US3405526A - Multiple stage, hydraulic jet propulsion apparatus for water craft - Google Patents

Multiple stage, hydraulic jet propulsion apparatus for water craft Download PDF

Info

Publication number
US3405526A
US3405526A US619763A US61976367A US3405526A US 3405526 A US3405526 A US 3405526A US 619763 A US619763 A US 619763A US 61976367 A US61976367 A US 61976367A US 3405526 A US3405526 A US 3405526A
Authority
US
United States
Prior art keywords
pump
stage
water
housing
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US619763A
Other languages
English (en)
Inventor
George R Aschauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Twin Disc Inc
Original Assignee
Twin Disc Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Twin Disc Inc filed Critical Twin Disc Inc
Priority to US619763A priority Critical patent/US3405526A/en
Priority to DE1556505A priority patent/DE1556505C3/de
Priority to GB9934/68A priority patent/GB1162921A/en
Priority to FR1555257D priority patent/FR1555257A/fr
Priority to BE711506D priority patent/BE711506A/xx
Application granted granted Critical
Publication of US3405526A publication Critical patent/US3405526A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/103Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type of co-rotative type, i.e. rotating in the same direction, e.g. twin propellers

Definitions

  • Prior art propulsion units have used multiple-stages of pumps but these pumps have usually been of the same size and/or speed as one another.
  • the US. patent to Hamilton, No. 3,083,529, issued Apr. 2, 1963, is an example of this type.
  • the subsequent stages are also only low pressure rise stages because they all have the same water flow, in gallons per minute (GPM), and speed of the impeller in revolutions per minute (RPM).
  • GPM gallons per minute
  • RPM revolutions per minute
  • the maximum propulsive efficiency depends among other things, on the unit size and weight, GPM of water flow, boat stall thrust and accelerating capability and allowable specific speed.
  • High efiiciency requires large flow of water and low jet velocity consequently low jet pressure.
  • Specific speed is represented by the known formula where RPM is the speed of the impeller, GPM is the water flowing through and H is pressure head in feet of water generated by the pump. From the above formula, it is seen that low specific speeds require high head combined with relatively low capacity and speeds of rotation.
  • the present invention utilizes a large diameter, low speed, first stage impeller.
  • Ns specific speed
  • the present impeller design provides a large intake area and consequently good initial force due to atmospheric pressure, to thereby push water into the intake. This permits use of a lower specific speed (Ns) value, which is desirable at this stage because the RPM can be less.
  • the invention provides a particularly efiicient, multiplestage, hydraulic jet propulsion apparatus for waterborne craft in which the pumps of the diiferent stages are of different types and operate at different speeds.
  • the present invention provides a multi-stage apparatus of the above type in which the first stage pump is of the axial flow type and acts as a supercharger pump; the second stage pump is of the mixed flow type and which constitutes the main pump for the apparatus and develops the great majority of the horsepower; in addition, this second stage pump is driven at a higher speed than the first stage pump. It is thus possible to utilize a slower speed, lower horsepower first stage pump for the supercharging or packing of the water into the main second stage pump which in turn utilizes a higher allowable specific speed, resulting in a particularly efiicient marine jet.
  • This combination of an axial flow pump feeding, that is, supercharging, a subsequent mixed-flow type of pump, with the latter mixed flow pump turning at a considerably higher speed provides a particularly efficient unit capable of using the slower speed and lower horsepower pump to initially pack the second stage, main pump of higher specific speed.
  • the arrangement is such that the mean diameter of the mixed flow pump is greater than the mean diameter of the first, axial flow pump, and this permits a slower speed for the mixed flow pump than would be possible using an axial flow pump as the second stage.
  • a greater pressure rise is possible through the second stage, mixed flow type pump.
  • the general flow path of the water is one having few and gentle turning losses.
  • a more specific aspect of the present invention relates to apparatus of the above type which has a carefully shaped, diffusing type inlet duct which minimizes friction losses and in which the inlet velocity is considerably higher than the velocity of the inrushing water just ahead of the first pump. With the velocity of the water just ahead of the first pump reduced, the pressure is greater in this area, and it is this pressure increase ahead of the first pump which is effective in reducing cavitation.
  • the drawing is a longitudinal, cross-sectional view through a portion of a watercraft embodying apparatus of the present invention, certain parts being shown in section or broken away for clarity of the drawings.
  • the propulsion unit' U with the housing H is mounted with the forward end of its intake portion 1 flush with the bottom 2 of the watercraft C, and rearward, restricted end 3 of the housing extends through the stern of the craft in accordance with conventional practice.
  • An intake grill 1g may be provided below the hull of the craft, if desired.
  • the forward intake portion 1 of the housing is of the diffusing type in which the water is diffused as it approaches the first pump, thereby decreasing its velocity and increasing its pressure. This is due to the fact that 3 the cross sectional area of the inlet side 1a of the intake portion is less than the dischargeside 1b adjacent the first pump, to be described. 7
  • a nozzle N extends rearwardly beyond the stern for receiving the stream of water from the housing in the boat and discharging it to propel, steer or reverse the boat in the known manner.
  • the nozzle may be of the type shown in my Patent No. 3,251,185 which issued May 17, 1966, and is entitled, Jet Propelled llVater Craft, or it may be of a modified, narrower form of the nozzle shown in my Patent No. 3,183,878, which issued May 18, 1965, entitled, Hydrojet Propulsion Unit for Water Craft.
  • a power plant in the form of an internal combustion engine 5 drives a lay shaft 5a which in turn drives a shaft 6 through a gear reduction unit 7. More specifically, the reduction unit through its gears 7a and 7b, drives the shaft 6, and through its gears 70 and 7d, drives the sleeve 8 which is fixed by a key 8a to the gears 7d.
  • a first stage pump 10 is of the axial flow type and is fixed to the sleeve 8 and is driven thereby to form a relatively low speed pump which acts to supercharge or pack the water into a second stage pump 12.
  • This first stage axial flow pump forces the water in a generally axial direction with a minimum of water straightening being required, and directly to the second stage pump, and produces good water acceleration.
  • the mean diameter of pump 10 is indicated by the dotted line 11, the point of discharge being at the rear of the blade, as at 11a.
  • the second stage pump 12 is fixed to and driven by the shaft 6 to form the main, high-speed pump of the apparatus. Its mean diameter is indicated by the broken line 13.
  • the second stage pump 12 is of the mixed flow type and operates at a higher speed than the first stage.
  • the main i pump, that is, the mixed flow, second stage pump delivers the great majority of the horsepower, for example, in a jet developing 258 horsepower, it would develop approximately 192 horsepower while the first stage, axial type pump would develop the remaining 66 horsepower.
  • the mixed fiow impeller or pump discharges at an angle to the shaft axis that is less than 90 degrees and its greater than zero degrees. That portion of the housing which extends from the intake side of the first stage pump to the intake side of the second stage pump is generally of straight or cylindrical shape. The housing then diverges rearwardly from the inlet side of the second stage pump to the discharge side of the second stage pump. Then the housing converges severely at its discharge portion.
  • the outer ends of the pump blades are of the free or unsupported type and closely follow the contour of the housing which complements and surrounds them.
  • Wear rings 13 may be provided in the housing adjacent the blade tips.
  • vanes 14 are secured within the housing and are located behind the first stage pump 10. These vanes are fastened together at their radially inner ends by the hub 14a which also forms a support for the bearings 14b and 14c which rotationally support, respectively, the sleeve 8 and the drive shaft 6.
  • An inspection cover 14d is provided for access to the apparatus for inspection and maintenance, and this cover may contain one or more vanes 14 as required.
  • the housing includes a seal 15 between the sleeve 8 and the housing fairing 16 located just ahead of the hub of pump 10.
  • the mixed flow pump 12 diverges toward its rear end and delivers water to the rear discharge portion 19 of the housing.
  • This discharge portion is of rearwardly diverging shape at its forward end 19a and then is of rearwardly converging shape at its rearward end 19b where it is in communication with the nozzle N.
  • the discharge portion 19 of the housing also has a series of straightening vanes 20 which act to rec eive the water from the second pump and reduce the circular movement or spin of the water.
  • a particularly efticient twostage, two-speed hydraulic jet propulsion unit which uses a relatively slow speed, low horsepower, axial flow type pump to initially [pack or supercharge water into the second stage pump of the mixed flow type.
  • This combination of multistaging does not cause either pump to lose its efficiency and with the mixed flow pump operating faster than the first stage pump, a particularly efficient unit is the result.
  • a multi-stage, hydraulic jet propulsion unit for waterborne craft comprising, a housing having a forward intake portion and a rearward discharge portion for discharging rearwardly of the stern of the craft; a first stage, axial flow pump in said housing; a second stage, mixed flow pump in said housing and located rearwardly of said first stage pump for receiving water therefrom; straightening vanes located rearwardly of each of said first and second stage pumps; and means for rotationally driving said pumps and said second stage pump faster than said first stage pump.
  • a unit as defined in claim 1 further characterized in that said forward intake portion is of the diffusing type and has an inlet side and a discharge side, said inlet side being of smaller cross sectional area than said discharge side.
  • the unit as set forth in claim 1 further characterized in that said housing is of substantially cylindrical shape from the inlet side of said first stage pump to the inlet side of said second stage pump, and the said housing then diverges rearwardly from the inlet side of said second stage pump to the discharge side of said second stage pump, and then said housing converges rearwardly at its discharge portion.
  • said means for rotationally driving said pumps includes an engine and gear reduction unit, said pumps being in co-axial alignment and driven by a sleeve and a shaft, said sleeve and shaft each being connected to said gear reduction unit for being rotationally driven.
  • said means for rotationally driving said pumps includes an engine and gear reduction unit, said pumps being in co-axial alignment and driven by a sleeve and a shaft, said sleeve and shaft each being con- ,nected to said gear reduction unit for being rotationally driven.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US619763A 1967-03-01 1967-03-01 Multiple stage, hydraulic jet propulsion apparatus for water craft Expired - Lifetime US3405526A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US619763A US3405526A (en) 1967-03-01 1967-03-01 Multiple stage, hydraulic jet propulsion apparatus for water craft
DE1556505A DE1556505C3 (de) 1967-03-01 1968-02-26 Zweistufiger hydraulischer Strahlantrieb für Wasserfahrzeuge
GB9934/68A GB1162921A (en) 1967-03-01 1968-02-29 Multiple stage, hydraulic jet propulsion apparatus for water craft
FR1555257D FR1555257A (fi) 1967-03-01 1968-02-29
BE711506D BE711506A (fi) 1967-03-01 1968-02-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US619763A US3405526A (en) 1967-03-01 1967-03-01 Multiple stage, hydraulic jet propulsion apparatus for water craft

Publications (1)

Publication Number Publication Date
US3405526A true US3405526A (en) 1968-10-15

Family

ID=24483207

Family Applications (1)

Application Number Title Priority Date Filing Date
US619763A Expired - Lifetime US3405526A (en) 1967-03-01 1967-03-01 Multiple stage, hydraulic jet propulsion apparatus for water craft

Country Status (5)

Country Link
US (1) US3405526A (fi)
BE (1) BE711506A (fi)
DE (1) DE1556505C3 (fi)
FR (1) FR1555257A (fi)
GB (1) GB1162921A (fi)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756741A (en) * 1971-12-17 1973-09-04 Jacuzzi Bros Inc Jet propulsion pump assembly
US3981262A (en) * 1971-01-22 1976-09-21 Sidewinder Marine, Inc. Water jet propulsion apparatus
US4120152A (en) * 1977-03-15 1978-10-17 Rockwell International Corporation Anti-vortex pintle
FR2494662A1 (fr) * 1980-11-26 1982-05-28 Kamewa Ab Groupe reacteur a eau
US4523536A (en) * 1983-07-01 1985-06-18 Smoot Mark H Energy efficient power driven marine vessel boat
WO1986007571A1 (en) * 1985-06-17 1986-12-31 Smoot Mark H Energy efficient power driven marine vessel
US4767269A (en) * 1984-11-29 1988-08-30 Ab Volvo Penta Rotor system, particularly a boat propeller system
US4902254A (en) * 1985-09-05 1990-02-20 Chas Jean Bernard Propulsion device with conditioned inertia
US4925408A (en) * 1987-09-14 1990-05-15 Koronis Parts, Inc. Intake and pump assembly for aquatic vehicle
US5176548A (en) * 1991-01-25 1993-01-05 Morgan Robert D Ride plate for personal watercraft
US5509832A (en) * 1991-05-13 1996-04-23 Roos; Paul W. Marine jet drive
US5967868A (en) * 1990-04-10 1999-10-19 Yamaha Hatsudoki Kabushiki Kaisha Water jet propulsion unit mounting structure
US6200176B1 (en) * 1998-07-17 2001-03-13 Donald I. Bowers Marine jet drive pump preloader for reducing cavitation
US20030049978A1 (en) * 2001-08-20 2003-03-13 Patrice Dusablon Watercraft having a jet propulsion system that generates improved thrust
US20040083594A1 (en) * 2002-09-12 2004-05-06 Honda Giken Kogyo Kabushiki Kaisha Ride plate positioning mechanism for personal watercraft, and method of using same
US20050070178A1 (en) * 2003-09-16 2005-03-31 William Facinelli Waterjet propulsion apparatus
US20050142001A1 (en) * 2003-03-19 2005-06-30 Cornell Donald E. Axial flow pump or marine propulsion device
US20050159054A1 (en) * 2002-09-16 2005-07-21 Doen Marine Pty Ltd Marine jet propulsion arrangement
US6981902B1 (en) * 2003-11-03 2006-01-03 Samuel Barran Tafoya Marine reaction thruster
WO2006014189A2 (en) * 2004-03-17 2006-02-09 Decjet Incorporated Axial flow pump and marine propulsion device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625818A1 (de) * 1976-06-09 1977-12-22 Rockwell International Corp Intensivsauglaufrad
WO1984001758A1 (en) * 1982-10-27 1984-05-10 Skrinjar Designers Constructor Turbo jet pump
WO1984001760A1 (en) * 1982-10-27 1984-05-10 Skrinjar Designers Constructor Hydro turbo jet
FR2593138B2 (fr) * 1985-09-05 1988-03-18 Chas Jean Dispositif de propulsion a inertie conditionnee du fluide.
DE4140881A1 (de) * 1991-12-11 1993-06-17 Jetmarine Ag Wasserstrahlantrieb
GB2327404A (en) * 1997-07-16 1999-01-27 Lin Yeun Junn Stator of propelling system of small powerboat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402059A (en) * 1921-02-25 1922-01-03 Albert A Eich Pumping machinery
US3082732A (en) * 1960-12-29 1963-03-26 Richard C Stallman Water jet motor for boats
US3233573A (en) * 1960-02-08 1966-02-08 Charles W F Hamilton Hydraulic jet propulsion apparatus for water-borne craft
US3269111A (en) * 1964-04-01 1966-08-30 Allis Chalmers Mfg Co Power train for jet propelled water craft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402059A (en) * 1921-02-25 1922-01-03 Albert A Eich Pumping machinery
US3233573A (en) * 1960-02-08 1966-02-08 Charles W F Hamilton Hydraulic jet propulsion apparatus for water-borne craft
US3082732A (en) * 1960-12-29 1963-03-26 Richard C Stallman Water jet motor for boats
US3269111A (en) * 1964-04-01 1966-08-30 Allis Chalmers Mfg Co Power train for jet propelled water craft

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981262A (en) * 1971-01-22 1976-09-21 Sidewinder Marine, Inc. Water jet propulsion apparatus
US3756741A (en) * 1971-12-17 1973-09-04 Jacuzzi Bros Inc Jet propulsion pump assembly
US4120152A (en) * 1977-03-15 1978-10-17 Rockwell International Corporation Anti-vortex pintle
FR2494662A1 (fr) * 1980-11-26 1982-05-28 Kamewa Ab Groupe reacteur a eau
US4523536A (en) * 1983-07-01 1985-06-18 Smoot Mark H Energy efficient power driven marine vessel boat
US4767269A (en) * 1984-11-29 1988-08-30 Ab Volvo Penta Rotor system, particularly a boat propeller system
WO1986007571A1 (en) * 1985-06-17 1986-12-31 Smoot Mark H Energy efficient power driven marine vessel
US4902254A (en) * 1985-09-05 1990-02-20 Chas Jean Bernard Propulsion device with conditioned inertia
US4925408A (en) * 1987-09-14 1990-05-15 Koronis Parts, Inc. Intake and pump assembly for aquatic vehicle
US5967868A (en) * 1990-04-10 1999-10-19 Yamaha Hatsudoki Kabushiki Kaisha Water jet propulsion unit mounting structure
USRE35351E (en) * 1991-01-25 1996-10-15 Morgan; Robert D. Ride plate for personal watercraft
US5176548A (en) * 1991-01-25 1993-01-05 Morgan Robert D Ride plate for personal watercraft
US5509832A (en) * 1991-05-13 1996-04-23 Roos; Paul W. Marine jet drive
US6200176B1 (en) * 1998-07-17 2001-03-13 Donald I. Bowers Marine jet drive pump preloader for reducing cavitation
US20030049978A1 (en) * 2001-08-20 2003-03-13 Patrice Dusablon Watercraft having a jet propulsion system that generates improved thrust
US7018250B2 (en) * 2002-09-12 2006-03-28 Honda Giken Kogyo Kabushiki Kaisha Ride plate positioning mechanism for personal watercraft, and method of using same
US20040083594A1 (en) * 2002-09-12 2004-05-06 Honda Giken Kogyo Kabushiki Kaisha Ride plate positioning mechanism for personal watercraft, and method of using same
US20050159054A1 (en) * 2002-09-16 2005-07-21 Doen Marine Pty Ltd Marine jet propulsion arrangement
US20050142001A1 (en) * 2003-03-19 2005-06-30 Cornell Donald E. Axial flow pump or marine propulsion device
US7108569B2 (en) * 2003-03-19 2006-09-19 Cornell Donald E Axial flow pump or marine propulsion device
US20050070178A1 (en) * 2003-09-16 2005-03-31 William Facinelli Waterjet propulsion apparatus
US6991499B2 (en) * 2003-09-16 2006-01-31 Honeywell International, Inc. Waterjet propulsion apparatus
US6981902B1 (en) * 2003-11-03 2006-01-03 Samuel Barran Tafoya Marine reaction thruster
WO2006014189A2 (en) * 2004-03-17 2006-02-09 Decjet Incorporated Axial flow pump and marine propulsion device
WO2006014189A3 (en) * 2004-03-17 2006-09-08 Decjet Inc Axial flow pump and marine propulsion device

Also Published As

Publication number Publication date
DE1556505B2 (de) 1974-07-11
BE711506A (fi) 1968-07-01
GB1162921A (en) 1969-09-04
FR1555257A (fi) 1969-01-24
DE1556505A1 (de) 1971-09-30
DE1556505C3 (de) 1975-02-27

Similar Documents

Publication Publication Date Title
US3405526A (en) Multiple stage, hydraulic jet propulsion apparatus for water craft
US6692318B2 (en) Mixed flow pump
US3082732A (en) Water jet motor for boats
US5490768A (en) Water jet propulsor powered by an integral canned electric motor
JP7368008B2 (ja) 海上船舶用の船外ウォータージェットを伴う推進デバイス
US3809005A (en) Propulsion system
US3183878A (en) Hydrojet propulsion unit for water craft
US3389558A (en) Jet propulsion apparatus
US3328961A (en) Multiple stage, hydraulic jet propulsion apparatus for water craft
US3939794A (en) Marine pump-jet propulsion system
US3805731A (en) Dual pump waterjet
US6427618B1 (en) Bow mounted system and method for jet-propelling a submarine or torpedo through water
US5505639A (en) Hydro-air drive
US2702516A (en) Outboard motor unit having hydraulic jet propulsion means
US3040696A (en) Propulsion and steering unit for boats
US3598080A (en) Monoshaft propeller water-jet
US3935833A (en) Jet boat pump
US4050849A (en) Hydrodynamic transmission for ship propulsion
US3678689A (en) Submerged multistage pump usable as propulsion unit
US20040203298A1 (en) Ship pod-mounted hydrojet propeller unit driven by a hollow electric motor
US6244912B1 (en) Strut-mounted marine propulsion unit
US4672807A (en) Wall thruster and method of operation
US4798547A (en) Fuel efficient propulsor for outboard motors
US3174454A (en) Hydrojet propulsion systems
US5846103A (en) Tractor pump jet

Legal Events

Date Code Title Description
PS Patent suit(s) filed