US3438719A - Spiral ribbon gas burner - Google Patents

Spiral ribbon gas burner Download PDF

Info

Publication number
US3438719A
US3438719A US587840A US3438719DA US3438719A US 3438719 A US3438719 A US 3438719A US 587840 A US587840 A US 587840A US 3438719D A US3438719D A US 3438719DA US 3438719 A US3438719 A US 3438719A
Authority
US
United States
Prior art keywords
burner
boiler
disc
ribbon
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US587840A
Inventor
Frank Gething
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aqua Chem Inc
Cleaver Brooks Co
Coca Cola Co
Original Assignee
Cleaver Brooks Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cleaver Brooks Co filed Critical Cleaver Brooks Co
Application granted granted Critical
Publication of US3438719A publication Critical patent/US3438719A/en
Assigned to COCA-COLA COMPANY THE reassignment COCA-COLA COMPANY THE MERGER (SEE DOCUMENT FOR DETAILS). DELAWARE MAY 8,1970 Assignors: AQUA-CHEM,INC
Assigned to AQUA-CHEM, INC., A CORP. OF DE reassignment AQUA-CHEM, INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AQUA-CHEM, INC., A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • F23D14/583Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration of elongated shape, e.g. slits
    • F23D14/586Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration of elongated shape, e.g. slits formed by a set of sheets, strips, ribbons or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • F23D14/04Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
    • F23D14/10Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner with elongated tubular burner head

Definitions

  • a burner assembly for use in a tire tube boiler including at least one pipe adapted to receive a combustible mixture therein, with a plurality of spaced generally circular openings in the pipe each having a cylindrical wall around the opening with a burner disc secured within each wall.
  • Each disc is defined by a single length of spirally wound ribbon burner element, with spaced corrugations in each element cooperating with non-corrugated portions to form outlet openings of small cross sectional area.
  • Diametrically extending -pins positively retain each disc within its respective wall, and also hold adjacent convolutions of each disc against movement relative to one another.
  • This invention relates in general to an improved burner construction, and more particularly to a burner construction for use in a fire tube boiler.
  • the general purpose of the present invention is to provide an improved burner construction for a fire tube boiler which will eliminate the flashback phenomenon during intermediate and low firing rates, so that the tiring rate of the boiler can be generally universally modulated.
  • An object of the invention is to provide an improved burner c-onstruction for a fire tube boiler which will provide uniformity of firing throughout the boiler, so that there will be uniform heat transfer to the substance being heated.
  • Another object of the invention is to provide a burner for a fire tube boiler having a configuration such that localized flames of high capacity are provided, which can be spaced as desired.
  • a further object of the invention is to provide an improved burner header construction which enables individual burners to light adjacent burners without the flame impinging upon the tube sheet ligaments between the burners.
  • Still another object of the invention is to provide a burner construction as described in the preceding paragraph with ame deflector means arranged to space the burners a desired distance from the tube sheet, thereby giving uniform spacing between each of the burners and the ends of the fire tubes.
  • a still further object of the invention is to arrange the flame deflector means of a burner as described above, so that it will be cooled by the water within the boiler via the engagement of the flame deflector means with the tube sheet.
  • Still another object of the invention is to provide a plurality of rows of burner headers ⁇ arranged such that a single pilot burner at one end of the rows can ignite each of the burners.
  • FIG. l is a perspective view of a boiler having thel burner means of the present invention incorporated therein, with certain portions of the boiler being broken away for clarity of illustration;
  • FIG. 2 is a broken, front view of a burner header
  • FIG. 3 is an enlarged cross sectional view taken generally along line 3 3 of FIG. 2;
  • FIG. 4 is an enlarged cross sectional view taken generally along line 4 4 of FIG. 2;
  • FIG. 5 is an enlarged perspective view of a ribbon burner element
  • FIG. 6 is a perspective view of the means for securing one end of the ribbon burner element.
  • a fire tube boiler is designated in its entirety by reference numeral 10 in FIG. l, and includes a generally cylindrical shell 11 defining a heat exchange chamber 12 therewithin.
  • a burner assembly 16 is provided at one end of boiler 10 outwardly of tube sheet 15, and burner assembly 16 is preferably housed within a cover box 17 that may be hingedly connected to the shell 11 and sealed thereto by a gasket when closed, so that the burner assembly is completely en-closed.
  • Burner assembly 16 includes a plurality of horizontally extending burner headers 18, each of which is provided with a plurality of horizontally ⁇ spaced burners for providing a flame Within each of the tubes 13.
  • the spent combustion gases pass from right to left, as viewed in FIG. 1, through the tubes 13 in a single pass through the heat exchange chamber 12, and the exhaust gas passes outwardly of the boiler 10 from a stack 19 communicating with an exhaust chamber defined between tube sheet 14 and an inclined baffle plate 20.
  • Air for combustion is drawn inwardly of the boiler shell 11 by a fan 21 that is driven by a motor M, and the air is forced through primary conduits 22 and 23 and mixed with gas from supply line 25 in Venturi assemblies 26 at opposite sides of the boiler.
  • the gas-air mixture is conveyed through supply manifolds 27 and 28 at opposite sides of the boiler into the headers 18, and secondary air is forced through a conduit 24 by fan 21 into the plenum chamber defined behind the burner assembly 16 and the cover 17.
  • Supports S extend upwardly from pipes 22, 23 and 27 to the boiler shell 11; so that the pipes serve as supports for the boiler shell, as well as to convey the gas-air mixture to the burner assembly.
  • Linkage operated damper means D is provided in the air lines, and as the amount of air is increased, the amount of gas drawn in increases proportionately to give a proper combustible mixture in the burner assembly 16. While gasair supplies are illustrated in FIG. 1 at opposite sides of the burner assembly 16, it will be apparent from the following description that the mixture may be provided at only one side of the assembly, if desired.
  • header construction 18 illustrated in detail in FIGS. 2-4 is usable in a structure wherein only a single supply manifold 28 is provided, in that the header 18 is provided with an elbow connector 32 at one end for connection with the manifold 28, and a plate 31 that closes the opposite end of the header.
  • the headers 18 would be provided with elbow connectors 32 at opposite ends thereof connected with respective manifolds 28.
  • headers 18 are generally cylindrical tubes, and spaced circular openings 33 are provided in one side thereof, with an upright wall 34 extending substantially peripherally around each opening 33.
  • Elongate slots 35 connect adjacent openings 33, and upstanding walls 36 are provided at opposite sides of each slot 35.
  • Headers 18 are preferably formed by machining an elongate continuous slot in the side wall of the header, and then drawing inserts upwardly from within the header to form the circular openings and the upstanding walls therearound.
  • Burner discs 37 are provided in each opening 33, and each burner disc 37 is formed of a single length of ribbon type of burner element, such as that shown at 38 in FIG. 5.
  • the ribbon element 38 is preferably formed of stainless steel, although galvanized steel or even brass would be suitable, and the ribbon element is defined by a plurality of lengths of material 39 connected by co1'- rugations 40.
  • Each disc 37 includes a pin 41 at the center thereof, and pins 41 have a fiat surface 42 at one side thereof to which the end of ribbon element 38 is attached, as by spot welding.
  • the ribbon element 38 is then tightly wound about pin 41 in spiral fashion, and the corrugations cooperate with the lengths of material 39 on adjacent convolutions to define relatively small outlet openings ⁇ 43 therebetween.
  • burner discs are inserted within each opening 33 in header 18, and a hole is formed diametrically through each disc 37, including ribbon element 38, center pin 41 and side wall 34.
  • a pin 44 is then inserted through each hole to position and retain the discs 37 on the headers 18, and the outer ends of pin 44 are welded at 45 to the side wall 34.
  • Straight ribbon inserts 46 are provided in each of the slots 35, and inserts 46 are made by sandwiching straight lengths of ribbon elements 38 between fiat side walls 47, forming a hole through inserts 46 and the side walls 36, and inserting a pin 48 through above described hole.
  • the outer ends of pin 48 may be spot welded at ⁇ 49 to the wall 36.
  • Flame deflectors 50 of inverted U-shaped configuration, are then placed over the inserts ⁇ 46 with the legs 51 and 52 of flame deflectors 50 being welded to the walls 36 at 53. Flame defiectors 50 are substantially the same length as inserts 46, and the bight portion of the fiame deflectors provides a flat outer surface S4.
  • each header 18 When the discs 37, inserts 46, and flame deflectors have been assembled to each header 18, the headers are then assembled to the manifolds 28 to form the burner assembly 16.
  • the burner assembly 16 is then positioned adjacent the tube sheet 15, and as is evident from FIG. 4, the outer surfaces 54 of fiame defiectors 50 abut against the outer surface of the tube sheet 15. This enables the burner discs 37 to be spaced an appropriate amount from the ends of tubes 13, as is evident from FIG. 3, it being understood that each burner disc 37 is positioned in longitudinal alignment with one tube 13.
  • a single, vertically aligned pilot sandwich burner (not shown) may be positioned forwardly of the outermost disc 37 in each header 18 to impinge upon the gasair mixture issuing therefrom to ignite the same.
  • each burner disc 37 will be directed longitudinally into its associated tube 13, and the gasair mixture supporting the fiame will pass outwardly of the disc 37 through the small openings 43 at high velocity, so as to obviate the possibility of flashback in header 18 or manifold 28.
  • the gas-air mixture will also pass through the small openings formed between the sandwiched layers of the inserts 46, and the gas issuing therefrom will be lighted from an adjacent burner disc 37, so that each of the burner discs in a particular header is ignited from an adjacent insert 46.
  • Flame deflectors 50 are formed of a suitable heat resistant material, such as stainless steel, and effectively prevent the fiame issuing from the inserts 46 from impinging upon the tube sheet 15, while still allowing ignition from one disc 37 to an adjacent disc 37. Because of the relatively large, facial engagement between flame deflector 50 and tube sheet 15, the water or other substance within heat exchange chamber 12 will have a substantial cooling effect on the flame deflectors.
  • the capacity of each of the burner discs 37 is 125,000 B.t.u. per hour with a mixture pressure of 4" W.C.
  • the total input rate to the boiler is 12,500,000 B.t.u. per hour, and the uniformity of firing with such a boiler can be readily visualized.
  • a burner comprising: a pipe adapted to receive a combustible mixture therethrough; a plurality of spaced, generally circular openings in said pipe; a wall extending at least partially around each opening, each wall having diametrically opposite portions; a burner disc Within each wall and defined by a lsingle spirally wound length of ribbon burner element, said burner element having spaced corrugations throughout its length cooperating with noncorrugated burner element portions on adjacent convolutions to form outlet openings of small cross sectional area for said combustible mixture; means for positively retaining each disc within its respective wall and for holding the convolutions of each burner element against movement relative to one another including a diametrically extending pin that impales the wall portions and burner element convolutions associated with each opening Ain said pipe; means for firing each of said discs from an adjacent disc, said means including slots formed in said pipe between adjacent openings and having positioned in each slot an insert defined -by a plurality of straight lengths of ribbon burner element; and flame deectors mounted on said pipe
  • each disc includes a pin at the center thereof having one end of the ribbon burner element secured thereto.
  • each pin has a fiat surface on one 4side thereof, and the end of each ribbon burner element is secured to a pin at the fiat surface thereof.

Description

April 15, ,1969 F, GETH|NG 3,438,7119
SPIRAL RIBBON GAS `BURER Filed oct.` 19, 1966 INVENTOR AT TO RN EYS.
United States Patent Ofi ice 3,438,719 Patented Apr. l5, 1969 U-S. Cl. 431-286 6 Claims ABSTRACT OF THE DISCLOSURE A burner assembly for use in a tire tube boiler including at least one pipe adapted to receive a combustible mixture therein, with a plurality of spaced generally circular openings in the pipe each having a cylindrical wall around the opening with a burner disc secured within each wall. Each disc is defined by a single length of spirally wound ribbon burner element, with spaced corrugations in each element cooperating with non-corrugated portions to form outlet openings of small cross sectional area. Diametrically extending -pins positively retain each disc within its respective wall, and also hold adjacent convolutions of each disc against movement relative to one another.
This invention relates in general to an improved burner construction, and more particularly to a burner construction for use in a fire tube boiler.
In the past, it has been well known to provide a boiler construction wherein a plurality of fire tubes extend longitudinally through a heat exchange chamber containing water or the like. It has also been known to provide individual burners for each of the tire tubes adjacent one end thereof for igniting a gas-air mixture. While such boiler constructions have in general functioned satisfac torily, heretofore, it has not been possible to modulate the tiring rate -of the boiler; and consequently these boilers have strictly `been on-otf units. Modulation of fire tube boilers has heretofore not been possible, because of a flashback phenomenon, that is, a lighting of the combustible mixture in the burner manifolds and burner pipes, when the burner is turned down from a maximum rating to an intermediate or low rating. The flashback phenomenon occurs because burners that have been used in the past eject the combustible mixture through a relatively large hole, for example, 11/2 to 1" diameter; and with such a hole size, the velocity of mixture therethrough at intermediate or low firing rates is sufficiently slow that flashback occurs in the mixture feeding manifolds. Accordingly, the general purpose of the present invention is to provide an improved burner construction for a fire tube boiler which will eliminate the flashback phenomenon during intermediate and low firing rates, so that the tiring rate of the boiler can be generally universally modulated.
An object of the invention is to provide an improved burner c-onstruction for a fire tube boiler which will provide uniformity of firing throughout the boiler, so that there will be uniform heat transfer to the substance being heated.
Another object of the invention is to provide a burner for a fire tube boiler having a configuration such that localized flames of high capacity are provided, which can be spaced as desired.
A further object of the invention is to provide an improved burner header construction which enables individual burners to light adjacent burners without the flame impinging upon the tube sheet ligaments between the burners.
Still another object of the invention is to provide a burner construction as described in the preceding paragraph with ame deflector means arranged to space the burners a desired distance from the tube sheet, thereby giving uniform spacing between each of the burners and the ends of the fire tubes.
A still further object of the invention is to arrange the flame deflector means of a burner as described above, so that it will be cooled by the water within the boiler via the engagement of the flame deflector means with the tube sheet.
Still another object of the invention is to provide a plurality of rows of burner headers` arranged such that a single pilot burner at one end of the rows can ignite each of the burners.
These and other objects of the invention will hereinafter become `more fully apparent from the following descrip tion taken in connection With the annexed drawing wherein:
FIG. l is a perspective view of a boiler having thel burner means of the present invention incorporated therein, with certain portions of the boiler being broken away for clarity of illustration;
FIG. 2 is a broken, front view of a burner header;
FIG. 3 is an enlarged cross sectional view taken generally along line 3 3 of FIG. 2;
FIG. 4 is an enlarged cross sectional view taken generally along line 4 4 of FIG. 2;
FIG. 5 is an enlarged perspective view of a ribbon burner element; and
FIG. 6 is a perspective view of the means for securing one end of the ribbon burner element.
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiment illustrated. The scope of the invention will be pointed out in the appended claims.
Referring now to the drawing, wherein like reference characters designate like or corresponding parts throughout the several views, a fire tube boiler is designated in its entirety by reference numeral 10 in FIG. l, and includes a generally cylindrical shell 11 defining a heat exchange chamber 12 therewithin. A plurality of horizontally aligned rows of tubes 13, which are preferably dimpled, extend longitudinally from end to end of chamber 12, and the ends of tubes 13 are held Within tube sheets 14 and 15 at opposite ends of the shell 11. A burner assembly 16 is provided at one end of boiler 10 outwardly of tube sheet 15, and burner assembly 16 is preferably housed within a cover box 17 that may be hingedly connected to the shell 11 and sealed thereto by a gasket when closed, so that the burner assembly is completely en-closed. Burner assembly 16 includes a plurality of horizontally extending burner headers 18, each of which is provided with a plurality of horizontally `spaced burners for providing a flame Within each of the tubes 13. The spent combustion gases pass from right to left, as viewed in FIG. 1, through the tubes 13 in a single pass through the heat exchange chamber 12, and the exhaust gas passes outwardly of the boiler 10 from a stack 19 communicating with an exhaust chamber defined between tube sheet 14 and an inclined baffle plate 20.
Air for combustion is drawn inwardly of the boiler shell 11 by a fan 21 that is driven by a motor M, and the air is forced through primary conduits 22 and 23 and mixed with gas from supply line 25 in Venturi assemblies 26 at opposite sides of the boiler. The gas-air mixture is conveyed through supply manifolds 27 and 28 at opposite sides of the boiler into the headers 18, and secondary air is forced through a conduit 24 by fan 21 into the plenum chamber defined behind the burner assembly 16 and the cover 17. Supports S extend upwardly from pipes 22, 23 and 27 to the boiler shell 11; so that the pipes serve as supports for the boiler shell, as well as to convey the gas-air mixture to the burner assembly. Linkage operated damper means D is provided in the air lines, and as the amount of air is increased, the amount of gas drawn in increases proportionately to give a proper combustible mixture in the burner assembly 16. While gasair supplies are illustrated in FIG. 1 at opposite sides of the burner assembly 16, it will be apparent from the following description that the mixture may be provided at only one side of the assembly, if desired.
The header construction 18 illustrated in detail in FIGS. 2-4 is usable in a structure wherein only a single supply manifold 28 is provided, in that the header 18 is provided with an elbow connector 32 at one end for connection with the manifold 28, and a plate 31 that closes the opposite end of the header. However, in the arrangement such as that illustrated in FIG. l, wherein manifolds 28 are provided at opposite ends of the burner assembly 16, the headers 18 would be provided with elbow connectors 32 at opposite ends thereof connected with respective manifolds 28. As can be seen in FIGS. 3 and 4, headers 18 are generally cylindrical tubes, and spaced circular openings 33 are provided in one side thereof, with an upright wall 34 extending substantially peripherally around each opening 33. Elongate slots 35 connect adjacent openings 33, and upstanding walls 36 are provided at opposite sides of each slot 35. Headers 18 are preferably formed by machining an elongate continuous slot in the side wall of the header, and then drawing inserts upwardly from within the header to form the circular openings and the upstanding walls therearound.
Burner discs 37 are provided in each opening 33, and each burner disc 37 is formed of a single length of ribbon type of burner element, such as that shown at 38 in FIG. 5. The ribbon element 38 is preferably formed of stainless steel, although galvanized steel or even brass would be suitable, and the ribbon element is defined by a plurality of lengths of material 39 connected by co1'- rugations 40. Each disc 37 includes a pin 41 at the center thereof, and pins 41 have a fiat surface 42 at one side thereof to which the end of ribbon element 38 is attached, as by spot welding. The ribbon element 38 is then tightly wound about pin 41 in spiral fashion, and the corrugations cooperate with the lengths of material 39 on adjacent convolutions to define relatively small outlet openings `43 therebetween. The thus formed burner discs are inserted within each opening 33 in header 18, and a hole is formed diametrically through each disc 37, including ribbon element 38, center pin 41 and side wall 34. A pin 44 is then inserted through each hole to position and retain the discs 37 on the headers 18, and the outer ends of pin 44 are welded at 45 to the side wall 34.
Straight ribbon inserts 46 are provided in each of the slots 35, and inserts 46 are made by sandwiching straight lengths of ribbon elements 38 between fiat side walls 47, forming a hole through inserts 46 and the side walls 36, and inserting a pin 48 through above described hole. The outer ends of pin 48 may be spot welded at `49 to the wall 36. Flame deflectors 50, of inverted U-shaped configuration, are then placed over the inserts `46 with the legs 51 and 52 of flame deflectors 50 being welded to the walls 36 at 53. Flame defiectors 50 are substantially the same length as inserts 46, and the bight portion of the fiame deflectors provides a flat outer surface S4.
When the discs 37, inserts 46, and flame deflectors have been assembled to each header 18, the headers are then assembled to the manifolds 28 to form the burner assembly 16. The burner assembly 16 is then positioned adjacent the tube sheet 15, and as is evident from FIG. 4, the outer surfaces 54 of fiame defiectors 50 abut against the outer surface of the tube sheet 15. This enables the burner discs 37 to be spaced an appropriate amount from the ends of tubes 13, as is evident from FIG. 3, it being understood that each burner disc 37 is positioned in longitudinal alignment with one tube 13. A single, vertically aligned pilot sandwich burner (not shown) may be positioned forwardly of the outermost disc 37 in each header 18 to impinge upon the gasair mixture issuing therefrom to ignite the same. The liame issuing from each burner disc 37 will be directed longitudinally into its associated tube 13, and the gasair mixture supporting the fiame will pass outwardly of the disc 37 through the small openings 43 at high velocity, so as to obviate the possibility of flashback in header 18 or manifold 28. The gas-air mixture will also pass through the small openings formed between the sandwiched layers of the inserts 46, and the gas issuing therefrom will be lighted from an adjacent burner disc 37, so that each of the burner discs in a particular header is ignited from an adjacent insert 46. Flame deflectors 50 are formed of a suitable heat resistant material, such as stainless steel, and effectively prevent the fiame issuing from the inserts 46 from impinging upon the tube sheet 15, while still allowing ignition from one disc 37 to an adjacent disc 37. Because of the relatively large, facial engagement between flame deflector 50 and tube sheet 15, the water or other substance within heat exchange chamber 12 will have a substantial cooling effect on the flame deflectors.
In an exemplary embodiment of the invention, wherein the fire from disc 37 passes into a 21/2" boiler tube, the capacity of each of the burner discs 37 is 125,000 B.t.u. per hour with a mixture pressure of 4" W.C. In a boiler having one hundred boiler tubes 13, the total input rate to the boiler is 12,500,000 B.t.u. per hour, and the uniformity of firing with such a boiler can be readily visualized. Thus, it is submitted that the unique burner construction of the present invention fully achieves each of the objects of the invention.
I claim:
1. A burner comprising: a pipe adapted to receive a combustible mixture therethrough; a plurality of spaced, generally circular openings in said pipe; a wall extending at least partially around each opening, each wall having diametrically opposite portions; a burner disc Within each wall and defined by a lsingle spirally wound length of ribbon burner element, said burner element having spaced corrugations throughout its length cooperating with noncorrugated burner element portions on adjacent convolutions to form outlet openings of small cross sectional area for said combustible mixture; means for positively retaining each disc within its respective wall and for holding the convolutions of each burner element against movement relative to one another including a diametrically extending pin that impales the wall portions and burner element convolutions associated with each opening Ain said pipe; means for firing each of said discs from an adjacent disc, said means including slots formed in said pipe between adjacent openings and having positioned in each slot an insert defined -by a plurality of straight lengths of ribbon burner element; and flame deectors mounted on said pipe adjacent each of said slots to arrest the flame issuing from each insert.
2. A burner as set forth in claim 1 wherein each disc includes a pin at the center thereof having one end of the ribbon burner element secured thereto.
3. A burner as set forth in claim 2 wherein each pin has a fiat surface on one 4side thereof, and the end of each ribbon burner element is secured to a pin at the fiat surface thereof.
4. A burner as set forth in claim 2 wherein means are provided for positively securing said inserts to said pipe.
References Cited UNITED STATES PATENTS 2,420,599 5/1947 Jurs 48-192 2,059,360 11/1936 Keith 158--104 2,469,499 5/1949 Dresen 15s-.104
2,497,471 2/1950 Shulman 242-84.s 2,499,482 3/1950 Flynn 15s-1162 OTHER REFERENCES r 167,526 1/1951 Austria. d 982,696 1/1951. France. 1,037,897 5/1953 France.
FREDERICK L. MATIESON, JR., Primary Examiner. 10 HARRY B. RAMEY, Assistant Examiner.
U.S. Cl. X.R. 239-552
US587840A 1966-10-19 1966-10-19 Spiral ribbon gas burner Expired - Lifetime US3438719A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US58784066A 1966-10-19 1966-10-19

Publications (1)

Publication Number Publication Date
US3438719A true US3438719A (en) 1969-04-15

Family

ID=24351416

Family Applications (1)

Application Number Title Priority Date Filing Date
US587840A Expired - Lifetime US3438719A (en) 1966-10-19 1966-10-19 Spiral ribbon gas burner

Country Status (2)

Country Link
US (1) US3438719A (en)
GB (1) GB1148815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395230A (en) * 1980-10-24 1983-07-26 Abdul R. Ghafoori Ignition carry-over in multiple burner heating apparatus
US20140080079A1 (en) * 2011-05-26 2014-03-20 Tianyi LUO Device for use in burner and method for manufacturing the same
US20170343209A1 (en) * 2016-05-31 2017-11-30 Sellers Manufacturing Co. Burner and air supply assembly for horizontal immersion tube boilers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059360A (en) * 1935-11-19 1936-11-03 James Keith & Blackman Company Gas burner
US2420599A (en) * 1944-02-04 1947-05-13 Shand And Jurs Company Flame arrester
US2469499A (en) * 1945-09-07 1949-05-10 Rocky Mountain Gas Equipment C Gas burner
US2497471A (en) * 1947-09-10 1950-02-14 Nathan H Shillman Tape construction
US2499482A (en) * 1947-12-18 1950-03-07 John H Flynn Ribbon-type gas burner
FR982696A (en) * 1948-03-08 1951-06-13 Philips Nv Burners improvements
FR1037897A (en) * 1951-05-30 1953-09-23 Utilisation Ration Gaz Method and devices for stabilizing the flames of premix burners

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2059360A (en) * 1935-11-19 1936-11-03 James Keith & Blackman Company Gas burner
US2420599A (en) * 1944-02-04 1947-05-13 Shand And Jurs Company Flame arrester
US2469499A (en) * 1945-09-07 1949-05-10 Rocky Mountain Gas Equipment C Gas burner
US2497471A (en) * 1947-09-10 1950-02-14 Nathan H Shillman Tape construction
US2499482A (en) * 1947-12-18 1950-03-07 John H Flynn Ribbon-type gas burner
FR982696A (en) * 1948-03-08 1951-06-13 Philips Nv Burners improvements
FR1037897A (en) * 1951-05-30 1953-09-23 Utilisation Ration Gaz Method and devices for stabilizing the flames of premix burners

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395230A (en) * 1980-10-24 1983-07-26 Abdul R. Ghafoori Ignition carry-over in multiple burner heating apparatus
US20140080079A1 (en) * 2011-05-26 2014-03-20 Tianyi LUO Device for use in burner and method for manufacturing the same
US9625148B2 (en) * 2011-05-26 2017-04-18 Tianyi LUO Device for use in burner and method for manufacturing the same
US20170343209A1 (en) * 2016-05-31 2017-11-30 Sellers Manufacturing Co. Burner and air supply assembly for horizontal immersion tube boilers
US10619848B2 (en) * 2016-05-31 2020-04-14 Sellers Manufacturing Co. Burner and air supply assembly for horizontal immersion tube boilers
US11175034B2 (en) 2016-05-31 2021-11-16 Sellers Manufacturing Co. Burner and air supply assembly for horizontal immersion tube boilers

Also Published As

Publication number Publication date
GB1148815A (en) 1969-04-16

Similar Documents

Publication Publication Date Title
US3881863A (en) Dual fuel burner
US3267985A (en) Pulse combustion apparatus
US8186286B2 (en) Wood fired boiler
US4055152A (en) Gas boiler, particularly for central heating
US20050161036A1 (en) One shot heat exchanger burner
US6004129A (en) Burner housing and plenum configuration for gas-fired burners
US4111181A (en) Combustion air system
US3368604A (en) Combustion apparatus
US4904179A (en) Low NOx primary zone radiant screen device
CA2146805A1 (en) Pre-Mix Flame Type Burner
CN105934638A (en) Multi-cone fuel burner apparatus for multi-tube heat exchanger
US4544350A (en) Burner apparatus for simultaneously incinerating liquid, dry gas and wet gas streams
US3312269A (en) Infra-red radiant heater and grid therefor
MXPA96003116A (en) Inshot fuel burner nox reduction device with integral positioning support structure.
US3270967A (en) Gas burners
US3823704A (en) Power burner application to fin tube heat exchanger
US3438719A (en) Spiral ribbon gas burner
GB1343446A (en) Gas-fired heater means
US3315655A (en) Firing mechanism for multiple burner heating apparatus
KR20010022953A (en) Burner
US5318439A (en) Jet burner construction heating apparatus utilizing the jet burner construction and methods of making the same
US3529578A (en) Fire tube boiler with spiral ribbon burner
US3734065A (en) Fluid heater
US2752912A (en) Forced air flow air heating furnace
US3551085A (en) Burner for fluid fuels

Legal Events

Date Code Title Description
AS Assignment

Owner name: COCA-COLA COMPANY THE

Free format text: MERGER;ASSIGNOR:AQUA-CHEM,INC;REEL/FRAME:003953/0237

Effective date: 19700508

AS Assignment

Owner name: AQUA-CHEM, INC., 3707 NORTH RICHARDS ST. MILWAUKEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AQUA-CHEM, INC., A CORP. OF DE;REEL/FRAME:004087/0380

Effective date: 19821110