US3424089A - Cartridge cases - Google Patents
Cartridge cases Download PDFInfo
- Publication number
- US3424089A US3424089A US558745A US3424089DA US3424089A US 3424089 A US3424089 A US 3424089A US 558745 A US558745 A US 558745A US 3424089D A US3424089D A US 3424089DA US 3424089 A US3424089 A US 3424089A
- Authority
- US
- United States
- Prior art keywords
- mould
- tube
- plastics
- core
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14336—Coating a portion of the article, e.g. the edge of the article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14598—Coating tubular articles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B5/00—Cartridge ammunition, e.g. separately-loaded propellant charges
- F42B5/26—Cartridge cases
- F42B5/30—Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics
- F42B5/307—Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements
- F42B5/313—Cartridge cases of plastics, i.e. the cartridge-case tube is of plastics formed by assembling several elements all elements made of plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/14—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
- B29C45/14598—Coating tubular articles
- B29C2045/14606—Mould cavity sealing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/40—Removing or ejecting moulded articles
- B29C45/4005—Ejector constructions; Ejector operating mechanisms
- B29C45/401—Ejector pin constructions or mountings
- B29C2045/4026—Ejectors with internal cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
Definitions
- FIG. 5 is a diagrammatic representation of FIG. 5.
- a plastics cartridge case comprises a tubular body portion and a head portion, wherein the tubular body portion comprises a plastics material which has been subjected to an orienting process to increase its tensile strength, and the head portion comprises a moulded plastics material located at one end of and secured to the tubular portion.
- secured we mean a connection which is strong enough to withstand forces tending to separate the head and body portions on firing the cartridge.
- the end of the tube at which the head portion is located is turned inwardly to form a lip which encompasses the rim of the head portion.
- the lip is located at least partly Within the moulded head portion.
- the tubular body portion is made from a polyolefine which has been biaxially stretched at a temperature below its crystallite melting point, but a similar material which has been stretched in the direction of one of its major axes only may be satisfactory for certain applications.
- suitable polyolefins are polymers based on ethylene or copolymers based substantially on ethylene, having densities from 0.94 to 0.96 g./cc. and melt flow indices not greater than 0.5.
- the head portion may be moulded from a plastics material having the same chemical composition as that of the tubular portion, provided that it possesses the desired moulding characteristic, but it may be desirable for some purposes to use a plastics material which possesses more rigidity and strength in its as moulded condition, in order to increase the firing sensitvity of the loaded cartridge and help the cartridge case to withstand the mechanical strain imposed on it by the ejector mechanism, should it be fired from an automatic weapon.
- Polymers and copolymers of ethylene having densities from 0.940 to 0.960 g./cc. and melt flow indices not greater than 3.5 may be used to mould the head portion, preferably the density should be from 0.955 to 0.960 g./ cc. and melt flow index not greater than 1.0.
- plastics materials which possess suitable rigidity, as moulded are polymers and copolymers based on propylene, acrylonitrile/butadiene/styrene (ABS) copolymers, nylon and acetal polymers and copolymers. Mouldable reinforced plastics may also be used, e.g., glass-filled nylon.
- a method of producing a plastics cartridge case comprises taking a length of a tube of a plastics material which has been subjected to an orienting process to increase its tensile strength, and moulding a plastics head portion on to one end thereof, so that the tubular portion and head portion are secured together.
- the temperature of moulding is such that the head portion is secured by a mechanical interlock only with the lip and thus the tubular portion.
- an apparatus for producing a plastics cartridge case comprises a mould having a cylindrical cavity, an elongate core member of circular cross-section, which is locatable coaxially within the mould cavity to form an annular gap between mould and core into which a plastics tube may be inserted, the cavity extending beyond the core at one end, means to inject molten plastics material into that part of the mould which extends beyond the core and annular sealing means cooperable with an annular region of the wall of the plastics tube and the core to prevent molten plastics material from flowing into the tube beyond said annular region.
- FIGURE 1 is an axial section through a plastics cartridge case in accordance with one embodiment of the invention
- FIGURE 2 is a section through a cut length of plastics tube before moulding
- FIGURE 3 is a section through one embodiment of a mould assembly for fitting in an injection moulding machine to produce the case shown in FIGURE 1;
- FIGURE 4 is an axial section through a plastics cartridge case in accordance with another embodiment of the invention.
- FIGURE 5 is a section through a cut length of plastics tube used to make the case of FIGURE 4.
- FIGURE 6 is a section through another embodiment of a mould assembly for fitting in an injection moulding machine to produce the case shown in FIGURE 4.
- the cartridge case shown comprises an extruded plastics tube 1 and a moulded plastics head 2.
- the tube 1 was cut from tube stock comprising extruded polyethylene tube, of density 0.955 g./cc. and melt flow index 0.2, which had been biaxially oriented below its crystallite melting point to increase its tensile strength in the longitudinal direction to 16,000 psi. and in the circumferential direction to 5,500 psi
- the head 2 including an integral cap chamber 3 and a circumferential rim 4 was then injection moulded into One end of the tube 1, as described in detail below, and secured to said one end by a connection which is strong enough to withstand forces tending to separate the head and body portions on firing the cartridge.
- a mould 5 having a stepped cylindrical cavity 6 is fitted within a mould block 7 which is mounted in an annular bolster 8. Cooling channels 9, bounded by the block 7 and the bolster 8,
- inlet and outlet tubes 10, 11 are provided with inlet and outlet tubes 10, 11 through which coolant can be circulated.
- An ejector bar 12 is slidably mounted in a front bearing 13 located in a backing plate 14, and in a back hearing plate 15 which is secured to the backing plate 14 through a spacer 16, to enable the bar 12 to move between a retracted position (as shown) and an ejecting position in which it protrudes from the open end of the mould cavity 6.
- the bar 12 is biassed to its retracted position by a compression spring 17.
- An annular core pin 18 is fitted into the mould cavity 6 and is held in place by a step 19 in the base of cavity 6; when the core pin 18 is in position it defines an annular cavity with the mould 5.
- the bar 12 is a sliding fit within the bore of the core pin 18.
- a doomed core head 20 is screwed on the necked end 12a of the bar 12 so as to retain a sealing washer 22 of compressible material and a steel compression washer 23 in position on said necked end 12a.
- the washers 22 and 23 are slidable on the necked end 12a, so that movement of the bar 12 in the retracting direction cause the washer 23 to engage the end of the core pin 18 and further movement of the bar 12 causes the sealing washer 22 to be compressed between the washer 23 and the core head 20, thus causing radial expansion of the washer 22.
- the open end of the mould 5 is closable by means of a sprue plate 24 which is mountable in engagement with the sprue bush 25 and injection nozzle 26 of a plungertype injection moulding machine (not shown).
- the nozzle 26 projects into the mould cavity 6 when the sprue plate 24 is in its mould-closing position.
- the profile of the nozzle 26 is made to correspond with the internal dimensions of the cap chamber 3 (see FIGURE 1) of the finished cartridge case.
- the sprue plate is secured rigidly to the injection moulding machine and the rest of the mould assembly is mounted for axial movement away from and towards the sprue plate. Such movements are hereinafter referred to respectively as opening and closing the mould.
- Cartridge cases according to the invention were produced, as follows, using the above-described mould assembly after fitting it in a standard type injection moulding machine.
- the mould was opened and a cut length 1 of biaxially oriented polyethylene tube having one end rolled inwardly to form a lip 27 (see FIGURE 2) was inserted into the mould cavity 6 so that the leading end of the tube 1 was held between the core pin 18, the core head 20 and the wall of the mould cavity 6.
- the mould was then closed and molten polyethylene having a density of 0.960 g./cc. and a melt flow index of 0.9 was injected into the mould cavity 6 via the sprue bush 25 and nozzle 26.
- the molten plastics material filled that part of the cavity 6 beyond the core head 20, forcing the wall of the tube 1 into the stepped portion 28 of the mould, and then forced the core head 20 towards the core pin 18 causing the sealing washer 22 to expand radially against the wall of the tube 1 as previously described.
- the mould was allowed to cool under the influence of the coolant circulating through the channels 9 and was then opened and the cartridge ejected by axial movement of the bar 12.
- Rear injection cylinder temperature C 210 Front injection cylinder temperature C 225 Nozzle temperature C. 205 Plunger pressure p.s.i 13,500 Injection cycle time seconds 45 Cooling cycle time do 15 A relatively long injection cycle time is used to mini mise the effects of shrinkage of the moulded material.
- the cartridge case as ejected, carried a sprue 29 of moulded polyethylene. This was removed by a punch 4 tool which produced the flash hole 30 (see FIGURE 1) in the same operation.
- the cartridge case shown comprises an extruded plastic tube 1 and moulded plastics head 2.
- the tube 1 was cut from tube stock comprising extruded polyethylene tube, of density 0.955 g./cc. and melt flow index 0.2, which had been biaxially oriented at a temperature below its crystallite melting point to increase its tensile strength in the longitudinal direction to 15,000 p.s.i. and circumferential direction to 5,300 p.s.i.
- the lip 31 was then formed on one end of tube 1 by using a turnover chuck of the type commonly used to form the roll turnover on a paper cartridge case.
- the actual profile of the lip 31 is not critical; but it is important that the inner edge of the lip of the prepared tube should not touch the inner wall of the tube, so that molten plastics material is able to flow on both sides of the lip during the injection moulding of the head, however, the temperature conditions are important because it is preferable that no bonding occurs between the head 2 and the tube 1.
- a mechanical interlock is produced between the lip 31 and the head 2, and the wall of the tube 1 is able to lift away from the head 2, for example during the pressure conditions existing when firing takes place. Consequently it has been found that there is a lesser likelihood of failure in the tube wall just above the uppermost part of the head 2.
- the mould assembly shown in FIGURE 6 can be used to produce the cartridge case of FIGURE 4 from the tube of FIGURE 5 with solely a mechanical interlock between the tube 1 and the head 2.
- the mould assembly shown therein is basically the assembly of FIGURE 3 with the principal modification of rearrangement of the sealing means for preventing excessive flow of the injected plastics along the tube 1.
- the assembly comprises a mould 40 having a cavity which is stepped in the vicinity of its entrance 41 and conforms with the external shape of the case of FIGURE 5, and which is counterbored at 42.
- the counterbore 42 houses a square section annular washer 43 against the end 44 of the counterbore, and a slidable sleeve 45 of length slightly greater than the difference between the lengths of the counterbore 42 and the washer 43.
- the mould 40 is fitted in a mould block 46 and defines therewith a conduit 47 for coolant.
- An axially bored core member 48 is secured by bolts 58 to a block plate 49 which is movable relative to the mould 40 and mould block 46 to project the core member 48 into the mould cavity and close the counterbored end thereof.
- the annular clearance between the core member 48 and facing surface of the sleeve 45 is just sufficient to receive the tube 1.
- the bore of the core member 48 is provided with an ejector rod 50 having a coolant circulation tube 51 and channel 52.
- the ejector rod 50 is movable relative to the core member 48 between the retracted position shown in FIGURE 6 and an ejection position projecting beyond the core member 48 and stripping the case from the member 48 and out of the mould 40.
- the mould assembly of FIGURE 6 is mounted on a reciprocating screw injection moulding machine which may actually contain up to twenty-four such assem blies.
- the back plate 49 which is common to all of the assemblies, is spaced away from the common mould block 46 to permit the sleeve 45 to project from the block 46, and the washer 43 to return to its square section.
- the tube 1 of FIGURE 5 is then inserted through the entrance 41 of the mould 40 and slides over the core member 48 to the greatest possible extent, as shown in FIG- URE 6.
- the back plate 40 is then moved to the position shown in FIGURE 6, returning the sleeve 45 into the counterbore 42 and thereby compressing the washer 43 axially and causing radially inward expansion thereof.
- the plastics tube 1 is pressed tightly against the core member 48 to produce a seal preventing further penetration of injected plastics along the tube 1, whilst protecting the washer 43 from the action of the molten plastics.
- the injection cylinder temperatures at four zones from a feed hopper, and the other moulding data are as follows:
- Zone 1 C 175 Zone 2 C 190 Zone 3 C 190 Zone 4 C 195 Nozzle temperature C 210 Mould sprue plate C 70 Mould cavity plate C 20 Plunger pressure p.s.i 9,600 Injection cycle time seconds 45 Cooling cycle time do Generally speaking it is preferable for the pressure to be high, to form the tube into a sharply defined head and rim and the temperatures used to be such that no bonding takes place between the tube 1 and the head 2.
- Batch No. 3 were fired at ambient temperatures in a standard weapon and were all successful, there being no failure of the interlock, and batch No. 2 were fired at ambient temperatures in a weapon with an over-sized breech, and there were no failures.
- batch No. 1 was stored overnight at C. and then immediately fired in the weapon with the over-sized breech. No failures resulted.
- a plastics cartridge case comprising a tubular body portion and a head portion, wherein the tubular body portion comprises a plastics material which has been subjected to an orienting process to increase its tensile strength, and the head portion comprises a plastics material separately injection molded in situ within one end of the tubular body portion, said one end having an inwardly turned lip encompassing of the head portion and located at least partly within the head portion to provide a mechanical interlock between the lip and the molded head portion to secure the molded plastics material to the tubular body portion and to effect a gas-tight seal between the head and tubular body portions.
- An apparatus for producing a plastics cartridge case comprising a mould having a cylindrical cavity, an elongate core member of circular cross-section, which is 10- catable co-axially within the mould cavity to form an annular gap between mould and core into which a plastics tube may be inserted, the cavity extending beyond the core at one end, means to inject molten plastics material into that part of the mould which extends beyond the core and annular sealing means co-operable with an annular region of the wall of the plastics tube and the core to prevent molten plastics material from flowing into the tube beyond said annular region, said sealing means comprising a washer of compressible material located between two parts of the core which are mounted for relative axial movement so that pressure of the molten plastics material on the leading end of the core causes axial compression of the washer, its consequent radial expansion serving to bring its edge into sealing contact with the inner wall of the annular region of the tube.
- An apparatus for producing a plastics cartridge case comprising a mould having a cylindrical cavity, an elongate core member of circular cross-section, which is locatable co-axially within the mould cavity to form an annular gap between mould and core into which a plastics tube may be inserted, the cavity extending beyond the core at one end, means to inject molten plastics material into that part of the mould which extends beyond the core and annular sealing means co-operable with an annular region of the wall of the plastics tube and the core to prevent molten plastics material from flowing into the tube beyond said annular region, said sealing means comprising a washer of compressible material located between two parts of the mould which are arranged for relative axial movement so that closing of the mould causes axial compression of the washer, the consequent radially inward expansion of its radially inner surface pressing the annular region of the wall of the plastics tube inwardly to seal the inner wall of said region against the core.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB29008/65A GB1111287A (en) | 1965-07-08 | 1965-07-08 | Cartridge cases |
GB480566 | 1966-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3424089A true US3424089A (en) | 1969-01-28 |
Family
ID=26239383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US558745A Expired - Lifetime US3424089A (en) | 1965-07-08 | 1966-06-20 | Cartridge cases |
Country Status (7)
Country | Link |
---|---|
US (1) | US3424089A (pt) |
DE (1) | DE1578157A1 (pt) |
ES (1) | ES328881A1 (pt) |
FR (1) | FR1486257A (pt) |
GB (1) | GB1111287A (pt) |
NO (1) | NO120622B (pt) |
SE (1) | SE314926B (pt) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3565008A (en) * | 1968-06-26 | 1971-02-23 | Olin Mathieson | Plastic shotshell and method |
US3712172A (en) * | 1970-07-23 | 1973-01-23 | Us Army | Link-seal unit for caseless ammunition |
US3752434A (en) * | 1971-09-09 | 1973-08-14 | Herter Inc S | Molding of all plastic shotshell cases |
DE2537315A1 (de) * | 1975-04-29 | 1976-11-11 | Eguia D Antonio Iruretagoyena | Patrone, insbesondere jagdpatrone |
US4140058A (en) * | 1975-09-12 | 1979-02-20 | Dynamit Nobel Aktiengesellschaft | Cartridge cases and process for the production thereof |
US4192233A (en) * | 1977-09-27 | 1980-03-11 | Fabriqe Nationale Herstal, en abrege FN | Shell for sporting cartridge of plastic material |
US4276830A (en) * | 1979-01-16 | 1981-07-07 | Pastora Alice Julio C | Cartridge case |
US4332766A (en) * | 1980-02-01 | 1982-06-01 | Federal Cartridge Corporation | One-piece shotshell |
US4481885A (en) * | 1980-02-01 | 1984-11-13 | Federal Cartridge Corporation | One-piece shotshell |
US4509428A (en) * | 1981-01-16 | 1985-04-09 | Federal Cartridge Corporation | Shotshell casing with partially telescoped basewad |
US4569288A (en) * | 1983-07-05 | 1986-02-11 | Olin Corporation | Plastic cartridge case |
US4796535A (en) * | 1986-06-20 | 1989-01-10 | Mauser-Werke Oberndorf Gmbh | Adapter cartridge for insertion tube systems |
US4844405A (en) * | 1987-01-26 | 1989-07-04 | Acebo Company | Injection molding of thin-walled plastic products |
US4941642A (en) * | 1987-10-09 | 1990-07-17 | Kurt Stoll | Mold construction comprising a plurality of mold portions |
US4958568A (en) * | 1989-08-28 | 1990-09-25 | Olin Corporation | Maximum volume Reifenhauser shotshell |
EP1343210A1 (en) * | 2000-10-20 | 2003-09-10 | Matsushita Electric Industrial Co., Ltd. | Method and device for forming outer package body of product |
US6845716B2 (en) * | 1999-01-15 | 2005-01-25 | Natec, Inc. | Ammunition articles with plastic components and method of making ammunition articles with plastic components |
US20050081704A1 (en) * | 2003-05-29 | 2005-04-21 | Nabil Husseini | Ammunition articles and method of making ammunition articles |
US20050257711A1 (en) * | 1999-01-15 | 2005-11-24 | Natec, Inc. | A Cartridge Casing Body And An Ammunition Article Having A Cartridge Casing Body Wherein The Cartridge Casing Body Is Plastic, Ceramic, Or A Composite Material |
EP1661684A2 (en) * | 2004-11-26 | 2006-05-31 | Hitachi Industrial Equipment Systems Co. Ltd. | Ejector with internal fluid path and moulding method |
US20070261587A1 (en) * | 2005-12-27 | 2007-11-15 | Chung Sengshiu | Lightweight polymer cased ammunition |
WO2008119115A1 (en) * | 2007-03-30 | 2008-10-09 | Techventure Investments Pty Ltd | A method of manufacturing ammunition |
US20090044717A1 (en) * | 1999-01-15 | 2009-02-19 | Development Capital Managment Company | base for a cartridge casing body for an ammunition article, a cartridge casing body and an ammunition article having such base, wherein the base is made from plastic, ceramic, or a composite material |
US9470485B1 (en) | 2004-03-29 | 2016-10-18 | Victor B. Kley | Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control |
RU2611044C2 (ru) * | 2013-07-30 | 2017-02-20 | Евгений Григорьевич Пастухов | ГИЛЬЗА ДЛЯ ОГНЕСТРЕЛЬНОГО ОРУЖИЯ (варианты ) |
ITUB20154648A1 (it) * | 2015-10-14 | 2017-04-14 | Elio Rachelli & C S N C | Bossolo per cartucce di arma da fuoco e procedimento di realizzazione di detto bossolo |
US9921017B1 (en) | 2013-03-15 | 2018-03-20 | Victor B. Kley | User identification for weapons and site sensing fire control |
US9989343B2 (en) * | 2010-07-30 | 2018-06-05 | Pcp Tactical, Llc | Base insert for polymer ammunition cartridges |
US20190011231A1 (en) * | 2015-09-18 | 2019-01-10 | Baschieri & Pellagri S.P.A. | Method for making cases for firearms |
USD849874S1 (en) | 2018-01-21 | 2019-05-28 | Vista Outdoor Operations Llc | Muzzleloader propellant cartridge |
CZ308977B6 (cs) * | 2020-12-21 | 2021-10-27 | Václav Svachouček | Malorážový náboj s plastovou nábojnicí a způsob jeho výroby |
US12066279B2 (en) | 2022-05-06 | 2024-08-20 | Innovative Performance Applications, Llc | Polymer ammunition casing |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2287324A1 (fr) * | 1974-10-07 | 1976-05-07 | Philippe Josette | Procede de fabrication d'une cartouche de chasse |
GB2171046A (en) * | 1985-02-14 | 1986-08-20 | Metal Box Plc | Containers |
ITRE20010119A1 (it) | 2001-12-12 | 2003-06-12 | Sacmi | Stampo per la formatura della testa di contenitori tubolari deformabili di plastica |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR995100A (fr) * | 1949-09-30 | 1951-11-26 | Procédé et dispositif pour la fabrication d'une cartouche de chasse, et cartouches ainsi obtenues | |
FR1095837A (fr) * | 1953-11-30 | 1955-06-07 | Procédé et dispositifs de fabrication de douilles de cartouches pour armes à feu et cartouches ainsi obtenues | |
US2915972A (en) * | 1955-12-02 | 1959-12-08 | Olin Mathieson | Ammunition |
US3103170A (en) * | 1960-06-21 | 1963-09-10 | Remington Arms Co Inc | Tubing for cartridge casings and the like and method of making the same |
US3105439A (en) * | 1959-07-09 | 1963-10-01 | Jr William L Young | Plastic shot gun shell |
US3127837A (en) * | 1961-04-27 | 1964-04-07 | Driaire Inc | Shot shell construction |
-
1965
- 1965-07-08 GB GB29008/65A patent/GB1111287A/en not_active Expired
-
1966
- 1966-06-20 US US558745A patent/US3424089A/en not_active Expired - Lifetime
- 1966-06-22 NO NO163601A patent/NO120622B/no unknown
- 1966-07-07 SE SE9311/66A patent/SE314926B/xx unknown
- 1966-07-08 FR FR68819A patent/FR1486257A/fr not_active Expired
- 1966-07-08 DE DE19661578157 patent/DE1578157A1/de active Pending
- 1966-07-08 ES ES0328881A patent/ES328881A1/es not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR995100A (fr) * | 1949-09-30 | 1951-11-26 | Procédé et dispositif pour la fabrication d'une cartouche de chasse, et cartouches ainsi obtenues | |
FR1095837A (fr) * | 1953-11-30 | 1955-06-07 | Procédé et dispositifs de fabrication de douilles de cartouches pour armes à feu et cartouches ainsi obtenues | |
US2915972A (en) * | 1955-12-02 | 1959-12-08 | Olin Mathieson | Ammunition |
US3105439A (en) * | 1959-07-09 | 1963-10-01 | Jr William L Young | Plastic shot gun shell |
US3103170A (en) * | 1960-06-21 | 1963-09-10 | Remington Arms Co Inc | Tubing for cartridge casings and the like and method of making the same |
US3127837A (en) * | 1961-04-27 | 1964-04-07 | Driaire Inc | Shot shell construction |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3565008A (en) * | 1968-06-26 | 1971-02-23 | Olin Mathieson | Plastic shotshell and method |
US3712172A (en) * | 1970-07-23 | 1973-01-23 | Us Army | Link-seal unit for caseless ammunition |
US3752434A (en) * | 1971-09-09 | 1973-08-14 | Herter Inc S | Molding of all plastic shotshell cases |
DE2537315A1 (de) * | 1975-04-29 | 1976-11-11 | Eguia D Antonio Iruretagoyena | Patrone, insbesondere jagdpatrone |
US4140058A (en) * | 1975-09-12 | 1979-02-20 | Dynamit Nobel Aktiengesellschaft | Cartridge cases and process for the production thereof |
US4192233A (en) * | 1977-09-27 | 1980-03-11 | Fabriqe Nationale Herstal, en abrege FN | Shell for sporting cartridge of plastic material |
US4276830A (en) * | 1979-01-16 | 1981-07-07 | Pastora Alice Julio C | Cartridge case |
US4332766A (en) * | 1980-02-01 | 1982-06-01 | Federal Cartridge Corporation | One-piece shotshell |
US4481885A (en) * | 1980-02-01 | 1984-11-13 | Federal Cartridge Corporation | One-piece shotshell |
US4509428A (en) * | 1981-01-16 | 1985-04-09 | Federal Cartridge Corporation | Shotshell casing with partially telescoped basewad |
US4569288A (en) * | 1983-07-05 | 1986-02-11 | Olin Corporation | Plastic cartridge case |
US4796535A (en) * | 1986-06-20 | 1989-01-10 | Mauser-Werke Oberndorf Gmbh | Adapter cartridge for insertion tube systems |
US4844405A (en) * | 1987-01-26 | 1989-07-04 | Acebo Company | Injection molding of thin-walled plastic products |
US4941642A (en) * | 1987-10-09 | 1990-07-17 | Kurt Stoll | Mold construction comprising a plurality of mold portions |
US4958568A (en) * | 1989-08-28 | 1990-09-25 | Olin Corporation | Maximum volume Reifenhauser shotshell |
WO1991003697A1 (en) * | 1989-08-28 | 1991-03-21 | Olin Corporation | Maximum volume reifenhauser shotshell |
US6845716B2 (en) * | 1999-01-15 | 2005-01-25 | Natec, Inc. | Ammunition articles with plastic components and method of making ammunition articles with plastic components |
US20050188883A1 (en) * | 1999-01-15 | 2005-09-01 | Natec, Inc. | Ammunition articles with plastic components and method of making ammunition articles with plastic components |
US20050257711A1 (en) * | 1999-01-15 | 2005-11-24 | Natec, Inc. | A Cartridge Casing Body And An Ammunition Article Having A Cartridge Casing Body Wherein The Cartridge Casing Body Is Plastic, Ceramic, Or A Composite Material |
US20060011087A1 (en) * | 1999-01-15 | 2006-01-19 | Natec, Inc. | Ammunition articles with plastic components and method of making ammunition articles with plastic components |
US20090044717A1 (en) * | 1999-01-15 | 2009-02-19 | Development Capital Managment Company | base for a cartridge casing body for an ammunition article, a cartridge casing body and an ammunition article having such base, wherein the base is made from plastic, ceramic, or a composite material |
EP1343210A4 (en) * | 2000-10-20 | 2007-03-21 | Matsushita Electric Ind Co Ltd | METHOD AND DEVICE FOR FORMING THE EXTERNAL PACKAGING BODY OF A PRODUCT |
EP1343210A1 (en) * | 2000-10-20 | 2003-09-10 | Matsushita Electric Industrial Co., Ltd. | Method and device for forming outer package body of product |
US20050081704A1 (en) * | 2003-05-29 | 2005-04-21 | Nabil Husseini | Ammunition articles and method of making ammunition articles |
US7059234B2 (en) | 2003-05-29 | 2006-06-13 | Natec, Inc. | Ammunition articles and method of making ammunition articles |
US20070044644A1 (en) * | 2003-05-29 | 2007-03-01 | Natec, Inc. | Ammunition Article And Apparatus For Making Ammunition Articles |
US9470485B1 (en) | 2004-03-29 | 2016-10-18 | Victor B. Kley | Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control |
US9891030B1 (en) | 2004-03-29 | 2018-02-13 | Victor B. Kley | Molded plastic cartridge with extended flash tube, sub-sonic cartridges, and user identification for firearms and site sensing fire control |
EP1661684A2 (en) * | 2004-11-26 | 2006-05-31 | Hitachi Industrial Equipment Systems Co. Ltd. | Ejector with internal fluid path and moulding method |
US20060113709A1 (en) * | 2004-11-26 | 2006-06-01 | Toru Hirano | Molding method and mold |
US20080277832A1 (en) * | 2004-11-26 | 2008-11-13 | Toru Hirano | Molding Method and Mold |
US7591643B2 (en) | 2004-11-26 | 2009-09-22 | Hitachi Industrial Equipment Systems Co., Ltd. | Mold with ejector pin cooling |
EP1661684A3 (en) * | 2004-11-26 | 2006-09-06 | Hitachi Industrial Equipment Systems Co. Ltd. | Ejector with internal fluid path and moulding method |
US7665402B2 (en) | 2005-03-31 | 2010-02-23 | Techventure Investments Pty Ltd. | Method of manufacturing ammunition |
US20070261587A1 (en) * | 2005-12-27 | 2007-11-15 | Chung Sengshiu | Lightweight polymer cased ammunition |
US7610858B2 (en) * | 2005-12-27 | 2009-11-03 | Chung Sengshiu | Lightweight polymer cased ammunition |
JP2010522860A (ja) * | 2007-03-30 | 2010-07-08 | テクベンチャー インベストメンツ プロプライエタリー リミテッド | 弾薬を製造する方法 |
WO2008119115A1 (en) * | 2007-03-30 | 2008-10-09 | Techventure Investments Pty Ltd | A method of manufacturing ammunition |
US9989343B2 (en) * | 2010-07-30 | 2018-06-05 | Pcp Tactical, Llc | Base insert for polymer ammunition cartridges |
US9921017B1 (en) | 2013-03-15 | 2018-03-20 | Victor B. Kley | User identification for weapons and site sensing fire control |
RU2611044C2 (ru) * | 2013-07-30 | 2017-02-20 | Евгений Григорьевич Пастухов | ГИЛЬЗА ДЛЯ ОГНЕСТРЕЛЬНОГО ОРУЖИЯ (варианты ) |
US20190011231A1 (en) * | 2015-09-18 | 2019-01-10 | Baschieri & Pellagri S.P.A. | Method for making cases for firearms |
ITUB20154648A1 (it) * | 2015-10-14 | 2017-04-14 | Elio Rachelli & C S N C | Bossolo per cartucce di arma da fuoco e procedimento di realizzazione di detto bossolo |
USD849874S1 (en) | 2018-01-21 | 2019-05-28 | Vista Outdoor Operations Llc | Muzzleloader propellant cartridge |
CZ308977B6 (cs) * | 2020-12-21 | 2021-10-27 | Václav Svachouček | Malorážový náboj s plastovou nábojnicí a způsob jeho výroby |
US12066279B2 (en) | 2022-05-06 | 2024-08-20 | Innovative Performance Applications, Llc | Polymer ammunition casing |
Also Published As
Publication number | Publication date |
---|---|
ES328881A1 (es) | 1967-08-16 |
GB1111287A (en) | 1968-04-24 |
NO120622B (pt) | 1970-11-09 |
FR1486257A (fr) | 1967-06-23 |
SE314926B (pt) | 1969-09-15 |
DE1578157A1 (de) | 1970-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3424089A (en) | Cartridge cases | |
US3159701A (en) | Injection molding of plastic ammunition case | |
US3737272A (en) | Improved injection mold apparatus for the production of substantially cup-shaped and sleeve-shaped thermoplastic containers | |
KR100553165B1 (ko) | 금형장치, 금형장치를 갖는 성형기 | |
US2777164A (en) | Injection moulding machine | |
CN111086153B (zh) | 一种汽车厚壁车标以及注塑工艺 | |
KR20060033018A (ko) | 성형방법, 성형용 금형, 성형품 및 성형기 | |
JPS5976230A (ja) | 中空のプラスチック成形品の射出成形方法 | |
EP1337367B1 (en) | Improved injection nozzle for a metallic material injection-molding machine | |
US6399005B1 (en) | Injection molding method using a fixed die and a movable die | |
US3929959A (en) | Method for producing oriented plastic shotshells | |
US4882117A (en) | Injection molding process for molten plastic | |
US3514468A (en) | Method of producing oriented crystalline plastics | |
US3767340A (en) | Sprue bushing for a single cavity or center sprued mold | |
CA2545212C (en) | Mould cavity structure | |
US7063525B2 (en) | Extrusion die | |
EP2580040B1 (en) | Mold-tool system having valve stem slide supported by nozzle housing | |
JP7332370B2 (ja) | 合成樹脂製フランジブッシュの射出成形金型 | |
US3550209A (en) | Apparatus for molding articles | |
US3276375A (en) | Plastic article making | |
GB1433136A (en) | Moulding articles | |
JP6199346B2 (ja) | 成形品の突き出しに特徴を有する成形方法および射出成形機 | |
US6835058B2 (en) | Injection molding machine having a moveable screw with a stop position | |
EP2611590B1 (en) | Nozzle-locating insulator having spring-noncontact sections interposed between spring-contact sections | |
KR102442700B1 (ko) | 사출금형 |