US3427572A - Capacitor-resistor construction - Google Patents

Capacitor-resistor construction Download PDF

Info

Publication number
US3427572A
US3427572A US534826A US3427572DA US3427572A US 3427572 A US3427572 A US 3427572A US 534826 A US534826 A US 534826A US 3427572D A US3427572D A US 3427572DA US 3427572 A US3427572 A US 3427572A
Authority
US
United States
Prior art keywords
capacitor
construction
resistor
lead
leads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US534826A
Inventor
Charles C Rayburn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US258449A external-priority patent/US3266121A/en
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Application granted granted Critical
Publication of US3427572A publication Critical patent/US3427572A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations

Definitions

  • a further object of this invention is to provide a convolutely rolled capacitor construction wherein the outer layers of the dielectric material used in the capacitors serve as the support surface for the resistor.
  • FIG. 1 is a semidiagrammatic circuit diagram of the construction shown in FIG. 2;
  • FIG. 2 is a partial sectional view showing a capacitorresistor construction
  • FIG. 3 is an enlarged fragmentary sectional view of a portion of FIG. 2;
  • FIG. 4 is a semidiagrammatic circuit diagram of the construction shown in FIG. 5;
  • FIG. 5 is a diagrammatic sectional view through a three foil and three lead wire capacitor-resistor construction which provides the circuit shown in FIG. 4;
  • FIG. 6 is a circuit diagram of the construction shown in FIG. 7;
  • FIG. 7 is a semidiagrammatic sectional view showing a modified form of construction to that shown in FIG. 5;
  • FIG. 8 is a semidiagrammatic circuit diagram of the construction shown in FIG. 9;
  • FIG. 9 is a view of an alternate form of construction of a capacitor-resistor for providing the circuit shown in FIG. 8;
  • FIG. 10 is a semidiagrammatic circuit diagram of the construction shown in FIG. 11;
  • FIG. 11 is a diagrammatic sectional view of an alternate embodiment of capacitor-resistor construction which is modified from the foregoing to provide the circuit of FIG. 10;
  • FIG. 12 is a circuit diagram of the construction shown in FIG. 13;
  • FIG. 13 is a semidiagrammatic sectional view of an alternate construction of capacitor-resistor to provide the circuit of FIG. 12;
  • FIG. 14 is a circuit diagram of the construction shown in FIG. 15;
  • FIG. 15 is a semidiagrammatic view of a capacitorresistor construction to provide the circuit shown in FIG. 14;
  • FIG. 16 is a circuit diagram of an alternate construction illustrating the circuit of the capacitor-resistor shown in FIG. 17;
  • FIG. 17 is a semidiagrammatic sectional view of a construction to provide the circuit of FIG. 16;
  • FIG. 18 is a circuit diagram of an alternate construction of capacitor-resistor shown in FIG. 19;
  • FIG. 19 is a semidiagrammatic view illustrating the construction to provide the circuit of FIG. 18;
  • FIG. 20 is a semidiagrammatic view of a method of mounting capacitor blanks on a piece of adhesive tape preliminary to the spraying of the other side thereof aS shown in FIG. 21;
  • FIG. 21 is a view, diagrammatic in nature, showing the mounting of the capacitor blanks on a drum for disposition of the resistor composition upon the capacitor blanks with a special spray gun;
  • FIG. 22 is a semidiagrammatic portrayal of an alternate method of spraying low resistance capacitor end spray material upon the ends of the capacitor to insure good conductive connection between the ends of the capacitor and the resistor material to be later applied;
  • FIG. 23 is a semidiagrammatic showing the assembly of the lead wires to a capacitor blank after it has been treated as shown in FIG. 21;
  • FIG. 24 is a view of a completed capacitor and resistor construction of the type manufactured by the technique shown in FIGS. 20 through 23.
  • the capacitor-resistor 30 is an integral single unitary component having a capacitor portion 32 and a resistor portion 34 with common terminal wires 36 and 38.
  • Wound capacitors 32 are normally fabricated from strips or tapes of conductive material such as a metal or a conductively coated dielectric, wound into a tight coil. In winding the capacitor coil or body, two or more conductive tapes 42 and 44, FIG. 9, are wound together with dielectric material 46 positioned between the conductive tapes to insulate them from each other. In forming most of the conventional capacitor coils, the conductive tapes or foils 42 and 44 are staggered so that the edge of one tape extends beyond one edge of the dielectric layer, while the opposite edge of the second tape extends beyond the second margin of the insulating layer.
  • two conductive tapes are wound in staggered arrangement with the intermeidate dielectric material positioned only between the overlapping portions of the two conductive tapes.
  • the wound capacitor coil thus has the exposed extending edges of a pair of conductive tapes forming the two ends of the coil. It is then common practice to secure a lead wire to each end of the coil form by the conductive tapes by soldering.
  • the capacitor coil constructions may be of a so-called conventional extended tin foil type of construction, an extended film construction wherein the plastic dielectric extends beyond the edge margins of the two foils 42 and 44, the metallized dielectric film type of capacitor constructions, and the sheared end constructions where the plasic dielectric and the electrode foils extend the same dimension.
  • various other dielectrics including but not limited to materials such as paper or the like may be used.
  • one exemplary form of construction utilizes thin tin foil for the electrode foils 42 and 44 which are staggered and uses a plasic, such as sold under the tradename Mylar, thin film 46 as the dielectric which spaces the foils 42 and 44 one from the other.
  • a plasic such as sold under the tradename Mylar
  • thin film 46 as the dielectric which spaces the foils 42 and 44 one from the other.
  • over-wraps 48 are merely extensions of the film 46 and provide mechanical protection to the capacitor coil during handling thereof and further provides a base for the resistor material 34 which is disposed directly thereon as shall be discussed.
  • the leads 36 are assembled to the capacitor coil by heating the lead wires such as 36 and 38, preferably by passing a heavy short duration current through a segment of the wire while forcing same inwardly of the end of the capacitor coil to melt and then fuse the plastic dielectric 46 around the lead wire to firmly bound the same into electrical connection with the foils adjacent the respective ends as shown at 50 in FIG. 3. Due to low melting point of the tin foil 42, the coil of foil makes a good electrical connection to the terminal wire 36 and the plastic when cooled provides very good mechanical strength to the construction. It will be noted that the lead wire 36 extends interiorly of the end of the capacitor coil only a distance suflicient to make a good electrical connection to the foil 42, but does not contact the other foil 44 as shown in FIG. 3. Of course, the obverse obtains relative to the lead wire 38 on the other end of the capacitor.
  • the leads may be crimped into desired configurations as shown in my co-pending applications filed on July 26, 1960, having Ser. Nos. 45,323 and 45,421, now Patents 3,056,939 and 3,162,721, respectively.
  • the crimping of the leads forms no basic part of the instant invention other than the lead crimping is compatible with the process and the article involved and thus, the attendant advantages spelled out in the aforediscussed applications will apply to the instant construction.
  • the lead wires 36 and 38 extend transversely to the axis of the capacitor coil, it is peculiarly easy to mount the capacitors to a support member by taping the lead wires to a bar for dipping purposes.
  • the exact manner of attaching the lead wires to a support member for dipping may be varied to suit, but one manner of so attaching is shown in my co-pending application Ser. No. 102,753, aforementioned.
  • the exact method of attaching for dipping purposes is no part of this invention, but as is shown in that application, the construction of the capacitors are peculiarly well adapted for automatic mounting the capacitors on a support member without human handling.
  • the capacitor-resistor construction shown in FIG. 2 is of the dipped variety with the resistor formation 34 extending completely around the entire capacitor body. As shown in FIG. 2, the particular construction of the capacitorresistor affords a very good dimensional uniformity.
  • the resistance R of the unit shown in FIG. 2 is found by the formula if d is the diameter of the cylindrical section. By controlling the number of outer Mylar over-wraps 48, the diameter d of the cylindrical setcion can be controlled to within very close tolerances and in commercial practice the dimensional variation of d can be controlled within 1%.
  • the resistivity p of the resistor material 34 and the thickness t of the formulation 34 across the effective length l of the resistor are a function of the formulation of the resistance material and the dipping conditions, each of which may be independently controlled.
  • the length I can be accurately controlled by the automatic machinery set forth in my co-pending application Ser. No. 102,753 aforementioned, since the effective length l is dependent on the distance between the two leads 36 and 38.
  • Resistor life stability is a direct function of the resistor layer temperature.
  • heat can conduct through the ends of the resistor layer 34 to the lead wires 36 and 38 which are efficiently coupled thermally to the extended foil ends 42 and 44 of the capacitor foils.
  • the large foil end contact at each end of the capacitor with the resistive layer 34 allows the heat to be coupled uniformly into the capacitor interior to prevent temperature gradients and the attendant non-uniform expansion of the capacitor and resistor sections.
  • the heat of the capacitor-resistor unit conducts directly through the protective outer coating 40 and finds an exceptionally large convective and radiating surface as compared to conventional resistors.
  • Another feature of the particular construction concerns the temperature compensating characteristics of the unit 30.
  • the temperature coefficient of capacitance of a Mylar capacitor is positive and linear to about 85 C. and a resistive formulation 34 can be varied and selected to be linear and of required positive temperature coefficient of resistance, it follows that a degree of temperature compensation of impedance is achieved. Although this may be accomplished with separate resistor and capacitor components in theory, the thermal coupling problem is very diflicult in practice so as to be sure that each component is at precisely the same temperature at the same time. Since the capacitor-resistor is an integral unit 30 in the instant construction and because of the thermal coupling aforementioned, the temperature compensation of impedance is completely compatible with the disclosed construction.
  • FIGS. 4 and 5 have may similar features to those aforediscussed and similar portions will be identified with similar reference numerals with the addition of the suffix a.
  • the construction shown in FIG. 5 is highly diagrammatic in form. More particularly, the unit 30a is a three foil capacitor construction with a third terminal wire 50 having the capacitor portion of the construction similar to that shown in FIG. 7 of my co-pending application entitled Wound Capacitor having Ser. No. 147,646, aforementioned.
  • the central lead wire 50 is heated and forced inwardly to engage the center foil 52 which cooperates in a capacitive sense with each of the outboard foils 44a and 42a which are respectively connected to the terminal wires 38a and 36a.
  • the center foil 52 may be shorter than the outboard foils so as to provide very low capacitive values or it may have the same number of effective turns as the respective outboard foils.
  • the dielectric material 46a between the respective electrode foils 44a, 42a and 52 is indicated by a blank space and the over-wrap layers of dielectric 48a is also indicated by a blank space. As will be apparent, from viewing FIG. 5, the circuit of FIG.
  • FIGS. 6 and 7- Still another embodiment of the invention is shown in FIGS. 6 and 7- and similar parts will be identfied with similar reference numerals with the addition of the suffix b.
  • This embodiment 30b is produced by varying the step e relating to dipping the capacitors in the resistive formulation 34, by dipping one end (the right hand end as shown in FIG. 7) in an insulating resin 62 so that the resistive formulation can not contact the right hand lead 38b.
  • the circuit shown in FIG. 6 is thus produced because the formulation 34b on the unit 30b is then dipped so that it extends only between leads 36b and 50b to produce a resistance 58b while the capacitive portions of the structure 5412 and 56b are obtained as explained relative to FIG. 5.
  • the construction shown in FIGS. 8 and 9 has many similarities to the foregoing and similar parts will be identified with similar reference numerals with the addition of the suffix c.
  • the capacitor-resistor 30c utilizes a capacitor coil body wound similarly to that discussed relative to FIGS. 1 through 3, i.e., a two foil construction.
  • the leads 38c and 360 are assembled in the standard manner aforediscussed.
  • the overwraps 48c thus serve as a base for support-ing the terminal wire 64 as well as to support the resistive formulation 34c and insulating resin 62c.
  • the resistive material 340 is applied su-bsequential to dipping the right hand end of the body, as shown in FIG. 9, in the insulating resinous material 620.
  • the resistive material 34c is applied to the left hand end of the capacitor indicated by the dotted lines 340, the circuit shown in FIG. 8 is provided.
  • the resistor and the capacitor portions 580 and 32c respectively have a common lead 36c and then have independent connections to other circuitry with the leads 64 and 380.
  • the location of the lead 64 may be varied to suit so as to vary the effective length of the resistive formulation 34c.
  • the capacitor-resistor construction 30d shown in FIGS. 10 and 11 has many similarities to the foregoing and similar parts will be identified with similar reference numerals with the addition of the suffix d.
  • the circuitry of FIG. is provided.
  • the resistor 34d extends between terminals 36d and 38d whereas two capacitances C1 and C2 with reference numbers 54d and 56d have a common lead 50d as well as the individual outboard leads 36d and 38 respectively.
  • FIGS. 13 and 14 has many similarities to the foregoing and similar parts will be identified with reference numerals with the addition of the suffix e.
  • the embodiment 30e shown in FIG. 13 differs from that shown in FIG. 5 in that the center foil 70 of a three electrode foil capacitor has an effective capacitive area with only foil 42e and the right hand foil 44a serves as a lead anchoring means for the terminal 382 and spacing member in the winding operation to maintain dimensional stability.
  • the foil 442 also serves to effectively connect the resistive material 342 to the terminal 38c and to give the thermal coupling to the interior as is required for efficacious results.
  • the center lead wire 502 contacts the offset center foil 70 and thus the capacitive relationship C1 with reference number 54a is established between terminals 36e and 502 whereas two discrete resistor portions 542 and 56s are formed.
  • the embodiment 30f shown in FIGS. 14 and 15 is substantially similar to the foregoing and similar parts will be identified by similar reference numerals with the addition of the suffix f.
  • the construction shown in FIG. 15 gives the circuit shown in FIG. 14 and has an initial construction substantially similar to that shown in FIG. 13 except that the center lead 50f is isolated from a resistive material by suitable insulating resin at 66 and 68f similarly to the isolation of the center lead shown in FIG. 11.
  • the capacitive relationship 54 is established between the leads 36 and 50 and the resistor 34f is between leads 36 and 381.
  • Embodiment g shown in FIGS. 16 and 17 is substantially similar to the foregoing and similar parts will be identified with similar reference numerals with the addition of the suffix g.
  • the embodiment 30g is similar to the embodiment shown in FIG. 13 except that the center lead 72 is snipped off close to the body of the unit 30g to give the circuit shown in FIG. 16. Only leads 36g and 38g serve as exterior connections for connection to other circuitry.
  • the embodiment shown in FIGS. 18 and 19 has many features similar to those aforediscussed and similar parts will be identified with similar reference numerals with the addition of the suffix It.
  • the embodiment 3012 has a coil capacitor base similar to that shown in FIGS. 2
  • the over-wrap portions of the dielectric films 4811 is made extra heavy.
  • the leads 36/1 and 3811 are applied to the ends of the capacitor foil as aforediscussed and the leads 76 and 78 are formed similarly to the lead 64 shown in FIG. 9 and are attached to the over-wrap layer 4811 as is the lead 64. However, in this construction, the lead 76 and 78 are spaced close to but not in electrical connection with leads 36h and 38/1 as shown in FIG. 19.
  • each end of the capacitor is dipped in an insulating resin 82 and 84 of a depth just sufficient to electrically isolate the leads 36/1 and 3811 from the resistive material which is applied into the intermediate portion of the capacitor body for electrical contact with the leads 76 and 78.
  • the electrical circuitry shown in FIG. 18 is thus provided by the construction shown in FIG. 19.
  • the capacitor blanks 86 shown in FIG. 20 and the tape 88 are approximately full size. It will be noted that the axis of the capacitor blanks 86 is perpendicular to the axis of the tape 88 and a belt of this tape 90, i.e., a discrete length dependent upon the size of the spraying drum may be loaded with a large number of capacitors in somewhat machine gun bullet fashion. Thus, for the spraying operation the temporary subassembly 90 of the capacitors loaded on tape is formed.
  • the back (non-adhesive) side of the tape 88 is disposed on a drum 92 in a spiral fashion as indicated in FIG. 21 with the tape 88 being disposed adjacent to the drum so that the exposed radially outward portion of the belt 90 discloses only the nonscreened portion of the capacitor blanks 86.
  • the drum 92 and the spray gun 94 are preferably of the type shown in US. Patent No. 2,977,928 of which I am a joint invetnor and assigned to the same assignee.
  • the spray gun 94 is supplied with a resistive formulation from a suitable supply 95 and the gun uniformly deposits the resistive material over an area encompassing slightly more than of the circumference of the coil. Since the capacitor coils 86 do not have the leads assembled thereto, it is possible on a tape, of some 280 feet in length, to get in the neighborhood of 10,000 to 15,000 capacitors loaded on the drum for a spraying operation.
  • the leads may be soldered to the extended foil without penetrating it to the depth of the Mylar edge.
  • the leads such as 106 and 108 may be applied by the techniques aforediscussed by offsetting them slightly from the center of the coil so that the lead wires 106 and 108 do not contact that part of the Mylar which is covered by the resin. Since the resistive material contacts the exposed edges of the foils at 109 and 111, there is a good conductive path for the resistance material. This poses problems in orientation of the individual blanks since they must be rotated from their orientation on the adhesive tape 88.
  • a third Way to prevent any resistance change when the leads are assembled, is to spray a very low resistance formulation on the ends by masking the center with a tape 100 shown in FIG. 22, the tape 100 is non-adhesive in character and is applied to the drum after the subassembly 90 is applied to the drum.
  • the width of the tape 100 effectively delineates the effective length of the resistive material 95 which is later applied.
  • the tape 100 is nonadhesive so that it may be stripped off without pulling the coil blanks 86 off of the tape 88.
  • the advantage of the low resistance spray material which preferably is a formulation which has a resistivity in the order of one to ten percent of the desired resistance formulation 95, is that if the low resistance formulation is disturbed or cracked when the leads are driven in against the Mylar coil, it has virtually no effect on the lead to lead resistance value.
  • the desired resistance formulation 95 although sprayed over the entire length of the capacitor at 110, is paralleled by the low resistance deposits on each end. The resistance value is then determined by the desired resistance formulation which is deposited between the areas of low resistance.
  • the low resistance material 102 that is sprayed on the end of the capacitor may consist of a thermal setting resin in solid form (epoxy) in a solvent vehicle (butyl Cellosolve) a liquid resin (epoxy) an inert filler such as talc or Cab-o-sil, a curing agent and various carbon types depending on the desired resistivity.
  • a thermal setting resin in solid form epoxy
  • a solvent vehicle butyl Cellosolve
  • epoxy an inert filler
  • talc or Cab-o-sil a curing agent
  • a plasticiser in the low resistance formulation prevents the resistance film from cracking, especially at the junction between the extended foil and the Mylar.
  • the plasticiser is not used in the desired resistance formulation, i.e., the material in the supply which provides the resistance value for the unit, since it contributes to aging or value drift over a long period of high temperature under power. This change is not significant when measuring the lead to lead resistance if it takes place only in the low resistance areas.
  • the resistive material 95 utilized in the spray gun for the desired resistance formulation preferably involves the use of at least some liquid resin rather than only solid resins in solvent.
  • the liquid resin is added to react with the curing agent which is added after the formulation has been milled for a period of time.
  • the curing agent is added to the formulation jar and mixed in only a few minutes before removing the jar from the jar mill and emptying its contents into the spray gun 94.
  • the curing agent is added in order that the resistive formulation may actually cure on the spray drum. Heat may be added at this point by convection and radiation to bring the units to a temperature of about 80 C. Care must be taken that higher temperatures are not involved so as to soften the adhesive backing mater ial causing the capacitors to fall off of the spray drum.
  • the capacitors from the tape and on large trays subject them to a temperature of about 150 C. for several hours.
  • the length of time is somewhat dependent upon the thicknesses and values involved but ranges from 2 to 24 hours.
  • the resin With the curing agent, the resin will sutliciently polymerize so that it will not sufier a viscosity decrease when it is subjected to 150 C. Without the curing agent, the units would stick together because the seemingly dry formulation would suddenly become liquid when subjected to the curing temperature.
  • the leads are to be isolated from the resistance circuit, it is possible to use a fast curing epoxy resin in the spray system utilizing a masking tape for restricting its application.
  • the tapes may be of such material such as polystyrene which, due to the thermoplastic characteristics, can in certain situations be left on the unit since the leads may be assembled thereto.
  • the resistive formulations used with the tape system ranges from about 20 ohms to 5 megohms per square. If the plan area offered by the capacitor were /2 inch long by A1 inch diameter or width, the resistance range would be 40 ohms to 10 megohms since there are effectively 2 squares in series. If the ratio of diameter to length is reduced, the resistance range increases, whereas the resistance range is decreased if the diameter to length range is increased.
  • the capacitor manufacturing art is quite flexible since both diameters and length of capacitors are changed to effect economies in use of foils and dielectrics. For example, a long thin capacitor has less Waste material in margins than the short fat capacitor for the same capacitance value. Also, the longer capacitor will require fewer turns and would consequently have a higher winding rate.
  • the value range may be further reduced by spraying more than one pass to deposit a thicker coating. If this is carried to extreme, however, this can increase drying and curing time and will again have an economical limit.
  • the masking tape width 100 can be varied to make the resistor short and wide.
  • One difiiculty with this problem in practical approach is that the mechanical winding variation in the tape, as established by the tape width variation, produces a greater resistance variation percentagewise that would occur with the same absolute length variation applied to a longer resistor.
  • shorter resistors have more electrical noise and a higher voltage coefficient than does the longer resistor. This is because these characteristics are a function of the potential gradient, or simply volt per unit length.
  • the capacitor values with which the resistor may vary in the constructions discussed will spread from a few micro-microfarads to one microfarad or higher using the general constructional approaches aforediscussed.
  • a capacitor-resistor structure comprising a capacitor body of convolutely wound electrode foils and plastic dielectric films having exposed electrode foil edge portions at each end of the capacitor body and with the outermost convolution of said body being of dielectric material comprising, lead means attached to each end of said capacitor body and transversing a plurality of the electrode foil edge portions to form an electrical connection therewith, a carbon resin material having resistive characteristics deposited on the outermost convolution of the capacitor body with sufiicient portions of the resistive material contacting exposed electrode foil edge portions of the capacitor 'body to thermally and electrically connect the resistive material to the electrode foil edge portions and with portions of the resistive material being thermally and electrically connected with said lead means, thereby to form at least one capacitor connection and at least one resistor connection to said lead means and accomplishing dissipation of heat throughout the capacitor-resistor body to assure relatively uniform functioning thereof.
  • resistance material comprises a layer of carbonaceous material completely surrounding said capacitor body and in thermal and electrical contact with said lead means and the exposed edge portions of the electrode foils.
  • dielectric means forming the outermost wrap of the coil is of sufiicient layered thickness to heat sealingly mount an electrode means in fused relationship thereto without contact with the electrode means in a position intermediate the ends of the coil and the electrode means is preformed to engage the dielectric means outer wraps and is bonded thereto so as to provide a take off lead for the resistive material intermediate the ends of the coil.
  • said lead means comprises at least three terminal wires, at least one of which is electrically isolated from contact with said resistance means on the outer wrap of the coil.
  • the electrode means comprises at least two metallic foils, one edge surface of each being adjacent opposite respective ends of the coil, there being at least four discrete lead means, two of which individually and separately contact the different edges of the wound electrode foils, the remaining two leads being electrically isolated from the first two leads and in contact with different portions of the resistance means and contact no electrode foils whereby the capacitor portion of the construction is electrically isolated from the resistance portion of the construction in an electrical sense but are directly coupled thermally due to the disposition of the resistance means directly upon the outermost wrap of the coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

Feb. 11,1969 c. c. RAYBURN 3,427,572
' CAPACITOR-RESISTOR CONSTRUCTION Ciriginal Filed Feb. 14, 1963 Sheet of 5 FIG;
32 c INVENTOR.
CHARLES c. RAYBURN 'AT TORNE YS Feb. 11,1969 c. c. RAYBURN 3,427,572
CAPACITOR-RESISTOR CONSTRUCTION Original Filed Feb. 14, 1963 Sheet 2 of FIG.IO v FKMZ FIG. i3
76 78 38h 4 8h I I "IIIIIIIIIII'II' FIG. 18
INVENTOR CHARLES c- RAYB'URN ATTORNEYS.
Feiw. l1, 196$ c. c. RAYBURN 3,427,572
CAPACITOR RESISTOR CONSTRUCTION Original Filed Feb. 14, 1963 Sheet of 3 FIGZI DRUM 86 I SPIRAL WINDING S'PPAY GUN FIG L 22 CONDUCTWE Low RESISTANCE PLASTIC CAPACITOR E SPRAY SUPPLY RESIN SUPPLY M [06 INVENTOR.
CHARLES C. RAY BURN ATTORN S United States Patent Oifice 3,427,572 Patented Feb. 11, 1969 3,427,572 CAPACITOR-RESISTOR CONSTRUCTION Charles C. Rayburn, Falls Church, Va., assignor to Illinois- Tool Works Inc., Chicago, Ill., a corporation of Delaware Original application Feb. 14, 1963, Ser. No. 258,449, now Patent No. 3,266,121, dated Aug. 16, 1966. Divided and this application Mar. 16, 1966, Ser. No. 534,826
US. Cl. 33370 7 Claims Int. Cl. H01g 3/19 ABSTRACT OF THE DISCLOSURE This application is a division of application Ser. No. 258,449, filed Feb. 14, 1963, now Patent No. 3,266,121. The invention disclosed in this application relates to capacitor-resistor constructions and more particularly relates to a capacitor-resistor construction wherein the capacitor is of the so-called rolled form.
There are many electrical and electronic circuits requiring a resistor and a capacitor. These are usually supplied as separate components. For example, television and radio receiver manufacturers usually buy capacitors and resistors as separate components and separately assemble same into the receivers.
In my co-pending application entitled, Wound Capacitor, filed Oct. 25, 1961, having Ser. No. 147,646, now Patent 3,134,059 I show a family of capacitor constructions utilizing a convolutely wound electrode and dielectric film, and in co-pending application Ser. No. 102,753, filed Apr. 13, 1961, entitled, Method and Apparatus for Articles of Manufacture, now Patent 3,117,364 assigned to the same assignee and of which I am one of the joint inventors, there is shown a method and apparatus for automatically assembling leads to the capacitor constructions in the first mentioned application. The method and articles discussed in the aforementioned patent applications are particularly well adapted for providing the capacitor portion of the instant capacitor-resistor construction, but as will be appreciated, the capacitor-resistor construction about to be discussed is not limited to the concepts set forth in those applications.
It is a general object of this invention to provide a capacitor-resistor construction where the capacitor is of the rolled type and wherein the resistor is integral therewith.
More particularly, it is an object of this invention to provide a dual component having capacitance and resistance which may be assembled into the space occupied by the capacitor alone heretofore.
It is a further object of this invention to provide a capacitor-resistor construction which requires a single installation as versus the two installations heretofore required.
It is a further object of this invention to provide a capacitor-resistor construction which can be placed either where the resistor construction was placed into an electronic assembly or where the capacitor assembly formerly fit into an assembly with no retooling or redesigning necessary on the part of the manufacturer making an electronic assembly such as a television set or a radio receiver or similar items.
It is another object of this invention to provide a resister-capacitor construction which has less installation failure since field soldering of the components is cut in half, the incidence of field failure having a direct and high correlation to the soldering operation.
It is a further object of this invention to provide a capacitor-resistor construction which utilizes less terminal wire than the two components utilized individually to thus make a more economical construction.
A further object of this invention is to provide a convolutely rolled capacitor construction wherein the outer layers of the dielectric material used in the capacitors serve as the support surface for the resistor.
It is a further object of this invention to provide a capacitor construction wherein the relative locations of the two leads as well as the dimensions of the capacitor are accurately controlled so as to provide accurately controlled resistance on the resistor portion of the dual component.
It is a further object of this invention to provide a capacitor-resistor construction which has exceptionally good heat dissipation properties for maintaining constant values of resistance when the component is in use.
It is a further object of this invention to provide a construction wherein the capacitor and resistor components, due to the direct thermal coupling of the capacitor and the resistor, can provide a temperature compensation of impedance to provide constant values of resistance and capacitance over a wide range of ambient temperatures.
It is a further object of this invention to provide a basic constructional approach which will, with minor modifications, provide a wide variety of circuits utilizing a wide range of values of both capacitance and resistance.
The novel features that are characteristic of the invention are set forth with particularity in the appended claims. An understanding of the invention, from a structural and a functional standpoint, together with additional objects and advantages thereof will be best understood by reading the following description in conjunction with the accompanying drawings wherein:
FIG. 1 is a semidiagrammatic circuit diagram of the construction shown in FIG. 2;
FIG. 2 is a partial sectional view showing a capacitorresistor construction;
FIG. 3 is an enlarged fragmentary sectional view of a portion of FIG. 2;
FIG. 4 is a semidiagrammatic circuit diagram of the construction shown in FIG. 5;
FIG. 5 is a diagrammatic sectional view through a three foil and three lead wire capacitor-resistor construction which provides the circuit shown in FIG. 4;
FIG. 6 is a circuit diagram of the construction shown in FIG. 7;
FIG. 7 is a semidiagrammatic sectional view showing a modified form of construction to that shown in FIG. 5;
FIG. 8 is a semidiagrammatic circuit diagram of the construction shown in FIG. 9;
FIG. 9 is a view of an alternate form of construction of a capacitor-resistor for providing the circuit shown in FIG. 8;
FIG. 10 is a semidiagrammatic circuit diagram of the construction shown in FIG. 11;
FIG. 11 is a diagrammatic sectional view of an alternate embodiment of capacitor-resistor construction which is modified from the foregoing to provide the circuit of FIG. 10;
FIG. 12 is a circuit diagram of the construction shown in FIG. 13;
FIG. 13 is a semidiagrammatic sectional view of an alternate construction of capacitor-resistor to provide the circuit of FIG. 12;
FIG. 14 is a circuit diagram of the construction shown in FIG. 15;
FIG. 15 is a semidiagrammatic view of a capacitorresistor construction to provide the circuit shown in FIG. 14;
FIG. 16 is a circuit diagram of an alternate construction illustrating the circuit of the capacitor-resistor shown in FIG. 17;
FIG. 17 is a semidiagrammatic sectional view of a construction to provide the circuit of FIG. 16;
FIG. 18 is a circuit diagram of an alternate construction of capacitor-resistor shown in FIG. 19;
FIG. 19 is a semidiagrammatic view illustrating the construction to provide the circuit of FIG. 18;
FIG. 20 is a semidiagrammatic view of a method of mounting capacitor blanks on a piece of adhesive tape preliminary to the spraying of the other side thereof aS shown in FIG. 21;
FIG. 21 is a view, diagrammatic in nature, showing the mounting of the capacitor blanks on a drum for disposition of the resistor composition upon the capacitor blanks with a special spray gun;
FIG. 22 is a semidiagrammatic portrayal of an alternate method of spraying low resistance capacitor end spray material upon the ends of the capacitor to insure good conductive connection between the ends of the capacitor and the resistor material to be later applied;
FIG. 23 is a semidiagrammatic showing the assembly of the lead wires to a capacitor blank after it has been treated as shown in FIG. 21; and
FIG. 24 is a view of a completed capacitor and resistor construction of the type manufactured by the technique shown in FIGS. 20 through 23.
Returning now to FIGS. 1 and 2 of the drawings, the capacitor-resistor 30 is an integral single unitary component having a capacitor portion 32 and a resistor portion 34 with common terminal wires 36 and 38.
Wound capacitors 32 are normally fabricated from strips or tapes of conductive material such as a metal or a conductively coated dielectric, wound into a tight coil. In winding the capacitor coil or body, two or more conductive tapes 42 and 44, FIG. 9, are wound together with dielectric material 46 positioned between the conductive tapes to insulate them from each other. In forming most of the conventional capacitor coils, the conductive tapes or foils 42 and 44 are staggered so that the edge of one tape extends beyond one edge of the dielectric layer, while the opposite edge of the second tape extends beyond the second margin of the insulating layer. Thus, normally in winding the capacitor coil, two conductive tapes are wound in staggered arrangement with the intermeidate dielectric material positioned only between the overlapping portions of the two conductive tapes. The wound capacitor coil thus has the exposed extending edges of a pair of conductive tapes forming the two ends of the coil. It is then common practice to secure a lead wire to each end of the coil form by the conductive tapes by soldering. In the co-pending applications aforementioned, I have discussed and taught a new construction for capacitors wherein the lead wires are embedded in the plastic dielectric 46 and extend transversely to the axis of the coil of the capacitor blank. This greatly increases the pull-out strength of the terminal wires 36 and 38 relative to mechanical separation of the terminal wires from the coil and gives exceptionally ood electrical properties plus other advantages discussed in the aforementioned applications. As will be appreciated, while the present invention shall be discussed in terms of a capacitor construction utilizing transverse leads, and has special advantages that accure thereto, I do not intend to be limited to the precise capacitor construction and method of embedding the lead wires 36 and 38 as the instant concepts have a broader application. While the capacitor constructions shown in the various embodiments of the instant invention are only of the so-called standard winding construction and the three foil inductive constructions, other and various methods of winding capacitors are in fact contemplated. The capacitor coil constructions may be of a so-called conventional extended tin foil type of construction, an extended film construction wherein the plastic dielectric extends beyond the edge margins of the two foils 42 and 44, the metallized dielectric film type of capacitor constructions, and the sheared end constructions where the plasic dielectric and the electrode foils extend the same dimension. Also, various other dielectrics including but not limited to materials such as paper or the like may be used.
In winding the capacitor 32 shown in FIGS. 2 and 3, one exemplary form of construction utilizes thin tin foil for the electrode foils 42 and 44 which are staggered and uses a plasic, such as sold under the tradename Mylar, thin film 46 as the dielectric which spaces the foils 42 and 44 one from the other. As shown in FIG. 3, it is preferable to Wind a number of over-wraps 48 around the capacitor coil for purposes hereinafter appearing, These over-wraps 48 are merely extensions of the film 46 and provide mechanical protection to the capacitor coil during handling thereof and further provides a base for the resistor material 34 which is disposed directly thereon as shall be discussed.
The leads 36 are assembled to the capacitor coil by heating the lead wires such as 36 and 38, preferably by passing a heavy short duration current through a segment of the wire while forcing same inwardly of the end of the capacitor coil to melt and then fuse the plastic dielectric 46 around the lead wire to firmly bound the same into electrical connection with the foils adjacent the respective ends as shown at 50 in FIG. 3. Due to low melting point of the tin foil 42, the coil of foil makes a good electrical connection to the terminal wire 36 and the plastic when cooled provides very good mechanical strength to the construction. It will be noted that the lead wire 36 extends interiorly of the end of the capacitor coil only a distance suflicient to make a good electrical connection to the foil 42, but does not contact the other foil 44 as shown in FIG. 3. Of course, the obverse obtains relative to the lead wire 38 on the other end of the capacitor.
After the lead wires 36 and 38 have been assembled to the capacitor body, the leads may be crimped into desired configurations as shown in my co-pending applications filed on July 26, 1960, having Ser. Nos. 45,323 and 45,421, now Patents 3,056,939 and 3,162,721, respectively. The crimping of the leads forms no basic part of the instant invention other than the lead crimping is compatible with the process and the article involved and thus, the attendant advantages spelled out in the aforediscussed applications will apply to the instant construction.
Snice, the lead wires 36 and 38 extend transversely to the axis of the capacitor coil, it is peculiarly easy to mount the capacitors to a support member by taping the lead wires to a bar for dipping purposes. The exact manner of attaching the lead wires to a support member for dipping may be varied to suit, but one manner of so attaching is shown in my co-pending application Ser. No. 102,753, aforementioned. The exact method of attaching for dipping purposes is no part of this invention, but as is shown in that application, the construction of the capacitors are peculiarly well adapted for automatic mounting the capacitors on a support member without human handling.
The resistive material 34, to be disposed on the capacitor blank, may be organic or inorganic and may be ap plied by dipping, spraying adhesive taping, evaporating, sputtering or by any process compatible with the capacitive base and resistive material being deposited. Of the many ways of applying the resistive material to the capacitor, the dipping process and spraying process are preferred and for these purposes the resistive material 34 may be a carbon resin formulation. One resistive formulation that has been found efficacious for this purpose comprises the following ingredients in the following proportions:
(a) 1050 grams of solvent based epoxy-melamine epoxide equivalent of about 500,
(b) 49.18 grams of coarse channel black,
(c) 21.07 grams of fine channel black,
((1) 216.8 grams of yellow stone talc,
(e) 157.5 grams epoxy resin, epoxide equivalent of about 200,
(f) 52.5 grams of polyamine.
This formulation is cured after application thereof at a temperature of 150 C. for approximately 24 hours. The capacitor-resistor construction shown in FIG. 2 is of the dipped variety with the resistor formation 34 extending completely around the entire capacitor body. As shown in FIG. 2, the particular construction of the capacitorresistor affords a very good dimensional uniformity. The resistance R of the unit shown in FIG. 2 is found by the formula if d is the diameter of the cylindrical section. By controlling the number of outer Mylar over-wraps 48, the diameter d of the cylindrical setcion can be controlled to within very close tolerances and in commercial practice the dimensional variation of d can be controlled within 1%. The resistivity p of the resistor material 34 and the thickness t of the formulation 34 across the effective length l of the resistor are a function of the formulation of the resistance material and the dipping conditions, each of which may be independently controlled. The length I can be accurately controlled by the automatic machinery set forth in my co-pending application Ser. No. 102,753 aforementioned, since the effective length l is dependent on the distance between the two leads 36 and 38.
Of particular note relative to the construction 30, is the power dissipation characteristics of the resistor-capacitor. Resistor life stability is a direct function of the resistor layer temperature. In the particular embodiment shown, heat can conduct through the ends of the resistor layer 34 to the lead wires 36 and 38 which are efficiently coupled thermally to the extended foil ends 42 and 44 of the capacitor foils. The large foil end contact at each end of the capacitor with the resistive layer 34 allows the heat to be coupled uniformly into the capacitor interior to prevent temperature gradients and the attendant non-uniform expansion of the capacitor and resistor sections. Also, the heat of the capacitor-resistor unit conducts directly through the protective outer coating 40 and finds an exceptionally large convective and radiating surface as compared to conventional resistors.
Another feature of the particular construction concerns the temperature compensating characteristics of the unit 30.
Since the temperature coefficient of capacitance of a Mylar capacitor is positive and linear to about 85 C. and a resistive formulation 34 can be varied and selected to be linear and of required positive temperature coefficient of resistance, it follows that a degree of temperature compensation of impedance is achieved. Although this may be accomplished with separate resistor and capacitor components in theory, the thermal coupling problem is very diflicult in practice so as to be sure that each component is at precisely the same temperature at the same time. Since the capacitor-resistor is an integral unit 30 in the instant construction and because of the thermal coupling aforementioned, the temperature compensation of impedance is completely compatible with the disclosed construction.
A brief recapitulation of one preferred manufacturing sequence is:
(a) wind a capacitor coil;
(b) assemble leads to the coil;
(c) crimp leads if required;
(d) load capacitor on a support member for dipping;
(e) dip capacitors in resistive formulation;
(f) cure resistive formulation;
(g) dip units in coating material;
(h) stamp identifying numbers, etc. on the part;
(i) remove part from support member and cure the coating;
(j) wax if required and per-form electrical test.
Other resistor-capacitor circuits are available with the same general type of integral construction with slight modifications. The embodiments shown in FIGS. 4 and 5 have may similar features to those aforediscussed and similar portions will be identified with similar reference numerals with the addition of the suffix a. The construction shown in FIG. 5 is highly diagrammatic in form. More particularly, the unit 30a is a three foil capacitor construction with a third terminal wire 50 having the capacitor portion of the construction similar to that shown in FIG. 7 of my co-pending application entitled Wound Capacitor having Ser. No. 147,646, aforementioned. The central lead wire 50 is heated and forced inwardly to engage the center foil 52 which cooperates in a capacitive sense with each of the outboard foils 44a and 42a which are respectively connected to the terminal wires 38a and 36a. As shown inPatent No. 2,949,570, the center foil 52 may be shorter than the outboard foils so as to provide very low capacitive values or it may have the same number of effective turns as the respective outboard foils. In FIG. 5, the dielectric material 46a between the respective electrode foils 44a, 42a and 52 is indicated by a blank space and the over-wrap layers of dielectric 48a is also indicated by a blank space. As will be apparent, from viewing FIG. 5, the circuit of FIG. 4 is provided having two capacitances, C1 and C2 identified by the reference numerals 54 and 56, and two resistances R1 and R2 identified by the reference numerals 58 and 60. The variance in the manufacturing sequence occurs by the winding of a different capacitor coil in step a above and in the assembly of the additional lead in the center which is a modification of step b. The manufacturing sequence 0 through 1 will be substantially the same. It will be apparent that Cl and C2 and R1 and R2 in this embodiment 30a may be equal or may be a ratio depending upon the location of the center lead 50 and the efiective areas of over-lap of the foils 52-42a and 52-44a as determined by the dimensions of the various foils and the original winding process. Essentially the same advantages accure to the construction shown in FIG. 5 as discussed relative to the FIGS. 1 through 3.
Still another embodiment of the invention is shown in FIGS. 6 and 7- and similar parts will be identfied with similar reference numerals with the addition of the suffix b. This embodiment 30b is produced by varying the step e relating to dipping the capacitors in the resistive formulation 34, by dipping one end (the right hand end as shown in FIG. 7) in an insulating resin 62 so that the resistive formulation can not contact the right hand lead 38b. The circuit shown in FIG. 6 is thus produced because the formulation 34b on the unit 30b is then dipped so that it extends only between leads 36b and 50b to produce a resistance 58b while the capacitive portions of the structure 5412 and 56b are obtained as explained relative to FIG. 5.
The construction shown in FIGS. 8 and 9 has many similarities to the foregoing and similar parts will be identified with similar reference numerals with the addition of the suffix c. The capacitor-resistor 30c utilizes a capacitor coil body wound similarly to that discussed relative to FIGS. 1 through 3, i.e., a two foil construction. The leads 38c and 360 are assembled in the standard manner aforediscussed. To provide the construction in FIG. 9, it is preferable in the winding operation to provide a larger than normal over-wrap 48c so as to allow the assembly of a performed terminal wire 64 to the outer-wraps 48c by heating the terminal and pressing it into the outerwraps for retention thereof without contacting any of the interior foils 42c and 44c. The overwraps 48c thus serve as a base for support-ing the terminal wire 64 as well as to support the resistive formulation 34c and insulating resin 62c. The resistive material 340 is applied su-bsequential to dipping the right hand end of the body, as shown in FIG. 9, in the insulating resinous material 620. When the resistive material 34c is applied to the left hand end of the capacitor indicated by the dotted lines 340, the circuit shown in FIG. 8 is provided. As will be apparent from the circuit, the resistor and the capacitor portions 580 and 32c respectively, have a common lead 36c and then have independent connections to other circuitry with the leads 64 and 380. The location of the lead 64 may be varied to suit so as to vary the effective length of the resistive formulation 34c.
The capacitor-resistor construction 30d shown in FIGS. 10 and 11 has many similarities to the foregoing and similar parts will be identified with similar reference numerals with the addition of the suffix d. When the construction shown in FIGS. 4 and is modified by the addition of insulating resins 66 and 68 disposed around the center lead 50d so as to isolate the resistive formulation 34d from contacting the lead, the circuitry of FIG. is provided. Thus, the resistor 34d extends between terminals 36d and 38d whereas two capacitances C1 and C2 with reference numbers 54d and 56d have a common lead 50d as well as the individual outboard leads 36d and 38 respectively.
The construction shown in FIGS. 13 and 14 has many similarities to the foregoing and similar parts will be identified with reference numerals with the addition of the suffix e. The embodiment 30e shown in FIG. 13, differs from that shown in FIG. 5 in that the center foil 70 of a three electrode foil capacitor has an effective capacitive area with only foil 42e and the right hand foil 44a serves as a lead anchoring means for the terminal 382 and spacing member in the winding operation to maintain dimensional stability. The foil 442 also serves to effectively connect the resistive material 342 to the terminal 38c and to give the thermal coupling to the interior as is required for efficacious results. The center lead wire 502 contacts the offset center foil 70 and thus the capacitive relationship C1 with reference number 54a is established between terminals 36e and 502 whereas two discrete resistor portions 542 and 56s are formed.
The embodiment 30f shown in FIGS. 14 and 15 is substantially similar to the foregoing and similar parts will be identified by similar reference numerals with the addition of the suffix f. The construction shown in FIG. 15 gives the circuit shown in FIG. 14 and has an initial construction substantially similar to that shown in FIG. 13 except that the center lead 50f is isolated from a resistive material by suitable insulating resin at 66 and 68f similarly to the isolation of the center lead shown in FIG. 11. Thus, the capacitive relationship 54 is established between the leads 36 and 50 and the resistor 34f is between leads 36 and 381.
Embodiment g shown in FIGS. 16 and 17 is substantially similar to the foregoing and similar parts will be identified with similar reference numerals with the addition of the suffix g. The embodiment 30g is similar to the embodiment shown in FIG. 13 except that the center lead 72 is snipped off close to the body of the unit 30g to give the circuit shown in FIG. 16. Only leads 36g and 38g serve as exterior connections for connection to other circuitry.
The embodiment shown in FIGS. 18 and 19 has many features similar to those aforediscussed and similar parts will be identified with similar reference numerals with the addition of the suffix It. The embodiment 3012 has a coil capacitor base similar to that shown in FIGS. 2
8 and 3 except that the over-wrap portions of the dielectric films 4811 is made extra heavy. The leads 36/1 and 3811 are applied to the ends of the capacitor foil as aforediscussed and the leads 76 and 78 are formed similarly to the lead 64 shown in FIG. 9 and are attached to the over-wrap layer 4811 as is the lead 64. However, in this construction, the lead 76 and 78 are spaced close to but not in electrical connection with leads 36h and 38/1 as shown in FIG. 19. After assembly of the leads 36h, 38/1, 76 and 78 to the capacitor coil blank, each end of the capacitor is dipped in an insulating resin 82 and 84 of a depth just sufficient to electrically isolate the leads 36/1 and 3811 from the resistive material which is applied into the intermediate portion of the capacitor body for electrical contact with the leads 76 and 78. The electrical circuitry shown in FIG. 18 is thus provided by the construction shown in FIG. 19.
While two and three foil capacitor constructions have been discussed, and four leads is the maximum number shown in the various embodiments, it will be apparent that n number of foils may be used and n number of leads may be used. With the techniques of lead attachment and isolation disclosed in the foregoing embodiments, it becomes obvious that an infinite numbers of resistor-capacitor circuits are obtainable with this system.
While the foregoing embodiments have been discussed basically with a dipping system in mind, when high production of a single capacitor-resistor construction is contemplated, certain economies can be obtained by depositing the resistive formulation on the capacitor foil bases by a spraying technique about to be discussed. Of particular importance in a spraying process, is the precise control of the amount of resistive material sprayed on the capacitors. The steps in the spraying operation vary slightly from the dipping operation as shall now be explained. More particularly, after the capacitor blanks or coils are wound, be they two or three foil capacitors, the individual blank 86 may be oriented in slightly spaced relation and affixed to an adhesive tape 88 as shown in FIG. 20 to form a chain subassembly 90. For purposes of discussion, it will be assumed that the capacitor blanks 86 shown in FIG. 20 and the tape 88 are approximately full size. It will be noted that the axis of the capacitor blanks 86 is perpendicular to the axis of the tape 88 and a belt of this tape 90, i.e., a discrete length dependent upon the size of the spraying drum may be loaded with a large number of capacitors in somewhat machine gun bullet fashion. Thus, for the spraying operation the temporary subassembly 90 of the capacitors loaded on tape is formed. The back (non-adhesive) side of the tape 88 is disposed on a drum 92 in a spiral fashion as indicated in FIG. 21 with the tape 88 being disposed adjacent to the drum so that the exposed radially outward portion of the belt 90 discloses only the nonscreened portion of the capacitor blanks 86.
The drum 92 and the spray gun 94 are preferably of the type shown in US. Patent No. 2,977,928 of which I am a joint invetnor and assigned to the same assignee. The spray gun 94 is supplied with a resistive formulation from a suitable supply 95 and the gun uniformly deposits the resistive material over an area encompassing slightly more than of the circumference of the coil. Since the capacitor coils 86 do not have the leads assembled thereto, it is possible on a tape, of some 280 feet in length, to get in the neighborhood of 10,000 to 15,000 capacitors loaded on the drum for a spraying operation. The absence of the leads also requires less space for the high temperature curing of the resistive material and also forms a preassembly which allows pre-testing of the resistive material after it has been sprayed for uniformity and desired characteristics. It will be appreciated that since the subassembly 90, after the spraying operation, has the resistive material disposed on the one face, and all of the parts are in spaced relation, it is relatively easy to pass the assembly as it comes from the drum, through testing apparatus which tests the sprayed bodies for desired resistance characteristics prior to the lead assembly. Thus, defective units are eliminated prior to further operation thereon such as lead assemblies and coating. Also, due to the uniformities involved, this testing may be done completely mechanically and automatically since all of the devices are pre-oriented.
After the individual uints 86 have been removed from the tape, the resistor portion 110 is on the over-wraps and there is a masked portion 112 which has no spray material thereon. The sprayed-on resistive resin 110 extends over and on to the extended foils at 109 and 111 as shown in FIGS. 23 and 24. The leads 106, 108 may be assembled by the techniques aforediscussed to provide the completed unit 104 shown in FIG. 24 having a circuitry as shown in FIG. 1. By assembling additional leads, as indicated diagrammatically in FIG. 23, the various other configurations and circuitry may be obtained for generally similar structural relationships as shown in the various embodiments. For example, lead 116 may be inserted into the masked side 11-2 of the unit 104 to provide the isolation characteristics to in turn provide a circuit such as shown in FIG. 10.
As aforementioned, it is possible to attach the leads to the capacitor blanks 86 prior to placing them on the drum for spraying but this involves a substantial derating of the capacity of the spraying drum in terms of number of capacitors that can be placed on the drum for spraying thereof. The applying of the leads to the unit after spraying poses some problems. Care must be taken when the leads are assembled to the ends of the units which have been presprayed so that the Mylar oil edge does not create such a disturbance that there is a cracking or breaking of the carbon resin film resistance material in this area so as to break conductive paths and increase the resistance of the unit. There are a number of ways to alleviate this problem, for example:
(a) The leads may be soldered to the extended foil without penetrating it to the depth of the Mylar edge.
(b) The leads such as 106 and 108 may be applied by the techniques aforediscussed by offsetting them slightly from the center of the coil so that the lead wires 106 and 108 do not contact that part of the Mylar which is covered by the resin. Since the resistive material contacts the exposed edges of the foils at 109 and 111, there is a good conductive path for the resistance material. This poses problems in orientation of the individual blanks since they must be rotated from their orientation on the adhesive tape 88.
(c) A third Way to prevent any resistance change when the leads are assembled, is to spray a very low resistance formulation on the ends by masking the center with a tape 100 shown in FIG. 22, the tape 100 is non-adhesive in character and is applied to the drum after the subassembly 90 is applied to the drum. The width of the tape 100 effectively delineates the effective length of the resistive material 95 which is later applied. The tape 100 is nonadhesive so that it may be stripped off without pulling the coil blanks 86 off of the tape 88. The advantage of the low resistance spray material, which preferably is a formulation which has a resistivity in the order of one to ten percent of the desired resistance formulation 95, is that if the low resistance formulation is disturbed or cracked when the leads are driven in against the Mylar coil, it has virtually no effect on the lead to lead resistance value. The desired resistance formulation 95, although sprayed over the entire length of the capacitor at 110, is paralleled by the low resistance deposits on each end. The resistance value is then determined by the desired resistance formulation which is deposited between the areas of low resistance.
It should be noted, that the end spray process, shown in FIG. 22 is not necessary in all cases. By actual tests, it has been noted that the lead assembly disturbance on the resistive material has a positive change in the neighborhood of three percent positive increase in value in resistance. However, when certain very tight specifications are needed, it may be desirable to go to the end spray approach or the other alternate approaches.
The low resistance material 102 that is sprayed on the end of the capacitor may consist of a thermal setting resin in solid form (epoxy) in a solvent vehicle (butyl Cellosolve) a liquid resin (epoxy) an inert filler such as talc or Cab-o-sil, a curing agent and various carbon types depending on the desired resistivity. Large carbon structure in the form of graphite is used for low values whereas channel blacks in finely divided amorphous form are used for high value. Both forms are available in the trade. A plasticiser in the low resistance formulation prevents the resistance film from cracking, especially at the junction between the extended foil and the Mylar. The plasticiser is not used in the desired resistance formulation, i.e., the material in the supply which provides the resistance value for the unit, since it contributes to aging or value drift over a long period of high temperature under power. This change is not significant when measuring the lead to lead resistance if it takes place only in the low resistance areas.
The resistive material 95 utilized in the spray gun for the desired resistance formulation preferably involves the use of at least some liquid resin rather than only solid resins in solvent. The liquid resin is added to react with the curing agent which is added after the formulation has been milled for a period of time. The curing agent is added to the formulation jar and mixed in only a few minutes before removing the jar from the jar mill and emptying its contents into the spray gun 94. The curing agent is added in order that the resistive formulation may actually cure on the spray drum. Heat may be added at this point by convection and radiation to bring the units to a temperature of about 80 C. Care must be taken that higher temperatures are not involved so as to soften the adhesive backing mater ial causing the capacitors to fall off of the spray drum. To obtain greater stability of value, it is desirable to remove the capacitors from the tape and on large trays subject them to a temperature of about 150 C. for several hours. The length of time is somewhat dependent upon the thicknesses and values involved but ranges from 2 to 24 hours. With the curing agent, the resin will sutliciently polymerize so that it will not sufier a viscosity decrease when it is subjected to 150 C. Without the curing agent, the units would stick together because the seemingly dry formulation would suddenly become liquid when subjected to the curing temperature.
On the other hand, when the leads are to be isolated from the resistance circuit, it is possible to use a fast curing epoxy resin in the spray system utilizing a masking tape for restricting its application. The tapes may be of such material such as polystyrene which, due to the thermoplastic characteristics, can in certain situations be left on the unit since the leads may be assembled thereto.
The resistive formulations used with the tape system ranges from about 20 ohms to 5 megohms per square. If the plan area offered by the capacitor were /2 inch long by A1 inch diameter or width, the resistance range would be 40 ohms to 10 megohms since there are effectively 2 squares in series. If the ratio of diameter to length is reduced, the resistance range increases, whereas the resistance range is decreased if the diameter to length range is increased. The capacitor manufacturing art is quite flexible since both diameters and length of capacitors are changed to effect economies in use of foils and dielectrics. For example, a long thin capacitor has less Waste material in margins than the short fat capacitor for the same capacitance value. Also, the longer capacitor will require fewer turns and would consequently have a higher winding rate. The value range may be further reduced by spraying more than one pass to deposit a thicker coating. If this is carried to extreme, however, this can increase drying and curing time and will again have an economical limit. Also, the masking tape width 100 can be varied to make the resistor short and wide. One difiiculty with this problem in practical approach, however, is that the mechanical winding variation in the tape, as established by the tape width variation, produces a greater resistance variation percentagewise that would occur with the same absolute length variation applied to a longer resistor. Also, it is a known fact, that shorter resistors have more electrical noise and a higher voltage coefficient than does the longer resistor. This is because these characteristics are a function of the potential gradient, or simply volt per unit length. The capacitor values with which the resistor may vary in the constructions discussed will spread from a few micro-microfarads to one microfarad or higher using the general constructional approaches aforediscussed.
Although specific embodiments of the invention have been shown and described, it is with full awareness that many modifications thereof are possible. The invention, therefore, is not to be restricted except insofar as is necessitated by the prior art and by the spirit of the appended claims.
What is claimed as the invention is:
1. A capacitor-resistor structure comprising a capacitor body of convolutely wound electrode foils and plastic dielectric films having exposed electrode foil edge portions at each end of the capacitor body and with the outermost convolution of said body being of dielectric material comprising, lead means attached to each end of said capacitor body and transversing a plurality of the electrode foil edge portions to form an electrical connection therewith, a carbon resin material having resistive characteristics deposited on the outermost convolution of the capacitor body with sufiicient portions of the resistive material contacting exposed electrode foil edge portions of the capacitor 'body to thermally and electrically connect the resistive material to the electrode foil edge portions and with portions of the resistive material being thermally and electrically connected with said lead means, thereby to form at least one capacitor connection and at least one resistor connection to said lead means and accomplishing dissipation of heat throughout the capacitor-resistor body to assure relatively uniform functioning thereof.
2. The construction set forth in claim 1 wherein the lead means is disposed substantially transversely to the axis of the capacitor body.
3. The construction set forth in claim 1 wherein the resistance material comprises a layer of carbonaceous material completely surrounding said capacitor body and in thermal and electrical contact with said lead means and the exposed edge portions of the electrode foils.
4. The construction set forth in claim 1 wherein there are at least three discrete electrode foil means convolutely wound with dielectric means into a coil, there being at least three lead means each of which contacts a separate electrode foil means, and resistance means disposed on the exterior of the coil means in contact with at least two of the three lead means whereby more than one capacitive and resistance relationship may be established in a single integral unit.
5. The construction set forth in claim 1 wherein the dielectric means forming the outermost wrap of the coil is of sufiicient layered thickness to heat sealingly mount an electrode means in fused relationship thereto without contact with the electrode means in a position intermediate the ends of the coil and the electrode means is preformed to engage the dielectric means outer wraps and is bonded thereto so as to provide a take off lead for the resistive material intermediate the ends of the coil.
6. Construction set forth in claim 1 wherein said lead means comprises at least three terminal wires, at least one of which is electrically isolated from contact with said resistance means on the outer wrap of the coil.
7. The construction set forth in claim 1 wherein the electrode means comprises at least two metallic foils, one edge surface of each being adjacent opposite respective ends of the coil, there being at least four discrete lead means, two of which individually and separately contact the different edges of the wound electrode foils, the remaining two leads being electrically isolated from the first two leads and in contact with different portions of the resistance means and contact no electrode foils whereby the capacitor portion of the construction is electrically isolated from the resistance portion of the construction in an electrical sense but are directly coupled thermally due to the disposition of the resistance means directly upon the outermost wrap of the coil.
References Cited UNITED STATES PATENTS 2,464,377 3/1949 Cohen et al. 2,717,946 9/1955 Peck. 3,134,059 5/1964 Rayburn 317260 FOREIGN PATENTS 743,717 1/1956 Great Britain.
HERMAN KARL SAALBACH, Primary Examiner.
PAUL L. GENSLER, Assistant Examiner.
US. Cl. X.R.
US534826A 1963-02-14 1966-03-16 Capacitor-resistor construction Expired - Lifetime US3427572A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US258449A US3266121A (en) 1963-02-14 1963-02-14 Method of making a capacitorresistor construction
US53482666A 1966-03-16 1966-03-16

Publications (1)

Publication Number Publication Date
US3427572A true US3427572A (en) 1969-02-11

Family

ID=26946645

Family Applications (1)

Application Number Title Priority Date Filing Date
US534826A Expired - Lifetime US3427572A (en) 1963-02-14 1966-03-16 Capacitor-resistor construction

Country Status (1)

Country Link
US (1) US3427572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541564A (en) * 1995-06-20 1996-07-30 Tektronix, Inc. Hybrid R-C component having an overlying dielectric layer
US20110102966A1 (en) * 2008-07-10 2011-05-05 Hiroki Takeoka Molded capacitor and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464377A (en) * 1946-06-20 1949-03-15 F W Sickles Company Pi type resistance capacitance filter unit
US2717946A (en) * 1950-10-14 1955-09-13 Sprague Electric Co Electrical resistance elements
GB743717A (en) * 1953-02-09 1956-01-25 British Dielectric Res Ltd Improvements in the manufacture of electric circuit components
US3134059A (en) * 1958-08-20 1964-05-19 Illinois Tool Works Wound capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464377A (en) * 1946-06-20 1949-03-15 F W Sickles Company Pi type resistance capacitance filter unit
US2717946A (en) * 1950-10-14 1955-09-13 Sprague Electric Co Electrical resistance elements
GB743717A (en) * 1953-02-09 1956-01-25 British Dielectric Res Ltd Improvements in the manufacture of electric circuit components
US3134059A (en) * 1958-08-20 1964-05-19 Illinois Tool Works Wound capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541564A (en) * 1995-06-20 1996-07-30 Tektronix, Inc. Hybrid R-C component having an overlying dielectric layer
US20110102966A1 (en) * 2008-07-10 2011-05-05 Hiroki Takeoka Molded capacitor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US3266121A (en) Method of making a capacitorresistor construction
US6058004A (en) Unitized discrete electronic component arrays
US2566666A (en) Printed electronic circuit
GB2193037A (en) Soldered component termination
US4346257A (en) Laminated bus bar with dielectric ceramic inserts
US4430522A (en) Laminated bus bar with capacitors and method of making same
US4984130A (en) Passive electric component
US3364401A (en) Capacitor assembly and method
US3048750A (en) Electrostatic capacitor
US3427572A (en) Capacitor-resistor construction
US3546638A (en) Compact filter for broadband electromagnetic interference suppression
US3150300A (en) Capacitor
US3002137A (en) Voltage dependent ceramic capacitor
US3316467A (en) Spark gap electronic component
US3967168A (en) Electrical capacitor having alternating metallized nonheat-shrinkable dielectric layers and heat-shrinkable dielectric layers
US4622620A (en) Electric capacitor with polyethylene terephthalate as a dielectric for use as a solderable chip component
US3134059A (en) Wound capacitor
GB2183926A (en) Ceramic electronic components
US3034198A (en) Electronic assembly
US2842653A (en) Methods of making electrical capacitors
US2601338A (en) Varialbe parallel resonant circuit
US2695443A (en) Method of making capactiors
US1883932A (en) Electric condenser
US3259818A (en) Capacitors employing nio as a dielectric
US4318149A (en) RC Composite component with spark gap