US3403102A - Lubricant containing phosphorus acid esters - Google Patents
Lubricant containing phosphorus acid esters Download PDFInfo
- Publication number
- US3403102A US3403102A US621136A US62113667A US3403102A US 3403102 A US3403102 A US 3403102A US 621136 A US621136 A US 621136A US 62113667 A US62113667 A US 62113667A US 3403102 A US3403102 A US 3403102A
- Authority
- US
- United States
- Prior art keywords
- acid
- phosphorus
- ester
- mole
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/141—Esters of phosphorous acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/40—Introducing phosphorus atoms or phosphorus-containing groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
- C10M137/10—Thio derivatives
- C10M137/105—Thio derivatives not containing metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/062—Oxides; Hydroxides; Carbonates or bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/024—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/025—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/027—Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
- C10M2207/046—Hydroxy ethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/32—Esters of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/101—Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/08—Halogenated waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
- C10M2215/065—Phenyl-Naphthyl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/066—Arylene diamines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
- C10M2215/082—Amides [having hydrocarbon substituents containing less than thirty carbon atoms] containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/022—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/022—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
- C10M2217/023—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/108—Phenothiazine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/061—Metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/065—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
- C10M2223/121—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/02—Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
- C10M2225/041—Hydrocarbon polymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
- C10N2040/13—Aircraft turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
Definitions
- Lubricants especially lubricants for internal combustion engines and gears, are prepared by blending a lubricating oil and a phosphorus-containing ester. Such lubricants have improved oxidation resistance and detergent properties.
- the phosphorus-containing ester is prepared by reacting a polyhydric alcohol with both a high molecular weight substituted succinic reactant having at least about 50 aliphatic carbon atoms in the substituent and a phosphorus reactant which may be phosphorus pentoxide, phosphoric acid, or an alkyl ester of phosphoric acid.
- the preferred phosphorus-containing ester is illustrated by the product formed by reacting pentaerythritol first with a polyisobutene-substituted succinic anhydride and then with triphenylphosphite.
- This invention relates to novel compositions of matter and processes for preparing the same.
- this invention relates to compositions useful as plasticizers, detergents, anti-rust agents, emulsifiers, and additives in lubricating compositions, fuels, hydrocarbon oils, and power transmitting fluids.
- the polyhydroxy compounds from which the phosphorus-containing esters of this invention are derived include principally polyhydric alcohols and polyhydric phenols. They preferably contain less than about 30 carbon atoms.
- alkylene glyc-ols and poly(oxy-alkylene)glycols such as ethylene glycol, di(ethylene glycol), tri(ethylene glycol), di(propylene glycol), tri(butylene glycol), penta(ethylene glycol) and other poly(oxy-alkylene)glycols formed by the condensation of two or more moles of ethylene glycol, propylene glycol, octylene glycol, or a like glycol having up to about 12 carbon atoms in the alkylene radical.
- polyhydric alcohols include glycerol, pentaerythritol, 2,4-hexanediol, pinacol, erythritol, arabitol, sorbitol, mannitol, 1,2-cyclohexanediol, Xylylene glycol, and 1,3,5-cyclohexanetriol.
- the polyhydric phenols are exemplified by hydroquinone, resorcinol, 4-heptyl-1,2- di-hydroxy-benzene, 1,2 dihydroxy naphthalene, 4-polypropene (molecular weight of 1500)-substituted 1,2-dihydroxy-benzene, methyl-S-decyl-1,2-dihydroxy-naphthalene, and pyrogallol.
- Still other polyhydroxy compounds include the monoesters of glycerol, sorbitol, mannitol, or other higher polyhydroxy alcohols, such as mono-acetate of glycerol, mono-oleate of sorbitol mono-propionate of mannitol, or the like.
- interpolymers of an unsaturated alcohol with a copolymerizable olefinic substance such as styrene, vinyl ether, vinyl acetate, isobutene, butadiene, di-vinylbenzene or the like.
- the interpolymers contain two or more monomeric units derived from the unsaturated alcohol and thus constitute the Polyhydric alcohols contemplated for use in the process of this invention. Specific examples of such interpolymers are the copolymer of 5 moles of allyl alcohol and 1 mole of styrene having an average molecular weight of about 2500.
- the radical R in the formula of the polyhydroxy compounds designates a radical which is substantially hydrocarbon in character.
- the radical may be a hydrocarbon radical or a polar-substituted hydrocarbon radical.
- the radical may contain inert polar groups provided that such groups are not present in proportions sufiiciently large to alter significantly the hydrocarbon character of the radical.
- the polar groups are exemplified by chloro, bromo, keto, aldehyde, nitro, etc.
- the upper limit with respect to the proportion of such polar groups in a hydrocarbon radical is usually about based upon the weight of the hydrocarbon portion of the radical.
- an ether-containing hydrocarbon group may be used wherein the ether groups such as oxyalkylene or poly(oxy-alkylene) groups may contain as many as one oxygen atom for each two carbon atoms.
- the hydrocarbon-substituted succinic acid-producing compounds useful in preparing the phosphorus-containing esters may be the succinic acids, anhydrides, halides, or esters in which the hydrocarbon substituent contains at least about 50 aliphatic carbon atoms.
- the sources of the hydrocarbon substituent include principally the high molecular weight substantially saturated petroleum fractions and substantially saturated olefin polymers, particularly polymers of mono-olefins having from 2 to 30 carbon atoms.
- the especially useful polymers are the polymers of l-mono-olefins such as ethylene, propene, l-butene, isobutene, l-hexene, l-octene, 2-methyl-1- heptene, 3-cyclohexyl-1-butene, and 2-methyl-5-propyl-1- hexene.
- interpolymers of the olefins such as those illustrated above with other interpolymerizable olefinic substances such as aromatic olefins, cyclic olefins, and polyolefins.
- Such interpolymers include, for example, those prepared by polymerizing isobutene with styrene; isobutene with butadiene; propene with isoprene; ethylene with piperylene; isobutene with chloroprene; isobutene with p-methyl styrene; l-hexene with 1,3-hexadiene; l-octene with l-hexene; l-heptene with l-pentene; 3- methyl-l-butene with l-octene; 3,3-dimethyl-l-pentene with l-hexene; isobutene with styrene and piperylene; etc.
- the relative proportions of the mono-olefins to the other monomers in the interpolymers influence the stability and oil-solubility of the final products derived from such interpolymers.
- the interpolymers contemplated for use in this invention should be substantially aliphatic and substantially saturated, i.e., they should contain at least about 80%, preferably at least about 95%, on a weight basis, of units derived from the aliphatic mono-olefins and no more than about 5% of olefinic linkages based on the total number of carbon-to-carbon covalent linkages. In most instances, the percentage of olefinic linkages should be less than about 2% of the total number of carbonto-carbon covalent linkages.
- interpolymers include the copolymer of 95% (by weight) of isobutene with 5% of styrene; the terpolymer of 98% of isobutene with 1% of piperylene and 1% of chloroprene; the terpolymer of 95% of isobutene with 2% of l-butene and 3% of l-hexene; the terpolymer of of isobutene with 10% of l-pentene and 10% of l-octene; the copolymer of 80% of l-hexene and 20% of l-heptene; the terpolymer of of isobutene with 2% of cyclohexene and 8% of propene; and the copolymer of 80% of ethylene and 20% of propene.
- Another source of the hydrocarbon radical comprises saturated aliphatic hydrocarbons such as highly refined high molecular weight White oils or synthetic alkanes such as are obtained by hydrogenation of high molecular weight olefin polymers illustrated above or high molecular weight olefinic substances.
- olefin polymers having molecular weights of about 750-5000 are preferred.
- Higher molecular weight olefin polymers having molecular weights from about 10,000 to about 100,000 or higher have been found to impart viscosity index improving properties to the final products of this invention.
- the use of such higher molecular weight olefin polymers often is desirable.
- the hydrocarbon substituent in the succinic acid-producing compound likewise may contain inert polar groups.
- it may be a radical which is substantially hydrocarbon in character such as is referred to in the above description of the hydrocarbon radical R of the polyhydroxy compounds.
- the succinic acid-producing compounds useful in the above process are preferably substantially hydrocarbonsubstituted succinic acids and anhydrides. These succinic compounds are readily available from the reaction of maleic anhydride with a high molecular weight olefin or a chlorinated hydrocarbon such as the olefin polymer described hereinabove. The reaction involves merely heating the two reactants at a temperature about 100- 200 C. The product from such a reaction is an alkenyl succinic anhydride. The alkenyl group may be hydrogenated to an alkyl group.
- the anhydride may be hydrolyzed by treatment with water or steam to the corresponding acid. Either the anhydride or the acid may be converted to the corresponding acid halide or ester by reaction with, e.g., phosphorus halide, phenols, or alcohols.
- hydrocarbons containing an activating polar substituent i.e., a substituent which is capable of activating the hydrocarbon molecule in respect to reaction with maleic acid or anhydride, may be used in the above-illustrated reaction for preparing the succinic compounds.
- polar substituents may be illustrated by sulfide, disulfide, nitro, mercaptan, bromine, kctone, or aldehyde radicals.
- polar-substituted hydrocarbons examples include polypropene sulfide, di-polyisobutene disulfide, nitrated mineral oil, di-polyethylene sulfide, brominated polyethylene, etc.
- Another method useful for preparing the succinic acids and anhydrides involves the reaction of itaconic acid with a high molecular weight olefin or a polar-substituted hydrocarbon at a temperature usually within the range from about 100 C. to about 200 C.
- the acid halides of the succinic acids can be prepared by the reaction of the acids or their anhydrides with a halogenation agent such as phosphorus tri-bromide, phosphorus pentachloride or thionyl chloride.
- the esters of such acids can be prepared simply by the reaction of the acids or their anhydrides with an alcohol or a phenolic compound such as methanol, ethanol, octadecanol, cyclohexanol, phenol, naphthol, octylphenol, etc.
- the esterification is usually promoted by the use of an alkaline catalyst such as sodium hydroxide or sodium alkoxide or an acidic catalyst such as sulfuric acid.
- the nature of the alcoholic or phenolic portion of the ester radical appears to have little influence on the utility of such ester as reactant in the process described hereinabove.
- the phosphorus acid-producing reactants useful in the above process for forming the phosphorus-containing esters of this invention may be acids, anhydrides, esters, or halides.
- the phosphorus acids may be phosphoric acids and phosphorous acids including the oxyphosphorus acids, the thiophosphorus acids, as well as the mixed oxythiophosphorus acids (i.e., those containing both oxygen and sulfur).
- a phosphoric acid is used in a generic sense to denote the class consisting of phosphoric acid (H PO phosphorotetrathioic acid (H PS phosphoromonothioic acid (H PO S), phosphorodithioic acid (H PO S and phosphorotrithioic acid (H -POS).
- H PO phosphorotetrathioic acid H PS phosphoromonothioic acid (H PO S)
- H PO S phosphorodithioic acid
- H -POS phosphorotrithioic acid
- a phosphoromonothioic acid in which the sulfur atom is attached only to the phosphorus atom i.e., -P(S) (OH)
- a phosphorothionic acid i.e., -P(S) (OH)
- its isomer in which the sulfur atom is attached to both the phosphorus atom and a hydrogen atom i.e., --P(O)(S-H)
- dialkylphosphoric acids i.e., dialkyl esters of phosphoric acids
- dialkylphosphoric acids include dialkylphosphoric acid ((alkyl-O) 'P(O) (OH)); dialkylphosphorotetrathioic acid ((alkyl-S) P(S) (SH) 0,0-dialkylphosphorodithioic acid y )z H) O,S-dialkylphosphorodithionic acid ((alkyl-O)(alkyl-S)P(S)(OH)) O,S-dialkylphosphorodithiolic acid ((alkyl-O) (alkyl-S)'P(O) (SH) O,S-dialkylphosphorotrithioic acid
- the phosphorus acid anhydrides, esters, and halides likewise are useful for preparing the phosphorus-containing esters of this invention.
- the anhydrides of phosphorus acids are especially desirable. They are illustrated by phosphorus pentoxide, phosphorus pentasulfide, phosphorus heptasulfide, phosphorus sesquisulfide, and phos phorus oxysulfide.
- the anhydrides of organic phosphorus acids are exemplified by the anhydrides of diphenylphosphoric acid, etc.
- the halides of the phosphorus acids include, for instance, phosphorus trichloride, phosphorus pentachloride, phosphorothioic trichloride, phosphorus tribromide, diphenylphosphorus chloride, 0,0'-di(chlorophenyl)phosphorothioic chloride, 0,0'-diphenylphosphorothioic chloride, and diphenylphosphorus trichloride.
- the esters of the phosphorus acids may be the completely esterified acids or partially esterfied acids.
- the latter are also known as acidic esters, i.e., at least a portion of the acid is not esterified; they are illustrated by the monoor the di-esterified phosphoric or phosphorous acids.
- the ester portion may be derived from a hydrocarbon radical, usually one having less than about 30 and preferably from about 1 to about 24 aliphatic carbon atoms.
- the hydrocarbon radicals may contain inert polar groups such as are described previously.
- esters are, for example, methyl ester of phosphoric acid, dimethyl ester of phosphoric acid, trimethyl ester of phosphoric acid, O-methyl ester of phosphorothiolic acid, dicyclohexyl ester of phosphoric acid, 0,0-dicyc1ohexyl ester of phosphorodithioic acid, dicyclohexyl ester of phosphorotetrathioic acid, O-cyclohexyl-S-decyl ester of phosphoromonothioic acid, 0,0'-diphenyl ester of phosphoromonothiolic acid, triphenyl ester of phosphoric acid, triphenyl ester of phosphorus acid, tritolyl ester of phosphoric acid, dioctadecyl ester of phosphorus acid, trinaphthyl ester of phosphorus acid, trinaphthyl ester of phosphoric acid, 0,0'-dinaphth
- the esters of phosphoric acid and phosphorothioic acids are obtained by the reaction of phenol or an alcohol with phosphoric acid or a phosphorothioic acid, or an anhydride of the acid such as phosphorus pentoxide, phosphorus pentasulfide, or phosphorus oxysulfide.
- the reaction is usually carried out simply by mixing the reactants at a temperature above about 50 C., preferably between about C. and C.
- the esters of phosphoric acids tend to decompose at high temperatures. Thus it is often desirable to avoid prolonged exposure of the reaction mixture to temperatures above about 150 C.
- a solvent may be used in the reaction to facilitate mixing of the reactants and control of the reaction temperature.
- the solvent may be benzene, naphtha, chlorobenzene, mineral oil, kerosene, cyclohexane, or carbon tetrachloride.
- a solvent capable of forming a rela tively lowboiling azeotrope with water further aids the removal of water in the esterification of an alcohol or phenol with the phosphorus acid reactant.
- the relative amounts of the alcohol or phenol reactant and the acid reactant influence the nature of the ester obtained.
- the product will be a mixture of the mono-, di-, and tri-esters of the acid and such a mixture is desirable for use in this invention for reasons of economy.
- the reaction of an alcohol or phenol with phosphorus pentasulfide ordinarily results in 0,0'-diester of phosphorodithioic acid.
- Such reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide and may be carried out within the temperature range from about 50 C. to about 250 C.
- the preparation of 0,0'-di-n-hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
- Treatment of the phosphorodithioic acid with water or steam removes one or both sulfur atoms and converts the product to the corresponding phosphoromonothioic acid or phosphoric acid.
- the esters of phosphorotetrathioic acid can be prepared by first the reaction of a mercaptan or thiophenol with PSCl or PSBr to produce an intermediate which is either a phosphorotrithioic halide or triester of phosphorotetrathioic acid and the subsequent reaction of the intermediate with hydrogen sulfide or sodium hydrosulfide.
- the esters of phosphorotrithioic acids are obtained by the treatment of the esters of the phosphorotetrathioic acids with water or steam.
- esters of phosphorous acids are obtained by the reaction of an alcohol or phenol With phosphorous acid or a phosphorus trihalide such as phosphorus tribromide or phosphorus trichloride and the above noted reaction usually requires carefully controlled conditions such as low temperature in order to give a substantial yield of the esters of phosphorous acids. Under other conditions the reaction of an alcohol or phenol with a phosphorus trihalide may result in a phosphonic acid or ester. Such esters are readily susceptible to rearrangement to phosphonic acids and esters.
- the reaction by which the phosphorus-containing esters of this invention are obtained can be effected simply by mixing a polyhydroxy reactant with the succinic acid-producing and the phosphorus acid-producing reactants at the desired temperature.
- the use of an inert solvent in the reaction is not necessary but often desirable, especially when a highly viscous or solid reactant is present in the reaction mixture.
- the inert solvent useful in the reaction may be a hydrocarbon such as benzene, toluene, naphtha, cyclohexane, n-hexane, or mineral oil.
- the reaction by which the phosphorus-containing esters of this invention are obtained may be carried out by mixing the polyhydric compound, the hydrocarbon-substituted succinic acid-producing compound, and the phosphOrus acid-producing compound at a temperature above about 100 C., preferably be ween about 125 C. and 250 C.
- the optimum reaction temperature depends to some extent upon the nature of the specific reactions used. For instance, where the succinic acid-producing compound and the phosphorus acid-producing compound are relatively reactive acids or anhydrides, the reaction temperature may be below about 200 C.
- the reaction temperature often will be 200 C. or higher.
- the maximum temperature for the process is determined by the decomposition point of the reaction mixture. It rarely exceeds 300 C.
- the product resulting from the process of this invention usually is a complex mixture of esters derived from the polyhydroxy reactant by the esterification of some of its hydroxy groups with the succinic acid-producing compound and some other hydroxy groups with the phosphorus acid-producing compounds.
- the product of this invention is a complex mixture of esters characterized by the presence of ester radicals of both succinic acid ester type and phosphorus acid ester type. The precise composition of the product is not fully understood. Consequently, the product is best described in terms of the process by which it is formed.
- composition of the product of this invention depends for the most part upon the relative proportions of the three reactants used in the process.
- the total amount of the succinic acid-producing reactant and the phosphorus acid-producing reactant to be used for each mole of the polyhydroxy reactant ordinarily ranges from about 0.5 mole to as many moles as the number of the hydroxy radicals within the molecular structure of the polyhydroxy reactant.
- the relative amounts of the succinic acid-producing reactant and the phosphorus acid-producing reactant ordinarily are such that they are within the range of molar ratios from about 0.1 :1 to about 10:1, respectively.
- a mixture of a succinic acidproducing reactant and a phosphorus acid-producing reactant in an amount such that the combined quantity of the two acid-producing reactants ranges from about 0.5 to about 5 moles and that the molar ratio of the succinic acid-producing reactant to the phosphorus acid-producing reactant ranges from about 0.1:1 to about 10:1.
- each mole of a tetrahydroxy reactant there may be employed from about 0.05 mole to about 3.6 moles of a succinic acid-producing reactant and from about 0.05 mole to about 3.6 moles of a phosphorus acidproducing reactant provided that the molar ratio of the succinic acid-producing reactant and the phosphorus acidproducing reactant be within the range of about 0.1:1 to about 10:1.
- the preferred amounts of the three reactants are such that 1 mole of the polyhydroxy reactant is used with from about 0.5 mole to about 1 mole of a succinic acid-producing reactant and from about 1 mole to 3 moles of a phosphorus acid-producing compound.
- a specific example of the preferred products of this invention is one obtained by the reaction of 1 mole of pentaerythritol with 1 mole of a succinic anhydride and 2 moles of a triaryl phosphite.
- the molecular weight may be the average molecular weight estimated from the elemental analysis of the mixture.
- the molecular weight of a succinic acid ester likewise may be estimated from the potential acidity as determined by its saponification number.
- the lower limit of about 0.5 mole for the combined quantities of the two acid-producing reactants per mole of the polyhydroxy reactant is based upon the stoichiometry for the esterification of only one of the hydroxy groups of the polyhydroxy reactant
- the upper limit of x number of moles for the combined quantities of the two acid-producing reactants per mole of the polyhydroxy reactant having x number of hydroxy groups is based upon the stoichiometry for the esterification of all of the hydroxy groups of the polyhydroxy reactant.
- a preferred mode of carrying out the process of this invention involves reacting a polyhydroxy reactant with the succinic acid-producing reactant to form a partially esterified intermediate and then reacting the intermediate With a phosphorus acid-producing reactant.
- the first step i.e., the formation of the partially esterified intermediate
- . 9 preferably eflfected at a temperature between about 100 C. and 200 C. and the second step, i.e., the reaction of the intermediate with the phosphorus reactant may be carried out at a temperature from about 80 C. to about 250 C.
- This particular mode of carrying out the process of this invention is preferred because the products resulting therefrom have been found to be especially useful for the purposes of this invention such as in hydrocarbon oil and lubricating compositions.
- Another alternative mode of carrying out the process of this invention involves first reacting polyhydroxy reactant with a phosphorus acid-producing reactant to form a partially esterified intermediate and then reacting the intermediate with the succinic acid-producing reactant.
- the process admits further variations in forming the intermediate of a polyhydroxy substance which has been partially esterified with a phosphorus acid.
- the reaction of phosphoric acid with an epoxide, particularly an alkylene oxide such as ethylene oxide, propylene oxide, hexylene oxide, or epichlorohydrin may result in a partially esterified glycol, i.e., a glycol having one free hydroxy group and one hydroxy group which has been converted to a phosphorus acid ester group by the esterification with phosphoric acid.
- a more specific example is found in the reaction of 1 mole of phosphoric acid with 3 moles of propylene oxide resulting in the formation of tri(hydroxypropyl) ester of phosphoric acid. This tri(hydroxypropyl) ester may then be used in reaction with a succinic acid-producing reactant in order to form the phosphorus-containing esters of this invention.
- esterification catalysts are useful for this purpose. They are illustrated by titanium tetrachloride, aluminum chloride, titanium tetrafiuoride, boron trifiuoride, aluminum tribromide, potassium ethoxide, sodium methoxide, calcium phenate, sodium hydroxide, calcium oxide, benzene sulfonic acid, toluene sulfonic acid, etc. A small amount such as 0.001% by weight of the catalyst often is sufiicient to promote esterification of the process of this invention. The amount of the catalyst may range up to about 1% by Weight of the process mixture.
- the product of this invention is formed by trans-esterification wherein one or both of the methyl radicals of the succinic reactant are replaced with radicals derived from the partially esterified glycerol intermediate and methanol is the by-product.
- the product of this invention is formed by transesterification wherein one or more of the phenyl radicals of triphenyl phosphite are replaced with the ester radicals derived from the partially esterified glycerol intermediate and phenol is the by-product.
- the latter may involve trans-esterification reactions including, e.g., the one illustrated as follows:
- R is a substantially hydrocarbon radical.
- the above phosphorus-containing ester may react further with the partially esterified glycerol to form more complex products such as polymeric substances.
- a succinic halide such as a polyisobutene-substituted succinic acid dichloride
- a phosphorus acid halide such as phosphorus pentoxide or phosphorus trichloride
- a succinic dichloride with ethylene glycol and phosphorus pentoxide may proceed as follows:
- a partially esterified pentaerythritol is prepared by adding 136 parts (by weight, 1 molar proportion) of pentaerythritol to a mixture of 1130 parts (1 molar proportion) of a polyisobutene-substituted succinic anhydride having an acid number of 99 (prepared by heating a chlorinated polyisobutene having a molecular weight of 900 and a chlorine content of 4.4% with 20% molar excess of maleic anhydride at 205 C.) and 830 parts of a mineral oil and heating the resulting mixture at C. for 5 hours and at 200-210 C. for 5 hours and filtering the product.
- the by-product (water) is distilled off during the heating.
- the filtrate is a 40% oil solution of the partially esterified ester intermediate.
- To 1020 parts of this filtrate there is added 310 parts (0.5 molar proportion for each, molar proportion of the pentaerythritol used) of triphenyl phosphite.
- the mixture is heated at 180-190 C. for 10 hours and then at 180 C./20 mm. whereupon 96 parts of phenol is distilled off as the byproduct of trans-esterification.
- the filtrate is a 33% oil solution of the phosphorus-containing ester having a phosphorus content of 2.5%.
- propylene glycol is prepared by adding dropwise propylene oxide to the above succinic acid (0.5 mole per mole of propylene oxide) at 80110 C., heating the resulting mixture to 100 C./7 mm., mixing the residue with an additional quantity of mineral oil to prepare a 50% oil solution and then filtering the oil solution.
- a mixture of 1733 parts of the above oil solution of the partially esterified propylene glycol and 91 parts of triphenylphosphite is heated at 150160 C. for 7.5 hours whereupon phenol (57 parts) is distilled off.
- the residue is diluted with mineral oil to form a 50% oil solution and filtered.
- the filtrate is an oil solution of a phosphorus-containing ester having a phosphorus content of 0.5%.
- EXAMPLE 3 The oil solution (1890 parts) of the partially esterified propylene glycol of Example 2 and phosphorus pentoxide (46 parts) are mixed at 23 C. The mixture is heated at 5060 C. for 7 /2 hours and then to 60 C./ mm. The mixture is filtered. The filtrate is an oil solution of a phosphorus-containing ester.
- EXAMPLE 4 A mixture of 670 parts of pentaerythritol and 2670 parts of the polyisobutene-substituted succinic anhydride of Example 1 (0.5 mole per mole of pentaerythritol) in 2194 parts of mineral oil is heated to 190 C. in 3 hours and then at 190200 C. for 8 hours. The mixture is blown with nitrogen for 0.5 hour and filtered. The filtrate is a 40% oil solution of a partially esterified pentaerythritol. To 2935 parts of the above solution and 1060 parts of mineral oil there is added 284 parts of phosphorus pentoxide (0.8 molar proportions for each molar proportion of the pentaerythritol used). The resulting mixture is heated at 115l20 C. for 5 hours and filtered. The filtrate is a oil solution of a phosphorus-containing ester having a phosphorus content of 1.2%.
- EXAMPLE 5 A mixture of 1 mole of ethylene glycol, 0.5 mole of phophorus pentoxide, and 0.5 mole of a polyisobutene (molecular weight of 60,000)-substituted succinic anhydride (having an acid number of 100 and prepared by the reaction of maleic anhydride and a chlorinated polyisobutene having a molecular weight of 60,000 and a chlorine content of 4.3% at 205 C.) in three times its volume of a mineral oil is prepared at C. and then heated at 120140 C. for 10 hours.
- a polyisobutene molecular weight of 60,000-substituted succinic anhydride (having an acid number of 100 and prepared by the reaction of maleic anhydride and a chlorinated polyisobutene having a molecular weight of 60,000 and a chlorine content of 4.3% at 205 C.) in three times its volume of a mineral oil is prepared at C. and then heated at 120140 C
- EXAMPLE 6 A mixture of 1 mole of the polyisobutene-substituted succinic anhydride of Example 1 and 1 mole of glycerol in twice the volume of the mixture of toluene is heated at the reflux temperature (100 C.) while water is removed by azeotropic distillation. To the residue there is added 0.5 mole of phosphorus pentasulfide and the resulting mixture is heated at 90110 C. for 4 hours. Toluene is then removed by vacuum distillation. The residue is a phosphorus-containing ester.
- EXAMPLE 8 A partially esterified propylene glycol is obtained by reacting 1 mole of phosphoric acid with 3.3 moles of propylene oxide while the by-product (water) is distilled 12; 01f. To 390 grams of this partially esterified propylene glycol there is added 200 grams of toluene and 1495 grams of the polyisobutene-substituted succinic anhydride of Example 1. The mixture is heated at 158163 C. for 8 hours and then at 160 C./1-2 mm. The residue is mixed with 1200 grams of mineral oil and heated to distill otf toluene. The residue is filtered. The filtrate is an oil solution of a phosphorus-containing ester having a phophorus content of 7.7%.
- EXAMPLE 9 A partially esterified sorbitol is prepared by heating at 110-150 C. 1 mole of sorbitol and 1 mole of phosphorus pentoxide. The intermediate is dissolved in white oil and mixed with 2.5 moles of the polyisobutene-substituted succinic anhydride of Example 1. The resulting mixture is heated at 200 C. for 7 hours and filtered.
- EXAMPLE 10 An olefin polymer-substituted succinic anhydride is obtained by heating 1.2 moles of maleic anhydride with 1 mole of a copolymer of mole percent of propylene and 25 mole percent of ethylene having an average molecular weight of 10,000 at 200-220 C. To a solution of the above anhydride in an equal weight of mineral oil, there is added at 25 C. 2 moles of neopentyl glycol and 1 mole of phosphorus acid. The mixture is heated to 120 C. for 2 hours and then at 120-180 C. for 5 hours whereupon water is removed by distillation. The residue is filtered. The filtrate is an oil solution of the phosphoruscontaining ester.
- EXAMPLE 11 A phosphorus-containing ester is prepared by the procedure of Example 10 from a reaction mixture of 0.1 mole of an isobutene-styrene copolymer (:5 by weight of isobutene to styrene, average molecular weight of 2000)-substituted succinic anhydride, 1 mole of di(ethylene glycol and 0.5 mole of phosphoric oxychloride.
- EXAMPLE 12 A phosphorus-containing ester is obtained by the procedure of Example 10 from a reaction mixture of 0.5 mole of the polyisobutene-substituted succinic anhydride of Example 1, 1 mole of tri(ethylene glycol), and 0.1 mole of dimethyl phosphite.
- EXAMPLE 13 A phosphorus-containing ester is obtained by the procedure of Example 10 from a reaction mixture of 1 mole of the polyisobutene-substituted succinic anhydride of Example 1, 0.5 mole of triethyl phosphite, and 1 mole of a copolymer of 5 moles of allyl alcohol and 1 mole of styrene having a molecular weight of 1100.
- EXAMPLE 14 A phosphorus-containing ester is obtained by heating at 150-180 C. a mixture of the partially esterified pentaerythritol (40% oil solution) and diphenylphosphorothioic chloride (2 moles per mole of pentaerythritol).
- EXAMPLE 15 A phosphorus-containing ester is obtained by first heating at 120-200 C. 1 mole of the polyisobutene-substituted succinic anhydride of Example 1 and 1 mole of mannitol monooleate to form a partially esterified mannitol intermediate and then heating at 200 C. the intermediate with 3 moles of di(heptylphenyl)phosphorus chloride (i.e., (C H C H O) PCl) in an equal volume of mineral oil.
- di(heptylphenyl)phosphorus chloride i.e., (C H C H O) PCl
- EXAMPLE 16 A phosphorus-containing ester is obtained by first heating at -180 C. 1 mole of the polyisobutene-substituted succinic anhydride of Example 1 and 1 mole of glycerol in 1000 grams of mineral oil and then heating 13 at 150-200' C. the above reaction mixture with 0.5 mole of the anhydride of diethylphosphoric acid (i.e.,
- EXAMPLE 17 A phosphorus-containing ester is prepared as follows: a partially esterified resorcinol (formed by heating at 100200 C. 0.75 mole of the polyisobutene-substituted succinic anhydride of Example 1 with 1 mole of resorcinol in 1000 grams of diphenyl ether as the diluent) and phosphorus pentoxide (0.1 mole per mole of resorcinol) areheated at 150160 C. for hours.
- a partially esterified resorcinol formed by heating at 100200 C. 0.75 mole of the polyisobutene-substituted succinic anhydride of Example 1 with 1 mole of resorcinol in 1000 grams of diphenyl ether as the diluent
- phosphorus pentoxide 0.1 mole per mole of resorcinol
- EXAMPLE 19 A phosphorus-containing ester is obtained by the procedure of Example 18 except that resorcinol is replaced on a molar basis with 4-heptyl-1,2-dihydroxybenzene.
- EXAMPLE 20 A phosphorus-containing ester is obtained by the procedure of Example 18 except that resorcinol is replaced on a molar basis with 1,2-dihydroxynaphthylene.
- the phosphorus-containing esters of this invention are useful for a wide variety of purposes including pesticides, plasticizers, rust-inhibiting agents for treatment of metals, corrosion-inhibiting agents, extreme pressure agents, antiwear agents, and detergents.
- a principal utility of such products is as additives in lubricants. It has been discovered in accordance with this invention that when used for such purpose their effectiveness to impart a specific property to a lubricant is closely related to the size of the hydrocarbon substituent in the hydrocarbon-substituted succinic acid-producing compounds from which the phosphorus-containing esters are derived. More particularly it has been found that products in which the substantially hydrocarbon substituent contains more than about 50 aliphatic carbon atoms are particularly effective for the purposes of this invention.
- the lubricating oils in which the substituted polyamines of this invention are useful as additives may be of synthetic, animal, vegetable, or mineral origin. Ordinarily mineral lubricating oils are preferred by reason of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other three groups may be preferred. For instance, synthetic polyester oils such as didodecyl adipate and di-Z-ethylhexyl sebacate are often preferred as jet engine lubricants. Normally the lubricating oils preferred will be fluid oils, ranging in viscosity from about 40 Saybolt Universal Seconds at 100 F. to about 200 Saybolt Universal seconds at 210 F.
- the concentration of the phosphorous-containing esters as additives in lubricants usually ranges from about 0.01% to about by weight.
- the optimum concentrations for a particular application depend to a large measure upon the type of service to which the lubricant is to be subjected.
- lubricants for use in gasoline internal combustion engines may contain from about 0.5 to about 10% of the additive
- lubricating compositions for use in gears and diesel engines may contain as much as or even more of the additive.
- Lubricants for use in the oil-fuel mixture for two-stroke engines may contain from about 1% to 10% of the additive.
- additives include, for example, supplemental detergents of the ashcontaining type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents, rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents.
- the ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- olefin polymer e.g., polyisobutene having a molecular weight of 1000
- a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
- the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
- the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass.
- a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
- Examples of compounds useful as the promoters include phenolic substances such as phenol, naphthol, alkylphenol, triophenol, sulfurized alkylphenol, and condensation products of formaldehyde With a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, Cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenyl beta-naphthylamine, and dodecylamine.
- a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60-200 C.
- the preparation of a basic sulfonate detergent is illustrated as follows: A mixture of 490 parts (by weight) of a mineral oil, parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
- a polyisbutene having a molecular weight of 50,000 is mixed with 10% by weight of phosphorus pentasulfide at 200 C. for 6 hours.
- the resulting product is hydrolyzed by treatment'with steam at C. to produce an acidic intermediate.
- the acidic intermediate is then converted to a basic salt by mixing twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product,
- the phosphorus-containing esters are especially adapted for use in combination with extreme pressure and corrosion-inhibiting additives such as metal dithiocarbamates, xanthates, the Group II metal phosphorodithioates and their epoxide adducts, hindered phenols, sulfurized cycloalkanes, di-alkyl polysulfides, sulfurized fatty esters, phosphosulfurized fatty esters, alkaline earth metal salts of alkylated phenols, dialkyl phosphites, triaryl phosphites, and esters of phosphorodithioic acids.
- Combinations of the phosphorus-containing esters of this invention with any of the above-mentioned additives are especially desirable for use in lubricants which must have superior extreme pressure and oxidation-inhibiting characteristics.
- the Group II metal phosphorodithioates are the salts of acids having the formula R SH in which R and R are substantially hydrocarbon radicals.
- the metals for forming such salts are exemplified by bar ium, calcium, strontium, zinc, and cadmium.
- the barium and zinc phosphorodithioates are especially preferred.
- the substantially hydrocarbon radicals in the phosphorodithioic acid are preferably low or medium molecular weight alkyl radicals and alkylphenyl radicals, i.e., those having from about 1 to about 30 carbon atoms in the alkyl group.
- Illustrative alkyl radicals include methyl, ethyl, isopropyl, isobutyl, n-butyl, sec-butyl, the various amyl alcohols, n-hexyl, methylisobutyl carbinyl, heptyl, 2-ethylhexyl, di' isobutyl, isooctyl, nonyl, behenyl, decyl, etc.
- Illustrative lower alkylphenyl radicals include butylphenyl, amylphenyl, di-amylphenyl, octylphenyl, etc.
- Cycloalkyl radicals likewise are useful and these include chiefly cyclohexyl and the lower alkyl-cyclohexyl radicals.
- Other substantially hydrocarbon radicals likewise are useful such as tetradecyl, octadecyl, eicosyl, butylnaphthyl, hexylnaphthyl, octylnaphthyl, cyclohexylphenyl, naphthenyl, etc.
- phosphorodithioic acids from which the Group II metal salts of this invention are prepared is well known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or phenol. The reaction involves four moles of the alcohol or phenol per mole of phosphorus pentasulfide, and may be carried out within the temperature range from about 50 C. to about 200 C.
- the preparation of 0,0-di-n-hexyl phosphorodithioic acid involves the reaction of phosphorus pentasulfide with four moles of n-hexyl alcohol at about 100 C. for about 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
- the preparation of the zinc or barium salt of this acid may be effected by reaction with zinc oxide or barium oxide. Simply mixing and heating these two reactants is sufficient to cause the reaction to take place and the resulting product is sufiiciently pure for the purpose of this invention.
- Especially useful Group II metal phosphorodithioates can be prepared from phosphorodithioic acids which in turn are prepared by the reaction of phosphorus pentasulfide with mixtures of alcohols.
- the use of such mixtures enables the utilization of cheaper alcohols which in themselves do not yield oil-soluble phosphorodithioic acids.
- a mixture of isopropyl and hexyl alcohols can be used to produce a very effective, oil-soluble metal phosphorodithioate.
- mixtures of simple phosphorodithioic (i.e., acids prepared from one alcohol) acids can be reacted with zinc axide or barium oxide to produce less expensive, oil-soluble salts.
- Another class of the phosphorothioate additives contemplated for use in the lubricating composition of this invention comprises the adducts of the metal phosphorodithioates described above with an epoxide.
- the metal phosphorodithioates useful in preparing such adducts are for the most part the zinc phosphorodithioates.
- the epoxides may be alkylene oxides or arylalkylene oxides.
- the arylalkylene oxides are exemplified by styrene oxide, p-ethylstyrene oxide, alpha-methylstyrene oxide, 3-betanaphthyl-1,3-butylene oxide, m-dodecylstyrene oxide, and p-chlorostyrene oxide.
- the alkylene oxides include principally the lower alkylene oxides in which the alkylene radical contains 6 or less carbon atoms.
- lower alkylene oxides examples include ethylene oxide, propylene oxide, 1,2-butene oxide, trimethylene oxide, tetramethylene oxide, butadiene monoepoxide, 1,2-hexene oxide, and propylene epichlorohydrin.
- epoxides useful herein include, for example, butyl 9,10-epoxy-stearate, ep-
- the adduct may be obtained by simply mixing the phosphorodithioate and the epoxide.
- the reaction is usually exothermic and may be carried out within wide temperature limits from about 0 C. to about 200 C. Because the reaction is exothermic it is best carried out by adding one reactant, usually the epoxide, in small increments to the other reactant in order to obtain convenient control of the temperature of the reaction.
- the reaction may be carried out in a solvent such as benzene, mineral oil, naphtha, or n-hexane.
- the chemical structure of the adduct is not known. More than one mole, sometimes as many as four moles, of the epoxide can be made to combine with the phosphorodithioate to form products useful herein. However, adducts obtained by the reaction of one mole of the phosphorodithioate with from about 0.25 mole ot about 1 mole of a lower alkylene oxide, particularly ethylene oxide and propylene oxide, have been found to b especially useful and therefore are preferred.
- the lubricating compositions may contain metal detergent additives in amounts usually within the range of about 0.1% to about 20% by weight. In some applications such as in lubricating marine diesel engines the lubircating compositions may contain as much as 30% of a metal detergent additive. They may contain other additives such as extreme pressure addition agents, viscosity index improving agents, and pour point depressing agents, each in amounts withint he range from about 0.1% to about 10%.
- EXAMPLE II SAE 30 mineral lubricating oil containing 0.75% of the product of Example 2 and 0.1% of phosphorus as the barium salt of di-n-nonylphosphorodithioic acid.
- EXAMPLE IV SAE mineral lubricating oil containing 0.1% of the product of Example 4 and 0.15% of the zinc salt of an equimolar mixture of di-cyclohexylphosphorodithioic acid and di-isobutyl phosphorodithioic acid.
- EXAMPLE VII SAE 10W-30 mineral lubricating oil containing 1.5% of the product of Example 2 and 0.05% of phosphorus as the zinc salt of a phosphorus as the zinc salt of a phosphorodithioic acid prepared by the reaction of phosphorus pentasulfide with a mixture of 60% (mole) of p-butylphenol and 40% (mole) of n-pentyl alcohol.
- EXAMPLE VIII SAE 50 mineral lubricating oil containing 3% of the product of Example 4 and 0.1% of phosphorus as the calcium salt of di-hexylphosphorodithioate.
- EXAMPLE XIII SAE 10 mineral lubricating oil containing 1.5% of the product of Example 19, 0.075% of phosphorus as the adduct obtained by heating zinc dinonylphosphorodithioate With 0.25 mole of 1,2-hexene oxide at 120 C., a sulfurized methyl ester of tall oil acid having a sulfur content of 6% of a polybutane viscosity index improver, 0.005% of a poly-(alkyl methacrylate) anti-foam agent, and 0.5% of lard oil.
- the utility of the phosphorus-containing esters of this invention as additives in lubricating compositions is illustrated by the results from an oxidation and detergency test in which a 350 cc. sample of a lubricant containing 0.001% of iron napthenate and 1.5 by Weight of the solvent-free additive to be tested is placed in a 2 x 15 (inches) borosilicate tube. A 1 /8 x 5% (inches) SAE 1020 steel panel is immersed in the test oil. The sample then is heated at 300 F. for a specified period while air is bubbled through it at the rate of 10 liters per hour.
- the oxidized sample is cooled to F., homogenized with 0.5 of water allowed to stand at room temperature for 24 hours, and then filtered through two layers of No. 1 Whatman filter paper at 20 MM. Hg pressure.
- the weight of the precipitate, washed with naptha and dried, is taken as a measure of the efiectiveness of the additive to inhibit oxidation and disperse the sludge formed during the test. The greater the weight of the precipitate the less effective the additive.
- the results of the test are indicated in the following Table I.
- the base oil of the lubricant sample employed in the test is a Mid-Continent, conventionally refined mineral oil having a viscosity of about 200 Saybolt Universal seconds at 100 F.
- TAB LE I Test result milligrams of sludge per 100 ml. of lubricant Hours of test
- the efficacy of the substituted polyamines of this invention as detergent additives in lubricants for diesel engines operated under relatively severe conditions is demonstrated by the results (Table II) of the CRC-L-l Engine test (also known as Caterpillar 1E test).
- the lubricating composition is used in the crankcase of a 4- stroke diesel engine having a compression ration of 15:1 operated for 120 hours under the following conditions: speed 100 r.p.m.; B.t.u. input per minute, 2900-3000; load, 20 brake horsepower; water jacket temperature, 175180 F.; oil temperature, l40l50 F.
- a diesel fuel having a sulfur content of either 1% or 0.4% is used.
- the lubricant is evaluated according to (1) the piston cleanliness (rating scale of 100, 100 being indicative of no deposit and being indicative of heavy deposits) and (2) the amount of ring filling.
- R is a hydrocarbon radical, a polar-substituted hydrocarbon radical having up to about 10% by weight of at least one polar substituent, or an ether-containing hydrocarbon radical and x is an integer greater than one with from about 0.5 to x moles of an acid-producing mixture of (A) a succinic acid-producing compound selected from the class consisting of hydrocarbon-substituted succinic acids and the halides, the esters having up to about 18 aliphatic carbon atoms, and the anhydrides thereof having at least about 50 aliphatic carbon atoms in the hydrocarbon substituent and (B) a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, and the halides, the esters having up to about 30 aliphatic carbon atoms, and the anhydrides thereof, the molar ratio of said succinic acid-producing compound to said phosphorus acid-producing compound being within the range of from about 0.1:1 to 10:1.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to improve detergency and oxidation stability, of a phosphorus containing ester prepared by the process comprising the reaction of one mole of a polyhydric alcohol having up to about 8 hydroxy radicals with from about 0.5 to 8 moles of an acid-producing mixture of (A) an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 750 to 5000 and (B) a trihydrocarbon phosphite having up to about 30 carbon atoms in each hydrocarbon radical, the molar ratio of said succinic anhydride 20 to said phosphite being within the range of from about 0.1:1 to 10:1.
- the lubricating composition of claim 2 characterized further in that the polyhydric alcohol has from 3 to 6 hydroxy radicals.
- the lubricating composition of claim 2 characterized further in that the trihydrocarbon phosphite is triphenyl phosphite.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to improve detergency and oxidation stability, of a phosphorus containing ester prepared by the process comprising the reaction at a temperature above about C.
- the lubricating composition of claim 1 characterized further in that the polyhydroxy compound is a poly (oxyalkylene) glycol.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufiicient to improve detergency and oxidation stability, of a phosphorus containing ester prepared by the process comprising forming a partially esterified intermediate by the reaction at a temperature above about 100 C.
- R is a hydrocarbon radical, poly-substituted hydrocarbon radical having up to about 10% by weight of at least one polar substituent, or an ether-containing hydrocarbon radical and x is an integer greater than one with a succinic acid-producing compound selected from the class consisting of hydrocarbon-substituted succinic acids and the halides, the esters having up to about 18 aliphatic carbon atoms, and the anhydrides thereof having at least about 50 aliphatic carbon atoms in the hydrocarbon substituent and reacting at a temperature above about 100 C.
- R is a hydrocarbon radical, poly-substituted hydrocarbon radical having up to about 10% by weight of at least one polar substituent, or an ether-containing hydrocarbon radical and x is an integer greater than one with a succinic acid-producing compound selected from the class consisting of hydrocarbon-substituted succinic acids and the halides, the esters having up to about 18 aliphatic carbon atoms, and the anhydrides thereof having
- said intermediate with a phosphorus acid-producing compound selected from the class consisting of phosphoric acids, phosphorous acids, and the halides, the esters having up to about 30 aliphatic carbon atoms, and the anhydrides thereof, the total amount of said succinic acid producing compound and said phosphorus acid-producing compound being equal to from about 0.5 to x moles per mole of the polyhydroxy compound and the molar ratio of said succinic acid-producing compound to said phosphorus acid-producing compound being within the range of from about 0.1:1 to 10:1.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, sufiicient to improve detergency and oxidation stability, of a phosphorus containing ester prepared by the process com prising forming a partially esterified ester by the reaction at a temperature above about 100 C. of a polyhydric alcohol having from about 3 to 6 hydroxy radicals with an olefin polymer-substituted succinic anhydride in which the olefin polymer substituent has a molecular weight of from about 750 to 5000 and reacting at a temperature above about 100 C.
- said intermediate with a triaryl phosphite, the total amounts of said succinic anhydride and said phosphite being from about 0.5 to 3 moles per mole of the polyhydric alcohol and the molar ratio of said succinic anhydride to said phosphite being within the range of from about 0.1 :l to 10:1.
- the lubricating composition of claim 8 characterized further in that the polyhydric alcohol has four hydroxy radicals.
- the lubricating composition of claim 8 characterized further in that the olefin polymer-substituted succinic.
- anhydride is a polyisobutene-substituted succinic anhydride.
- the lubricating composition of claim 8 characterized further in that the triaryl phosphite is triphenyl phosphite.
- a lubricating composition comprising a major proportion of a lubricating oil and a minor proportion, suflicient to improve detergency and oxidation stability, of a phosphorus containing ester prepared by the process comprising forming a partially esterified intermediate by the reaction at a temperature above about 100 C. 1 mole of a tetrahydric alcohol having from about 4 to 12 carbon atoms with from about 0.5 to 1.5 moles of a polyisobutene-substituted succinic anhydride in which the polyisobutene substituent has a molecular weight of from about 750 to 5000 and reacting said intermediate at a temperature above about 100 C. from about 0.1 to 1 mole of a triaryl phosphite.
- the lubricating composition of claim 12 characterized further in that the tetrahydric alcohol is pentaerythritol.
- the lubricating composition of claim 12 characterized further in that the triaryl phosphite is triphenyl phosphite.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Lubricants (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1054276D GB1054276A (enrdf_load_stackoverflow) | 1963-05-17 | ||
FR974704A FR1401507A (fr) | 1963-05-17 | 1964-05-15 | Procédé de fabrication d'esters contenant du phosphore |
DE19641520211 DE1520211A1 (de) | 1963-05-17 | 1964-05-19 | Schmiermittelzubereitung |
US621136A US3403102A (en) | 1963-05-17 | 1967-03-07 | Lubricant containing phosphorus acid esters |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US281329A US3325567A (en) | 1963-05-17 | 1963-05-17 | Phosphorus esters and process |
US621136A US3403102A (en) | 1963-05-17 | 1967-03-07 | Lubricant containing phosphorus acid esters |
Publications (1)
Publication Number | Publication Date |
---|---|
US3403102A true US3403102A (en) | 1968-09-24 |
Family
ID=26960835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US621136A Expired - Lifetime US3403102A (en) | 1963-05-17 | 1967-03-07 | Lubricant containing phosphorus acid esters |
Country Status (3)
Country | Link |
---|---|
US (1) | US3403102A (enrdf_load_stackoverflow) |
DE (1) | DE1520211A1 (enrdf_load_stackoverflow) |
GB (1) | GB1054276A (enrdf_load_stackoverflow) |
Cited By (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4072618A (en) * | 1976-08-27 | 1978-02-07 | Mobil Oil Corporation | Metal working lubricant |
US4321308A (en) * | 1975-02-07 | 1982-03-23 | The Lubrizol Corporation | Metal workpieces coated with ester-based hot melt metal working lubricants |
US4444649A (en) * | 1982-11-15 | 1984-04-24 | Union Oil Company Of California | Antifoulant for high temperature hydrocarbon processing |
US4589993A (en) * | 1982-12-27 | 1986-05-20 | Exxon Research & Engineering Co. | Power transmission shift fluids containing two-component friction modifier additive |
US4820432A (en) * | 1987-07-24 | 1989-04-11 | Exxon Chemical Patents Inc. | Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions |
US4863624A (en) * | 1987-09-09 | 1989-09-05 | Exxon Chemical Patents Inc. | Dispersant additives mixtures for oleaginous compositions |
US4866141A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same |
US4866139A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterified dispersant additives useful in oleaginous compositions |
US4866140A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4906394A (en) * | 1986-10-07 | 1990-03-06 | Exxon Chemical Patents Inc. | Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions |
US4943382A (en) * | 1988-04-06 | 1990-07-24 | Exxon Chemical Patents Inc. | Lactone modified dispersant additives useful in oleaginous compositions |
US4954276A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4954277A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US4971711A (en) * | 1987-07-24 | 1990-11-20 | Exxon Chemical Patents, Inc. | Lactone-modified, mannich base dispersant additives useful in oleaginous compositions |
EP0389967A3 (en) * | 1989-03-27 | 1991-01-09 | Aluminum Company Of America | Compositions useful as lubricants |
US5032320A (en) * | 1986-10-07 | 1991-07-16 | Exxon Chemical Patents Inc. | Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions |
US5059335A (en) * | 1989-02-08 | 1991-10-22 | The Lubrizol Corporation | Lubricants containing salts of hydroxyalkane phosphonic acids |
US5154843A (en) * | 1989-02-08 | 1992-10-13 | The Lubrizol Corporation | Hydroxyalkane phosphonic acids and derivatives thereof and lubricants containing the same |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US5312554A (en) * | 1987-05-26 | 1994-05-17 | Exxon Chemical Patents Inc. | Process for preparing stable oleaginous compositions |
US5334319A (en) * | 1990-06-18 | 1994-08-02 | Tonen Corporation | Composition for hydraulic lubrication and coupling |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
US5554310A (en) * | 1992-12-17 | 1996-09-10 | Exxon Chemical Patents Inc. | Trisubstituted unsaturated polymers |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5652201A (en) * | 1991-05-29 | 1997-07-29 | Ethyl Petroleum Additives Inc. | Lubricating oil compositions and concentrates and the use thereof |
US5756428A (en) * | 1986-10-16 | 1998-05-26 | Exxon Chemical Patents Inc. | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous composition |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
EP0985725A2 (en) | 1998-09-08 | 2000-03-15 | Chevron Chemical Company LLC | Polyalkylene polysuccinimides and post-treated derivatives thereof |
US6051537A (en) * | 1985-07-11 | 2000-04-18 | Exxon Chemical Patents Inc | Dispersant additive mixtures for oleaginous compositions |
US6127321A (en) * | 1985-07-11 | 2000-10-03 | Exxon Chemical Patents Inc | Oil soluble dispersant additives useful in oleaginous compositions |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
US20050059561A1 (en) * | 2003-09-17 | 2005-03-17 | Nubar Ozbalik | Power transmitting fluids and additive compositions |
US20070078066A1 (en) * | 2005-10-03 | 2007-04-05 | Milner Jeffrey L | Lubricant formulations containing extreme pressure agents |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US20080274921A1 (en) * | 2007-05-04 | 2008-11-06 | Ian Macpherson | Environmentally-Friendly Lubricant Compositions |
US20090031614A1 (en) * | 2007-08-01 | 2009-02-05 | Ian Macpherson | Environmentally-Friendly Fuel Compositions |
EP2025737A1 (en) | 2007-08-01 | 2009-02-18 | Afton Chemical Corporation | Environmentally-friendly fuel compositions |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
EP2933320A1 (en) | 2014-04-17 | 2015-10-21 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2990469A1 (en) | 2014-08-27 | 2016-03-02 | Afton Chemical Corporation | Lubricant composition suitable for use in gasoline direct injection engines |
WO2017011689A1 (en) | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
WO2017146867A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017189277A1 (en) | 2016-04-26 | 2017-11-02 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
WO2017192217A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2017192202A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporaion | Lubricant compositions for reducing timing chain stretch |
WO2018111726A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-functional olefin copolymers and lubricating compositions containing same |
WO2018136137A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
WO2018136136A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136138A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
EP3476923A1 (en) | 2017-10-25 | 2019-05-01 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
EP3560966A2 (en) | 2018-04-25 | 2019-10-30 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
EP3578625A1 (en) | 2018-06-05 | 2019-12-11 | Afton Chemical Corporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
WO2020174454A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
EP3812445A1 (en) | 2019-10-24 | 2021-04-28 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
EP3858954A1 (en) | 2020-01-29 | 2021-08-04 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
EP3954753A1 (en) | 2020-08-12 | 2022-02-16 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
WO2022094557A1 (en) | 2020-10-30 | 2022-05-05 | Afton Chemical Corporation | Engine oils with low temperature pump ability |
EP4067463A1 (en) | 2021-03-30 | 2022-10-05 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
EP4098723A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
WO2023004265A1 (en) | 2021-07-21 | 2023-01-26 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
EP4124648A1 (en) | 2021-07-31 | 2023-02-01 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
US11572523B1 (en) | 2022-01-26 | 2023-02-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
WO2023141399A1 (en) | 2022-01-18 | 2023-07-27 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
WO2023159095A1 (en) | 2022-02-21 | 2023-08-24 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
WO2023212165A1 (en) | 2022-04-27 | 2023-11-02 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4282937A1 (en) | 2022-05-26 | 2023-11-29 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
EP4306624A1 (en) | 2022-07-14 | 2024-01-17 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
EP4310162A1 (en) | 2022-07-15 | 2024-01-24 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4317369A1 (en) | 2022-08-02 | 2024-02-07 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
WO2024073304A1 (en) | 2022-09-27 | 2024-04-04 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
EP4357442A1 (en) | 2022-09-21 | 2024-04-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
EP4368687A1 (en) | 2022-11-10 | 2024-05-15 | Afton Chemical Corporation | Corrosion inhibitor and industrial lubricant including the same |
EP4386070A1 (en) | 2022-12-09 | 2024-06-19 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4389859A2 (en) | 2022-12-20 | 2024-06-26 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
EP4435077A1 (en) | 2023-03-22 | 2024-09-25 | Afton Chemical Corporation | Antiwear systems for medium and/or heavy duty diesel engines |
EP4442798A1 (en) | 2023-04-06 | 2024-10-09 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
EP4461789A1 (en) | 2023-05-10 | 2024-11-13 | Afton Chemical Corporation | Lubricating oil compositions for improving low-speed pre-ignition |
WO2024263502A1 (en) | 2023-06-23 | 2024-12-26 | Afton Chemical Corporation | Lubricant additives for performance boosting |
EP4520807A1 (en) | 2023-08-30 | 2025-03-12 | Afton Chemical Corporation | Detergent and dispersant systems for improved steel piston cleanliness in heavy duty lubricants |
WO2025090369A1 (en) | 2023-10-25 | 2025-05-01 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
US12305142B1 (en) | 2024-02-20 | 2025-05-20 | Afton Chemical Corporation | Industrial lubricant |
EP4570886A1 (en) | 2023-12-12 | 2025-06-18 | Afton Chemical Corporation | Silicon-containing compounds for lubricants |
WO2025136661A1 (en) | 2023-12-18 | 2025-06-26 | Afton Chemical Corporation | Thiophosphate esters as antiwear additives for lubricants |
EP4585669A1 (en) | 2024-01-12 | 2025-07-16 | Afton Chemical Corporation | Magnesium sulfonate detergent having improved compatability with friction modifiers |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8407300D0 (en) * | 1984-03-21 | 1984-04-26 | Ici Plc | Surfactants |
CA2308554A1 (en) * | 1999-06-22 | 2000-12-22 | Scott D. Schwab | Phosphorylated thermal stability additives for distillate fuels |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3202693A (en) * | 1962-10-11 | 1965-08-24 | Monsanto Co | Succinate half-esters of alkylene glycol phosphate |
US3255108A (en) * | 1961-08-30 | 1966-06-07 | Lubrizol Corp | Water-in-oil emulsions containing succinic esters |
US3288714A (en) * | 1961-12-06 | 1966-11-29 | Monsanto Co | Lubricating oil compositions containing alkenyl succinic anhydrides |
-
0
- GB GB1054276D patent/GB1054276A/en active Active
-
1964
- 1964-05-19 DE DE19641520211 patent/DE1520211A1/de active Pending
-
1967
- 1967-03-07 US US621136A patent/US3403102A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3255108A (en) * | 1961-08-30 | 1966-06-07 | Lubrizol Corp | Water-in-oil emulsions containing succinic esters |
US3288714A (en) * | 1961-12-06 | 1966-11-29 | Monsanto Co | Lubricating oil compositions containing alkenyl succinic anhydrides |
US3202693A (en) * | 1962-10-11 | 1965-08-24 | Monsanto Co | Succinate half-esters of alkylene glycol phosphate |
Cited By (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321308A (en) * | 1975-02-07 | 1982-03-23 | The Lubrizol Corporation | Metal workpieces coated with ester-based hot melt metal working lubricants |
US4072618A (en) * | 1976-08-27 | 1978-02-07 | Mobil Oil Corporation | Metal working lubricant |
US4444649A (en) * | 1982-11-15 | 1984-04-24 | Union Oil Company Of California | Antifoulant for high temperature hydrocarbon processing |
US4589993A (en) * | 1982-12-27 | 1986-05-20 | Exxon Research & Engineering Co. | Power transmission shift fluids containing two-component friction modifier additive |
US6051537A (en) * | 1985-07-11 | 2000-04-18 | Exxon Chemical Patents Inc | Dispersant additive mixtures for oleaginous compositions |
US6355074B1 (en) | 1985-07-11 | 2002-03-12 | Exxon Chemical Patents Inc | Oil soluble dispersant additives useful in oleaginous compositions |
US6127321A (en) * | 1985-07-11 | 2000-10-03 | Exxon Chemical Patents Inc | Oil soluble dispersant additives useful in oleaginous compositions |
US4954277A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified, esterified or aminated additives useful in oleaginous compositions and compositions containing same |
US4866140A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4906394A (en) * | 1986-10-07 | 1990-03-06 | Exxon Chemical Patents Inc. | Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions |
US4866139A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterified dispersant additives useful in oleaginous compositions |
US4954276A (en) * | 1986-10-07 | 1990-09-04 | Exxon Chemical Patents Inc. | Lactone modified adducts or reactants and oleaginous compositions containing same |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US4866141A (en) * | 1986-10-07 | 1989-09-12 | Exxon Chemical Patents Inc. | Lactone modified, esterfied or aminated additives useful in oleaginous compositions and compositions containing same |
US5032320A (en) * | 1986-10-07 | 1991-07-16 | Exxon Chemical Patents Inc. | Lactone modified mono- or dicarboxylic acid based adduct dispersant compositions |
US5788722A (en) * | 1986-10-16 | 1998-08-04 | Exxon Chemical Patents Inc | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous compositions |
US5756428A (en) * | 1986-10-16 | 1998-05-26 | Exxon Chemical Patents Inc. | High functionality low molecular weight oil soluble dispersant additives useful in oleaginous composition |
US5312554A (en) * | 1987-05-26 | 1994-05-17 | Exxon Chemical Patents Inc. | Process for preparing stable oleaginous compositions |
US5451333A (en) * | 1987-05-26 | 1995-09-19 | Exxon Chemical Patents Inc. | Haze resistant dispersant-detergent compositions |
US4971711A (en) * | 1987-07-24 | 1990-11-20 | Exxon Chemical Patents, Inc. | Lactone-modified, mannich base dispersant additives useful in oleaginous compositions |
US4820432A (en) * | 1987-07-24 | 1989-04-11 | Exxon Chemical Patents Inc. | Lactone-modified, Mannich base dispersant additives useful in oleaginous compositions |
US4863624A (en) * | 1987-09-09 | 1989-09-05 | Exxon Chemical Patents Inc. | Dispersant additives mixtures for oleaginous compositions |
US4943382A (en) * | 1988-04-06 | 1990-07-24 | Exxon Chemical Patents Inc. | Lactone modified dispersant additives useful in oleaginous compositions |
US5154843A (en) * | 1989-02-08 | 1992-10-13 | The Lubrizol Corporation | Hydroxyalkane phosphonic acids and derivatives thereof and lubricants containing the same |
US5059335A (en) * | 1989-02-08 | 1991-10-22 | The Lubrizol Corporation | Lubricants containing salts of hydroxyalkane phosphonic acids |
EP0389967A3 (en) * | 1989-03-27 | 1991-01-09 | Aluminum Company Of America | Compositions useful as lubricants |
US5334319A (en) * | 1990-06-18 | 1994-08-02 | Tonen Corporation | Composition for hydraulic lubrication and coupling |
US5652201A (en) * | 1991-05-29 | 1997-07-29 | Ethyl Petroleum Additives Inc. | Lubricating oil compositions and concentrates and the use thereof |
EP0558835A1 (en) | 1992-01-30 | 1993-09-08 | Albemarle Corporation | Biodegradable lubricants and functional fluids |
US6030930A (en) * | 1992-12-17 | 2000-02-29 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives |
US5554310A (en) * | 1992-12-17 | 1996-09-10 | Exxon Chemical Patents Inc. | Trisubstituted unsaturated polymers |
US5663130A (en) * | 1992-12-17 | 1997-09-02 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5696064A (en) * | 1992-12-17 | 1997-12-09 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5698722A (en) * | 1992-12-17 | 1997-12-16 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5703256A (en) * | 1992-12-17 | 1997-12-30 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5717039A (en) * | 1992-12-17 | 1998-02-10 | Exxon Chemical Patents Inc. | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5646332A (en) * | 1992-12-17 | 1997-07-08 | Exxon Chemical Patents Inc. | Batch Koch carbonylation process |
US5650536A (en) * | 1992-12-17 | 1997-07-22 | Exxon Chemical Patents Inc. | Continuous process for production of functionalized olefins |
US5643859A (en) * | 1992-12-17 | 1997-07-01 | Exxon Chemical Patents Inc. | Derivatives of polyamines with one primary amine and secondary of tertiary amines |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5629434A (en) * | 1992-12-17 | 1997-05-13 | Exxon Chemical Patents Inc | Functionalization of polymers based on Koch chemistry and derivatives thereof |
US5767046A (en) * | 1994-06-17 | 1998-06-16 | Exxon Chemical Company | Functionalized additives useful in two-cycle engines |
EP0713908A1 (en) | 1994-11-22 | 1996-05-29 | Ethyl Corporation | Power transmission fluids |
EP0985725A2 (en) | 1998-09-08 | 2000-03-15 | Chevron Chemical Company LLC | Polyalkylene polysuccinimides and post-treated derivatives thereof |
US6627584B2 (en) | 2002-01-28 | 2003-09-30 | Ethyl Corporation | Automatic transmission fluid additive comprising reaction product of hydrocarbyl acrylates and dihydrocarbyldithiophosphoric acids |
US20050059561A1 (en) * | 2003-09-17 | 2005-03-17 | Nubar Ozbalik | Power transmitting fluids and additive compositions |
US20070066498A1 (en) * | 2003-09-17 | 2007-03-22 | Nubar Ozbalik | Power transmitting fluids and additive compositions |
US20070078066A1 (en) * | 2005-10-03 | 2007-04-05 | Milner Jeffrey L | Lubricant formulations containing extreme pressure agents |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
US20080319216A1 (en) * | 2005-11-09 | 2008-12-25 | Degonia David J | Salt of a Sulfur-Containing, Phosphorus-Containing Compound, And Methods Thereof |
US7928260B2 (en) | 2005-11-09 | 2011-04-19 | Afton Chemical Corporation | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
EP2017329A1 (en) | 2007-05-04 | 2009-01-21 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
EP2420553A1 (en) | 2007-05-04 | 2012-02-22 | Afton Chemical Corporation | Environmentally-Friendly Lubricant Compositions |
US20080274921A1 (en) * | 2007-05-04 | 2008-11-06 | Ian Macpherson | Environmentally-Friendly Lubricant Compositions |
US20100152078A1 (en) * | 2007-05-04 | 2010-06-17 | Ian Macpherson | Environmentally-friendly lubricant compositions |
EP2025737A1 (en) | 2007-08-01 | 2009-02-18 | Afton Chemical Corporation | Environmentally-friendly fuel compositions |
US20090031614A1 (en) * | 2007-08-01 | 2009-02-05 | Ian Macpherson | Environmentally-Friendly Fuel Compositions |
US20090071067A1 (en) * | 2007-09-17 | 2009-03-19 | Ian Macpherson | Environmentally-Friendly Additives And Additive Compositions For Solid Fuels |
EP2933320A1 (en) | 2014-04-17 | 2015-10-21 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9657252B2 (en) | 2014-04-17 | 2017-05-23 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
EP2990469A1 (en) | 2014-08-27 | 2016-03-02 | Afton Chemical Corporation | Lubricant composition suitable for use in gasoline direct injection engines |
WO2017011689A1 (en) | 2015-07-16 | 2017-01-19 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
EP3943581A1 (en) | 2015-07-16 | 2022-01-26 | Afton Chemical Corporation | Lubricants with tungsten and their use for improving low speed pre-ignition |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
US10550349B2 (en) | 2015-07-16 | 2020-02-04 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
WO2017146867A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
EP3613831A1 (en) | 2016-02-25 | 2020-02-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
EP3243892A1 (en) | 2016-04-08 | 2017-11-15 | Afton Chemical Corporation | Lubricant compositions having improved frictional characteristics and methods of use thereof |
EP3228684A1 (en) | 2016-04-08 | 2017-10-11 | Afton Chemical Corporation | Lubricant compositions having improved frictional characteristics and methods of use thereof |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
WO2017189277A1 (en) | 2016-04-26 | 2017-11-02 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
WO2017192217A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10323205B2 (en) | 2016-05-05 | 2019-06-18 | Afton Chemical Corporation | Lubricant compositions for reducing timing chain stretch |
WO2017192202A1 (en) | 2016-05-05 | 2017-11-09 | Afton Chemical Corporaion | Lubricant compositions for reducing timing chain stretch |
US11155764B2 (en) | 2016-05-05 | 2021-10-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
WO2018111726A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-functional olefin copolymers and lubricating compositions containing same |
WO2018136137A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10370615B2 (en) | 2017-01-18 | 2019-08-06 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
WO2018136138A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
WO2018136136A1 (en) | 2017-01-18 | 2018-07-26 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
US10443011B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10443558B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10513668B2 (en) | 2017-10-25 | 2019-12-24 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
EP3476923A1 (en) | 2017-10-25 | 2019-05-01 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
EP3560966A2 (en) | 2018-04-25 | 2019-10-30 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11760953B2 (en) | 2018-04-25 | 2023-09-19 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11098262B2 (en) | 2018-04-25 | 2021-08-24 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11459521B2 (en) | 2018-06-05 | 2022-10-04 | Afton Chemical Coporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
EP3578625A1 (en) | 2018-06-05 | 2019-12-11 | Afton Chemical Corporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
WO2020174454A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
EP3812445A1 (en) | 2019-10-24 | 2021-04-28 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
US11066622B2 (en) | 2019-10-24 | 2021-07-20 | Afton Chemical Corporation | Synergistic lubricants with reduced electrical conductivity |
EP3858954A1 (en) | 2020-01-29 | 2021-08-04 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
EP3954753A1 (en) | 2020-08-12 | 2022-02-16 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
EP4368689A1 (en) | 2020-08-12 | 2024-05-15 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
WO2022094557A1 (en) | 2020-10-30 | 2022-05-05 | Afton Chemical Corporation | Engine oils with low temperature pump ability |
EP4067463A1 (en) | 2021-03-30 | 2022-10-05 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
EP4098723A1 (en) | 2021-06-04 | 2022-12-07 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
WO2023004265A1 (en) | 2021-07-21 | 2023-01-26 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
EP4124648A1 (en) | 2021-07-31 | 2023-02-01 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
WO2023141399A1 (en) | 2022-01-18 | 2023-07-27 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
US11572523B1 (en) | 2022-01-26 | 2023-02-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
WO2023147258A1 (en) | 2022-01-26 | 2023-08-03 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
US11976250B2 (en) | 2022-01-26 | 2024-05-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
WO2023159095A1 (en) | 2022-02-21 | 2023-08-24 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
US12241038B2 (en) | 2022-02-21 | 2025-03-04 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
US11976252B2 (en) | 2022-02-21 | 2024-05-07 | Afton Chemical Corporation | Polyalphaolefin phenols with high para-position selectivity |
WO2023212165A1 (en) | 2022-04-27 | 2023-11-02 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
US12270003B2 (en) | 2022-04-27 | 2025-04-08 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4282937A1 (en) | 2022-05-26 | 2023-11-29 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
EP4306624A1 (en) | 2022-07-14 | 2024-01-17 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
US11970671B2 (en) | 2022-07-15 | 2024-04-30 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4310162A1 (en) | 2022-07-15 | 2024-01-24 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
EP4317369A1 (en) | 2022-08-02 | 2024-02-07 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
EP4357442A1 (en) | 2022-09-21 | 2024-04-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
WO2024073304A1 (en) | 2022-09-27 | 2024-04-04 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
EP4361235A1 (en) | 2022-10-28 | 2024-05-01 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
EP4368687A1 (en) | 2022-11-10 | 2024-05-15 | Afton Chemical Corporation | Corrosion inhibitor and industrial lubricant including the same |
EP4386070A1 (en) | 2022-12-09 | 2024-06-19 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
US12157866B2 (en) | 2022-12-09 | 2024-12-03 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
EP4389859A2 (en) | 2022-12-20 | 2024-06-26 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
EP4410934A1 (en) | 2023-01-31 | 2024-08-07 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
US12110468B1 (en) | 2023-03-22 | 2024-10-08 | Afton Chemical Corporation | Antiwear systems for improved wear in medium and/or heavy duty diesel engines |
EP4435077A1 (en) | 2023-03-22 | 2024-09-25 | Afton Chemical Corporation | Antiwear systems for medium and/or heavy duty diesel engines |
EP4442798A1 (en) | 2023-04-06 | 2024-10-09 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
EP4461789A1 (en) | 2023-05-10 | 2024-11-13 | Afton Chemical Corporation | Lubricating oil compositions for improving low-speed pre-ignition |
WO2024263502A1 (en) | 2023-06-23 | 2024-12-26 | Afton Chemical Corporation | Lubricant additives for performance boosting |
EP4520807A1 (en) | 2023-08-30 | 2025-03-12 | Afton Chemical Corporation | Detergent and dispersant systems for improved steel piston cleanliness in heavy duty lubricants |
WO2025090369A1 (en) | 2023-10-25 | 2025-05-01 | Afton Chemical Corporation | Additives with high sulfurization for lubricating oil compositions |
EP4570886A1 (en) | 2023-12-12 | 2025-06-18 | Afton Chemical Corporation | Silicon-containing compounds for lubricants |
WO2025136661A1 (en) | 2023-12-18 | 2025-06-26 | Afton Chemical Corporation | Thiophosphate esters as antiwear additives for lubricants |
EP4585669A1 (en) | 2024-01-12 | 2025-07-16 | Afton Chemical Corporation | Magnesium sulfonate detergent having improved compatability with friction modifiers |
US12305142B1 (en) | 2024-02-20 | 2025-05-20 | Afton Chemical Corporation | Industrial lubricant |
Also Published As
Publication number | Publication date |
---|---|
DE1520211A1 (de) | 1969-07-17 |
GB1054276A (enrdf_load_stackoverflow) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3403102A (en) | Lubricant containing phosphorus acid esters | |
US3533945A (en) | Lubricating oil composition | |
US3513093A (en) | Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives | |
US4034038A (en) | Boron-containing esters | |
US3502677A (en) | Nitrogen-containing and phosphorus-containing succinic derivatives | |
US3381022A (en) | Polymerized olefin substituted succinic acid esters | |
US3338832A (en) | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound | |
US3282955A (en) | Reaction products of acylated nitrogen intermediates and a boron compound | |
US3522179A (en) | Lubricating composition containing esters of hydrocarbon-substituted succinic acid | |
US3346493A (en) | Lubricants containing metal complexes of alkenyl succinic acid-amine reaction product | |
US3347790A (en) | Lubricating compositions containing metal salts of acids of phosphorus | |
US3197405A (en) | Phosphorus-and nitrogen-containing compositions and process for preparing the same | |
US3236770A (en) | Transaxle lubricant | |
US3755501A (en) | Phosphate or phosphite esters of s-(2-hydroxyalkyl)phosphorodithioates | |
US3306908A (en) | Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds | |
US3876550A (en) | Lubricant compositions | |
US4151173A (en) | Acylated polyoxyalkylene polyamines | |
US3197496A (en) | Polyphosphorus ester derivatives of o, o-dihydrocarbyl-s-hydroxylalkyl phosphorodithioates | |
JPH0320438B2 (enrdf_load_stackoverflow) | ||
US3259579A (en) | Esters of dithiophosphoric acids and lubricating oil compositions containing same | |
US3325567A (en) | Phosphorus esters and process | |
US3267033A (en) | Lubricating composition having desirable frictional characteristics | |
US3201438A (en) | Method of producing a monoester of a hydrocarbyl thiophosphonic acid and a polyalkylene glycol | |
US4208357A (en) | Process for preparing phosphorus and sulfur containing amides and thioamides | |
US3337654A (en) | Oxyalkylenated hydroxyhydrocarbon thiophosphates |