product of a heterocyclic mercaptan and a chloroformic acid ester as antifog agent
US3468883A (en) Oxonol dyes for light filtering layers in photographic elements
US3684729A (en) Brightener compositions
US3850638A (en) Benzimidazole nucleating agents
US3671255A (en) Silver halide emulsion fog inhibited with quaternary ammonium,triazole and tetrazaindene compounds
US3398145A (en) Dyes for photographic filter and antihalation layers
US3094418A (en) Silver halide meulsions containing cationic oxonol and benzylidene dyes
US3575993A (en) Certain phenacyl pyridinium compounds
US3449122A (en) Photographic elements having silver halide emulsion layers coated adjacent to mordant-dye layers