US3423235A - Organosiloxane-containing finishes for organic fibers - Google Patents

Organosiloxane-containing finishes for organic fibers Download PDF

Info

Publication number
US3423235A
US3423235A US413304A US3423235DA US3423235A US 3423235 A US3423235 A US 3423235A US 413304 A US413304 A US 413304A US 3423235D A US3423235D A US 3423235DA US 3423235 A US3423235 A US 3423235A
Authority
US
United States
Prior art keywords
organic
fiber
finishes
fibers
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US413304A
Inventor
James Kermit Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Application granted granted Critical
Publication of US3423235A publication Critical patent/US3423235A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating

Definitions

  • This application relates to organosiloxane-containing finishes for organic fibers.
  • Dimethylpolysiloxane is a known finish for organic fibers such as thread and yarn. It imparts superior and long lasting lubricity to the fibers, even when high temperatures and loads that would destroy organic finishes are generated on the fiber surface through friction.
  • dimethylpolysiloxane-finished threads and yarns are often used in high speed sewing and weaving machines where high friction can cause frequent fiber breakage is nonsilicone fiber finishes are used.
  • Waxy fiber finishes can be used to hold fibers together in a thread or yarn.
  • This application discloses new silicone compositions that possess the excellent fiber lubricating properties of dimethylpolysiloxane, yet which are compatible with almost all organic oils and waxes.
  • improved organic fiber finishes are obtained at low cost, showing superiority over nonsilicone fiber finishes.
  • the silicone compositions of this invention include waxy materials as well as fluids, and are superior to organic fiber finishes whether used alone or in com-bination with other materials.
  • This invention relates to the process of applying to an 3,423,235 Patented Jan. 21, 1969 organic fiber a composition
  • a composition comprising a polymeric siloxane consisting essentially of r (-Si 0-) units and (b) at least one unit per molecule, where R is an alkyl radical with an average of at least 14 carbon atoms and n has a value of 1 to 2, there being an average of from 1 to 12 (b) units for every 20 (a) units present, and there being an average of 4 to (a) units per polymer molecule, whereby a lubricated fiber is formed.
  • R can be any alkyl radical of at least 14 carbon atoms such as the tetradecyl, octadecyl, eicosyl, and myricyl radicals. Compositions containing mixtures of R groups are acceptable for use in this invention.
  • the silicone of this invention can be diluted with an organic diluent in any proportion, though it is preferred to have at least one weight percent of the sillcone of this invention present based on the weight of the diluted composition.
  • the organic diluent can be a material suitable for use as a fiber lubricant, e.g. any nondrying organic oil such as naphthenic base, paraifinic base, or mixed base petroleum lubricating oils, other hydrocarbon lubricants, such as lubricating oils derived from coal products and synthetic oils, e.g. alkylene polymers (such as polymers of propylene, butylene, etc., and mixtures thereof).
  • a fiber lubricant e.g. any nondrying organic oil such as naphthenic base, paraifinic base, or mixed base petroleum lubricating oils, other hydrocarbon lubricants, such as lubricating oils derived from coal products and synthetic oils, e.g. alkylene polymers (such as polymers of propylene, butylene, etc., and mixtures thereof).
  • alkylene oxide-type polymers dicarboxylic acid esters, liquid esters of acids of phosphorus, alkyl aromatic hydrocarbons, and synthetic oils of the alkylene oxide-type polymers may be used, eg propylene oxide polymers produced by polymerizing propylene oxide in the presence of water or alcohols such as ethyl alcohol.
  • Esters of ethylene oxide-type polymers such as acetylated propylene oxide polymers prepared by acetylating propylene oxide polymers containing hydroxyl groups, polyethers prepared from alkylene glycols such as ethylene glycol, fatty acid esters, and other organic oils are all suitable.
  • the polymeric products prepared from the various alkylene oxides and alkylene glycols may be polyoxyalkylene diols or polyalkylene glycol derivatives; that is, the terminal hydroxy group can remain as such, or one or both of the terminal hydroxy groups can be removed during the polymerization reaction by esterification or etherification.
  • Synthetic oils of the dicarboxyli acid ester type include those which are prepared by esterification such dicarboxylic acids as adipic acid, azelaic acid, suberic acid, sebacic acid, alkenyl succinic acid, fumaric acid, maleic acid, etc., with alcohols such as :butyl alcohol, hexyl alcohol, 2-ethylhexyl alcohol, dodecyl alcohol, etc.
  • Examples of dibasic (dicarboxylic) acid ester syntheti oils include dibutyl adipate, dihexyl adipate, di-Z-ethylhexyl sebacate, di-n-hexylfumaric polymer.
  • Synthetic oils of the alkyl aromatic type include those which are prepared by alkylating benzene (e.g., dodecylbenzene, tetradecylbenzene, didodecylbenzene, etc.).
  • Polyhydric alcohol esters such as esters of trimethylol propane and pentaerythritol are also usable.
  • Organic waxes such as paraffin, beeswax, r carnauba wax can also be used as the diluent.
  • volatile solvents are isopropanol, benzene, heptane, cyclo hexane, acetone, diethylether, naphtha, trifluorotrichloroethane, dichlorobenzene and carbon tetrachloride.
  • organic diluent if present at all, to be present in the amount of 50 to 99 weight percent, based on the total weight of the composition, and for essentially all of the rest of the composition to be the silicone of this invention.
  • the silicones of this invention will tend to be waxy, which is preferred. If R has an average of less than 20 carbon atoms, the silicones of this invention will tend to be fluids, which may be desirable in many circumstances.
  • the silicones of this invention can be made by equilibrating octamethylcyclotetrasiloxane and (CH3)3SlO SiO units for every 20 units presnt, and the degree of polymerization should not exceed 100 units per molecule, preferably there being no more than 40 of such units per molecule.
  • the degree of polymerization can be controlled by the amount of endblocking units that are present, e.g. [(CH SiO].
  • the above copolymeric product is then reacted with one or more types of alpha olefin having an average of at least 14 carbon atoms per molecule, the reaction being in the presence of a platinum catalyst with heating to about 100 to 150 C.
  • the product will be a copoly-mer of i t SltiO and Eli O 0 H3 C 113 where R is defined above. This is the silicone of this invention.
  • Another method of making the silicones of this invention is to equilibrate octamethylcyclotetrasiloxane with CH3 CH3 RSlOSiR I13 CH3 in the presence of a catalyst such as NaOH.
  • the above disiloxane can be made by reacting tetramethyldisiloxane with the appropriate alpha olefine in the presence of platinum.
  • the products made by this partaicular process possess higher alkyl groups only on the terminal silicon atoms of each molecule.
  • the fluid compositions of this invention can be applied to fibers by means of spraying, running the fibers over a pad soaked with the composition, or any other known Way of applying fluids to fibers.
  • the waxy compositions of this invention can be applied by melteing the composition to the fluid form and then applying it, or by running the fibers across the waxy substance, etc.
  • Any organic fiber can be used in this invention.
  • any yarn or thread made of wool, cotton, rayon, hemp, silk, polypropylene, polyesters such as Dacron, polyamides such as nylon, polyethylene, or cellulose acetate is operative.
  • the geratest improvements in lubricity tend to occur when cellulosic fibers such as cotton, or acrylic (polyacrylonitrile) fibers are used.
  • Example 2 When a dispersion of 10 grams of E (CzaHuSlO (S10) CH3 2 (EH3 40 grams of paraffin, and grams of hexane is placed on a cotton thread and allowed to dry, the lubricity of the thread is greatly enhanced, and the heat stability of the lubricating coat is greater than that of a cotton fiber coated with paraffin alone.
  • E CzaHuSlO (S10) CH3 2
  • n has a value of 1 to 2, there being an average of 1 to 12 (b) units for every 20 (:1) units present, and there being an average of 4 to 100 (a) units present per polymer molecule, and (2) from 99 to 50 weight percent of a compatible diluent selected from the group consisting of nondrying organic oil and wax.
  • a compatible diluent selected from the group consisting of nondrying organic oil and wax.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

United States Patent ORGANOSILOXANE-CONTAINING FINISHES FOR ORGANIC FIBERS James Kermit Campbell, Midland, Mich, assignor to Dow Corning Corporation, Midland, Mich, a corporation of Michigan No Drawing. Filed Nov. 23, 1964, Ser. No. 413,304
U.S. Cl. 117138.8 3 Claims Int. Cl. B06111 15/66 ABSTRACT OF THE DISCLOSURE Certain organosiloxanes are shown compatible with most organic oils and waxes and possessing excellent fiber lubricating properties of conventional silicone fluids. The silicone compositions include waxy materials as well as fluids and are superior to organic fiber finishes. An illustrative example being:
paraflin and hexane placed upon cotton and allowed to dry.
This application relates to organosiloxane-containing finishes for organic fibers.
Dimethylpolysiloxane is a known finish for organic fibers such as thread and yarn. It imparts superior and long lasting lubricity to the fibers, even when high temperatures and loads that would destroy organic finishes are generated on the fiber surface through friction.
For this reason dimethylpolysiloxane-finished threads and yarns are often used in high speed sewing and weaving machines where high friction can cause frequent fiber breakage is nonsilicone fiber finishes are used.
It would be deeirable to dilute siloxane fiber finishes with organic oils and waxes to obtain improved lubricity over pure organic finishes at a reduced cost. Dimethylsiloxane, however, is incompatible with most organic oils and waxes, which makes it difficult to mix with organic materials,
It would further be desirable to develop waxy silicone fiber finishes, but in its usable forms dimethylpolysiloxane is a fluid. Waxy fiber finishes can be used to hold fibers together in a thread or yarn.
This application discloses new silicone compositions that possess the excellent fiber lubricating properties of dimethylpolysiloxane, yet which are compatible with almost all organic oils and waxes. When even minor quantities of the silicone of this application are added to organic oils and waxes, improved organic fiber finishes are obtained at low cost, showing superiority over nonsilicone fiber finishes.
The silicone compositions of this invention include waxy materials as well as fluids, and are superior to organic fiber finishes whether used alone or in com-bination with other materials.
This invention relates to the process of applying to an 3,423,235 Patented Jan. 21, 1969 organic fiber a composition comprising a polymeric siloxane consisting essentially of r (-Si 0-) units and (b) at least one unit per molecule, where R is an alkyl radical with an average of at least 14 carbon atoms and n has a value of 1 to 2, there being an average of from 1 to 12 (b) units for every 20 (a) units present, and there being an average of 4 to (a) units per polymer molecule, whereby a lubricated fiber is formed.
R can be any alkyl radical of at least 14 carbon atoms such as the tetradecyl, octadecyl, eicosyl, and myricyl radicals. Compositions containing mixtures of R groups are acceptable for use in this invention.
If desired, the silicone of this invention can be diluted with an organic diluent in any proportion, though it is preferred to have at least one weight percent of the sillcone of this invention present based on the weight of the diluted composition.
The organic diluent can be a material suitable for use as a fiber lubricant, e.g. any nondrying organic oil such as naphthenic base, paraifinic base, or mixed base petroleum lubricating oils, other hydrocarbon lubricants, such as lubricating oils derived from coal products and synthetic oils, e.g. alkylene polymers (such as polymers of propylene, butylene, etc., and mixtures thereof). Also, alkylene oxide-type polymers, dicarboxylic acid esters, liquid esters of acids of phosphorus, alkyl aromatic hydrocarbons, and synthetic oils of the alkylene oxide-type polymers may be used, eg propylene oxide polymers produced by polymerizing propylene oxide in the presence of water or alcohols such as ethyl alcohol. Esters of ethylene oxide-type polymers, such as acetylated propylene oxide polymers prepared by acetylating propylene oxide polymers containing hydroxyl groups, polyethers prepared from alkylene glycols such as ethylene glycol, fatty acid esters, and other organic oils are all suitable.
The polymeric products prepared from the various alkylene oxides and alkylene glycols may be polyoxyalkylene diols or polyalkylene glycol derivatives; that is, the terminal hydroxy group can remain as such, or one or both of the terminal hydroxy groups can be removed during the polymerization reaction by esterification or etherification.
Synthetic oils of the dicarboxyli acid ester type include those which are prepared by esterification such dicarboxylic acids as adipic acid, azelaic acid, suberic acid, sebacic acid, alkenyl succinic acid, fumaric acid, maleic acid, etc., with alcohols such as :butyl alcohol, hexyl alcohol, 2-ethylhexyl alcohol, dodecyl alcohol, etc. Examples of dibasic (dicarboxylic) acid ester syntheti oils include dibutyl adipate, dihexyl adipate, di-Z-ethylhexyl sebacate, di-n-hexylfumaric polymer.
Synthetic oils of the alkyl aromatic type include those which are prepared by alkylating benzene (e.g., dodecylbenzene, tetradecylbenzene, didodecylbenzene, etc.).
Polyhydric alcohol esters such as esters of trimethylol propane and pentaerythritol are also usable.
Organic waxes such as paraffin, beeswax, r carnauba wax can also be used as the diluent.
It may be desirable to use volatile solvents as part or all of the organic diluent to assist in the application of the composition to the fibers and to enhance the dispersability of the composition. Examples of suitable solvents are isopropanol, benzene, heptane, cyclo hexane, acetone, diethylether, naphtha, trifluorotrichloroethane, dichlorobenzene and carbon tetrachloride.
Mixtures of organic diluents can be used. For example, to weight percent of the silicone of this invention there can be added 45 weight percent of paraffin dissolved in 50 weight percent of heptane. A uniform, fluid dispersion will result that is easily applied to fibers, and which imparts superior lubricity.
It is preferred for the organic diluent, if present at all, to be present in the amount of 50 to 99 weight percent, based on the total weight of the composition, and for essentially all of the rest of the composition to be the silicone of this invention.
If R has an average of at least 20 carbon atoms, the silicones of this invention will tend to be waxy, which is preferred. If R has an average of less than 20 carbon atoms, the silicones of this invention will tend to be fluids, which may be desirable in many circumstances.
The silicones of this invention can be made by equilibrating octamethylcyclotetrasiloxane and (CH3)3SlO SiO units for every 20 units presnt, and the degree of polymerization should not exceed 100 units per molecule, preferably there being no more than 40 of such units per molecule. The degree of polymerization can be controlled by the amount of endblocking units that are present, e.g. [(CH SiO].
The above copolymeric product is then reacted with one or more types of alpha olefin having an average of at least 14 carbon atoms per molecule, the reaction being in the presence of a platinum catalyst with heating to about 100 to 150 C.
The product will be a copoly-mer of i t SltiO and Eli O 0 H3 C 113 where R is defined above. This is the silicone of this invention.
Another method of making the silicones of this invention is to equilibrate octamethylcyclotetrasiloxane with CH3 CH3 RSlOSiR I13 CH3 in the presence of a catalyst such as NaOH. The above disiloxane can be made by reacting tetramethyldisiloxane with the appropriate alpha olefine in the presence of platinum.
The products made by this partaicular process possess higher alkyl groups only on the terminal silicon atoms of each molecule.
The fluid compositions of this invention can be applied to fibers by means of spraying, running the fibers over a pad soaked with the composition, or any other known Way of applying fluids to fibers. The waxy compositions of this invention can be applied by melteing the composition to the fluid form and then applying it, or by running the fibers across the waxy substance, etc.
Any organic fiber can be used in this invention. For example, any yarn or thread made of wool, cotton, rayon, hemp, silk, polypropylene, polyesters such as Dacron, polyamides such as nylon, polyethylene, or cellulose acetate is operative.
The geratest improvements in lubricity tend to occur when cellulosic fibers such as cotton, or acrylic (polyacrylonitrile) fibers are used.
The following examples are illustrative only and should not be construed as limiting the invention, which is properly delineated in the appended claims.
EXAMPLE 1 Various yarns were areated with 10% toluene solutions of various silicone finishing agents to achieve 1.0% solids on the yarn, based on the weight of the yarn, and allowed to dry.
These yarns were then tested for frictional characteristics against either a ceramic or steel spindle. The yarn was looped over the spindle with a tension at rest of about grams. During the test the yarn traveled over the spindle at yards per minute. Two strain gauges recorded the difference in tension on the yarn before and after passing the spindle to yield a relative measure of the frictional force between the yarn and the spindle. This relative friction was expressed as a number, the lower frictions being expressed by lower numbers.
5 6 The results are shown below:
Relative trlctlon Finishing agent for yarn Cotton yarn Acrylic yarn Steel Ceramic Steel Ceramic spindle spindle spindle spindle None- 12 12 20 4 CH CH OH; R Eli( iOh-a SiR R=C22 and above 7 7 4. 5
C 3 C 3 C 3 R CH (CH SiO( !SIO) SlO)24Sl(CH:)3 R=C z and above 7 7 4. 5 6
H H; I
CH (CH SiO(R SiO) SiO)24Si(CH R=Cis 8 8 5. 5 8
CH H;
CH CH (CH SiO(R SiO) SiO).-t( SiO 2ASi(CH3)3 R=C 12 6 8.5
H3 H H (CH SiO(R Si0)%a5Si(CH;) R=C1 1 11 8 8 Dimethylpolysiloxane, 350 cs.
This composition is outside of the claims of this invention, and is shown for comparison.
Example 2 When a dispersion of 10 grams of E (CzaHuSlO (S10) CH3 2 (EH3 40 grams of paraffin, and grams of hexane is placed on a cotton thread and allowed to dry, the lubricity of the thread is greatly enhanced, and the heat stability of the lubricating coat is greater than that of a cotton fiber coated with paraffin alone.
Example 3 When a dispersion of 10 g. of
. C 2 C H3 12 5 3 2o units, and
(b) at least one unit per molecule, where R is an alkyl radical with an average of at least 14 carbon atoms,
and n has a value of 1 to 2, there being an average of 1 to 12 (b) units for every 20 (:1) units present, and there being an average of 4 to 100 (a) units present per polymer molecule, and (2) from 99 to 50 weight percent of a compatible diluent selected from the group consisting of nondrying organic oil and wax. 2. The article of claim 1 wherein the fiber is cotton. 3. The article of claim 1 where the fiber is acrylic.
References Cited UNITED STATES PATENTS 2,486,162 10/1949 Hyde 260-4482 X 2,698,817 1/1955 Guenther 117-138.8 2,735,791 2/1956 Peyrot et al 117138.8 X 2,872,356 2/1959 Bull et al 117-1395 3,187,752 6/1965 Glick ll7138.8 X
WILLIAM D. MARTIN, Primary Examiner.
. E. MILLER, J R., Assistant Examiner.
US413304A 1964-11-23 1964-11-23 Organosiloxane-containing finishes for organic fibers Expired - Lifetime US3423235A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41330464A 1964-11-23 1964-11-23

Publications (1)

Publication Number Publication Date
US3423235A true US3423235A (en) 1969-01-21

Family

ID=23636723

Family Applications (1)

Application Number Title Priority Date Filing Date
US413304A Expired - Lifetime US3423235A (en) 1964-11-23 1964-11-23 Organosiloxane-containing finishes for organic fibers

Country Status (7)

Country Link
US (1) US3423235A (en)
AT (1) AT263691B (en)
CH (1) CH470523A (en)
DE (1) DE1469335A1 (en)
FR (1) FR1452303A (en)
GB (1) GB1097487A (en)
NL (2) NL6515112A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493425A (en) * 1967-01-09 1970-02-03 Dow Corning Lubricated fibers
US3837022A (en) * 1973-03-30 1974-09-24 Phillips Petroleum Co Fibers for pillow stuffing
US3844826A (en) * 1971-12-16 1974-10-29 Bayer Ag Dressing sewing thread to reduced friction
US3853607A (en) * 1973-10-18 1974-12-10 Du Pont Synthetic filaments coated with a lubricating finish
US3983272A (en) * 1974-02-06 1976-09-28 Wacker-Chemie Gmbh Method for improving the lubricating properties and imparting antistatic properties to organic fibers
US4035550A (en) * 1974-12-23 1977-07-12 Massachusetts Institute Of Technology Fiber reinforced composite of high fracture toughness
US4105569A (en) * 1977-02-07 1978-08-08 George A. Goulston Co., Ltd. Yarn finish formulation
US4169905A (en) * 1976-11-30 1979-10-02 Rhone-Poulenc Industries Process for lubricating textile threads
US4171267A (en) * 1978-10-30 1979-10-16 Sws Silicones Corporation Organopolysiloxane-hydrocarbon oil solutions
US4394414A (en) * 1981-05-29 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4477524A (en) * 1981-05-29 1984-10-16 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US6051316A (en) * 1995-06-09 2000-04-18 Vetrotex France Sizing composition for composite yarns and composite yarns coated with this composition
US20060280939A1 (en) * 2003-12-24 2006-12-14 Gale Pacific Limited Polymeric plastics material and manufacture thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436164A1 (en) * 1984-10-03 1986-04-10 Bayer Ag, 5090 Leverkusen LUBRICANT PREPARATIONS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486162A (en) * 1942-02-26 1949-10-25 Corning Glass Works Organo-siloxanes
US2698817A (en) * 1951-02-28 1955-01-04 Coats & Clark Sewing thread and method for producing same
US2735791A (en) * 1953-08-05 1956-02-21 Waterproofing compositions and their
US2872356A (en) * 1955-06-02 1959-02-03 Dow Chemical Co Lubrication of synthetic cellulose fibers
US3187752A (en) * 1962-04-27 1965-06-08 American Cyanamid Co Non-absorbable silicone coated sutures and method of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486162A (en) * 1942-02-26 1949-10-25 Corning Glass Works Organo-siloxanes
US2698817A (en) * 1951-02-28 1955-01-04 Coats & Clark Sewing thread and method for producing same
US2735791A (en) * 1953-08-05 1956-02-21 Waterproofing compositions and their
US2872356A (en) * 1955-06-02 1959-02-03 Dow Chemical Co Lubrication of synthetic cellulose fibers
US3187752A (en) * 1962-04-27 1965-06-08 American Cyanamid Co Non-absorbable silicone coated sutures and method of making

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493425A (en) * 1967-01-09 1970-02-03 Dow Corning Lubricated fibers
US3844826A (en) * 1971-12-16 1974-10-29 Bayer Ag Dressing sewing thread to reduced friction
US3837022A (en) * 1973-03-30 1974-09-24 Phillips Petroleum Co Fibers for pillow stuffing
US3853607A (en) * 1973-10-18 1974-12-10 Du Pont Synthetic filaments coated with a lubricating finish
US3983272A (en) * 1974-02-06 1976-09-28 Wacker-Chemie Gmbh Method for improving the lubricating properties and imparting antistatic properties to organic fibers
US4035550A (en) * 1974-12-23 1977-07-12 Massachusetts Institute Of Technology Fiber reinforced composite of high fracture toughness
US4169905A (en) * 1976-11-30 1979-10-02 Rhone-Poulenc Industries Process for lubricating textile threads
US4105569A (en) * 1977-02-07 1978-08-08 George A. Goulston Co., Ltd. Yarn finish formulation
US4171267A (en) * 1978-10-30 1979-10-16 Sws Silicones Corporation Organopolysiloxane-hydrocarbon oil solutions
US4394414A (en) * 1981-05-29 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4477524A (en) * 1981-05-29 1984-10-16 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US6051316A (en) * 1995-06-09 2000-04-18 Vetrotex France Sizing composition for composite yarns and composite yarns coated with this composition
US20060280939A1 (en) * 2003-12-24 2006-12-14 Gale Pacific Limited Polymeric plastics material and manufacture thereof

Also Published As

Publication number Publication date
CH1410165A4 (en) 1968-12-13
GB1097487A (en) 1968-01-03
NL129267C (en)
FR1452303A (en) 1966-02-25
CH470523A (en) 1969-05-14
NL6515112A (en) 1966-05-24
AT263691B (en) 1968-07-25
DE1469335A1 (en) 1969-03-27

Similar Documents

Publication Publication Date Title
US3423235A (en) Organosiloxane-containing finishes for organic fibers
US4105567A (en) Organosilicon compounds and textile fiber finishes containing them
US4404035A (en) Compositions comprising a wax and an organopolysiloxane
US3983272A (en) Method for improving the lubricating properties and imparting antistatic properties to organic fibers
JP3704309B2 (en) Spinning finish
EP0132910B1 (en) Lubricating agents for processing fibres and method of processing thermoplastic synthetic fibre filaments therewith
US4064057A (en) Textile fiber finishes
US3140198A (en) Treatment of textile materials
EP0145150B2 (en) Lubricating agents for processing synthetic yarns and method of processing synthetic yarns therewith
US3814710A (en) Polish compositions
US4171267A (en) Organopolysiloxane-hydrocarbon oil solutions
US3493425A (en) Lubricated fibers
US3423314A (en) Antistatic lubricant as a process finish for synthetic fibers
JP3266341B2 (en) Finishing agent for woven fiber containing polyalphaolefin and nonionic emulsifier having plural hydrocarbon chains
US3896032A (en) Diorganopolysiloxane-based lubricant for organic fibers
US3844826A (en) Dressing sewing thread to reduced friction
CA2001792C (en) Straight oil composition for fibrous material
US3634236A (en) Spandex lubricant composition
JP2649061B2 (en) Fiber treatment agent
JPS6137389B2 (en)
US4014800A (en) Fiber-lubricating compositions
US3795538A (en) Process for lubricating organic and inorganic fibers
JP3329538B2 (en) Finishing agent for textile fibers containing a sila hydrocarbon lubricant and a nonionic emulsifier having a plurality of hydrocarbon chains
JP2702244B2 (en) Oil agent for polyurethane elastic fiber
JPS60151385A (en) Oil agent for treating synthetic fiber and treatment of synthetic fiber thereby