US3396699A - Continuous coating apparatus - Google Patents

Continuous coating apparatus Download PDF

Info

Publication number
US3396699A
US3396699A US588511A US58851166A US3396699A US 3396699 A US3396699 A US 3396699A US 588511 A US588511 A US 588511A US 58851166 A US58851166 A US 58851166A US 3396699 A US3396699 A US 3396699A
Authority
US
United States
Prior art keywords
chamber
wire
cloud
particles
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US588511A
Inventor
Norman P Beebe
Jr Ivan W Wade
Daniel G Stone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Anaconda Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anaconda Wire and Cable Co filed Critical Anaconda Wire and Cable Co
Priority to US588511A priority Critical patent/US3396699A/en
Application granted granted Critical
Publication of US3396699A publication Critical patent/US3396699A/en
Assigned to ATLANTIC RICHFIELD COMPANY, A PA CORP. reassignment ATLANTIC RICHFIELD COMPANY, A PA CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ANACONDA COMPANY THE, A DE CORP
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D11/00Continuous processes; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/02Apparatus specially adapted for applying particulate materials to surfaces using fluidised-bed techniques
    • B05C19/025Combined with electrostatic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S118/00Coating apparatus
    • Y10S118/05Fluidized bed

Definitions

  • ABSTRACT OF THE DISCLOSURE Wire or strip is continuously coated by passing it through a cloud of electrostatically charged particles of enamel maintained above the upper surface of a fluid bed within a covered chamber.
  • the thickness deposited is controlled by adjustable tubes through which the work passes on entering and leaving the chamber and agglomerates of the powder are removed by blowers at the chamber exit. The work passes directly from the chamber through an oven where the enamel is fused.
  • Our invention relates to an apparatus for continuously coating a wire or strip and particularly for electrostatically coating said wire or strip above a fluid bed.
  • This apparatus comprises a chamber with means providing a fluid bed of fusible dielectric particles within the chamber and means applying a high electrical potential to the particles which then form a cloud of charged particles above the bed.
  • Our apparatus has an oven positioned adjacent to the chamber and means for supporting the elongated member suspended within the chamber and the oven so that the member is free from contact between the chamber and the oven.
  • a chamber for our apparatus which preferably comprises an adjustable barrier means, such as at least one tube surrounding the elongated member and segregating a portion of the member from the cloud, and blower means for blowing loose particles from the elongated member.
  • the barrier tube is spaced around the farthest downstream portion of the elongated member and our apparatus comprises means blowing gas into the chamber through this tube so as to remove excess loose particles from both the member and the inside of the tube.
  • the chamber of our apparatus comprises upstream and downstream walls with the elongated member that is being coated passing through tubes extending through these walls. Means are provided so that at least one of the tubes is slidably adjustable relative to the walls.
  • the upstream tube has a seal through ice which the member passes, and gas is blown upstream through the downstream tube and vented from the chamber through a filter.
  • the tubes allow higher voltages to be applied for higher speed operation without excessive powder deposit.
  • FIGURE 1 shows a side view, in section, of the apparatus of our invention.
  • FIGURE 2 shows a side section of an element of FIG- URE 1.
  • FIGURE 3 shows a pictorial representation of a feature of an embodiment of our invention.
  • An elongated member which in the illustrated case is a rectangular copper wire -11 is paid from a supply reel 12 over a supporting sheave 13 through a chamber 14 and oven 16, over a supporting sheave 17 onto a take-up reel 18 that is driven by a motor 19.
  • the chamber 14 has a downstream wall 21 and upstream wall 22 pierced respectively by tubes 23, 24 through which the wire 11 passes.
  • a seal in the form of a felt plug 26 seals the tube 24, fitting closely around the wire 11. Between the plug 26 and the sheave 17 the wire 11 is free from any solid contact, and is suspended freely, tensions being applied at the reels 12, 18 or otherwise in a known manner to prevent excessive sagging.
  • the chamber 14 has a gas permeable false bottom plate 27 formed of porous ceramic, and an impermeable bottom plate 28.
  • the two plates 27, 28 form the top and bottom of an air passage 29 into which dried air is blown through a pipe 31 from a low pressure source, not shown.
  • Above the porous plate 27 there is a fluid bed 32 of dielectric powder which is maintained fluid by the continuous upward passage of air through the porous plate 27.
  • Embedded in the plate 27 are a large plurality of electrodes 33-33 which are evenly spaced over the entire upper surface of the plate 27 and protrude upwardly into the bed of powder 32.
  • the electrodes 33 are all electrically connected by means of a lead 34 to a high voltage generator 36 which applies a high negative D-C voltage of the order of -100 kilovolts to the electrodes 33 and thus to the fluid bed 32.
  • the application of high potential to the bed 32 causes the formation of a cloud 37 of particles within the chamber 14 that rises high above the fluid bed 32 and completely surrounds the advancing wire 11 within the chamber.
  • the tube 24 is slidably mounted within a bushing 38 secured to the wall 22 by a reinforcing plate 39, and can be locked in position by means of set screws 4141. Similarly the tube 23 slides in a bushing 42 and is locked by set screws 4343. Access to the chamber 14 is afforded by a removable -but close-fitting cover 44.
  • a hollow ring 46 connected by means of an air hose 47 to an air supply, not shown.
  • the ring 46 (FIGURE 2) has a series of apertures opening into vent tubes 48 so that air is blown into the chamber 14 upstream through the tube, and also against the wire 11 within the tube and the chamber.
  • the chamber 14 is mounted on rubber or other flexible footings 49-49 and is vibrated by a vibrator 50 which can be of a number of known types such as air or electric vibrators.
  • the speed and amplitude of the vibrator 50 are preferably variable and are set to establish optimum conditions for a fluid bed which are determined by trial.
  • the oven 16 is equipped with infra-red lamps 5151 sufiicient in number to thoroughly fuse the coating on the Wire. and the sheave 17 is spaced sufliciently downstream of the oven 16 to allow the coating to cool to a substantially non-tacky state before passing over the sheave.
  • Other means of heating the oven 16 such as resistance heating and gas heating might also be used.
  • Known means of accelerated cooling, such, for an example, as blowers, may be applied to the coated wire between the sheave 17 and oven 16, within the scope of our invention.
  • FIGURE 3 With reference to FIGURE 3 we show a means for releasing the air blown into the chamber 14 through the ring 46 and pipe 31.
  • a side wall 52 of the chamber 14 has an aperture 53 highly placed therein. This aperture opens into a pipe or hose 54 connecting to a settling bin 56 having a filter 57 as its cover.
  • the bottom of the bin 56 forms a funnel 58 for settling powder carried over with the air into a recovery jar 59 from which it can be returned to the chamber 14 without loss of material.
  • Fluid beds used as a means for generating a cloud of charged particles are not new.
  • Commercial equipment of this type has been sold by Sames, U.S.A. Incorporated of Palisades Park, N].
  • the fluid bed is a well defined entity and that there is a definite interface between the top of the fluid bed 32 and the cloud 37 of charged particles above it.
  • individual articles could be dipped into a cloud of charged particles above a fluid bed to receive a coating of resinous particles no apparatus has hitherto been known for continuously coating an elongated member of indefinite length with a uniform, controlled thickness of material continuously fused thereon.
  • the coating thickness is controlled by the following variables: the magnitude of the potential on the electrodes 33 and the air velocity through the porous plate 27 which affect the density of the cloud 37, the speed of the wire 11, and the length of the chamber 14.
  • the speed of the wire 11, in commercial practice, should be maintained as high as the furnace 16 can satisfactorily heat.
  • the voltage of the electrodes has a definite upper limit determined by the capacity of the high voltage generator 36 and the danger of arcing between the electrodes and the wire, and a lower limit below which the cloud 37 will be irregular and will not completely surround the wire.
  • the proper conditions for obtaining the most effective cloud should be experimentally determined for each type of powder to be applied.
  • the wire 11 was passed at a speed of 35-40 feet per minute to apply a coating 0.0015 inch thick. This speed is about 5 times as fast as the speed for coating by wet methods with multiple passes, and to achieve this speed the oven 16 is about 9 feet long. Since the oven uses infra-red energy sources (the lamps 151) the actual air temperature in the oven is not the important factor in fusing the coating.
  • the fluid bed was maintained between about 24 inches deep and the wire 11 was passed 15 to 18 inches above the porous plate 27.
  • the volume of the fluid bed is not much greater, possibly 20%, than the volume occupied by the powder in an unfluidized condition, but in the absence of fluidization, the electrodes 33 and applied voltage would be useless for the purpose of generating the cloud 37.
  • the length of wire exposed to the cloud 37 was about 18 inches but it is recommended that persons skilled in the art should establish a proper value for this distance by experimentation in each case.
  • the applied potential on the electrodes 33 was -75 kilovolts.
  • the wire 11 and oven 16 and all external parts of the chamber 14 were grounded.
  • the epoxy powder used has particle size distribution determined by sieve analysis as follows:
  • An apparatus for continuously coating an elongated member of indefinite length comprising:
  • (B) means providing a fluid bed of fusible dielectric particles within said chamber
  • (C) means applying a high electrical potential to said particles thereby maintaining a cloud of charged particles above said bed and means grounding said member
  • (E) means supporting said elongated member suspended within said chamber and said oven
  • (F) means continuously advancing said member downstream through said cloud in said chamber whereby said particles are electrostatically deposited on said member, and through said oven, and
  • (G) means heating said oven to a temperature sufficient to fuse said particles.
  • An apparatus for continuously coating an advancing elongated member of indefinite length comprising:
  • (B) means providing a fluid bed of dielectric particles within said chamber
  • (C) means applying a high potential to said particles thereby maintaining a cloud of charged particles above said bed, and means grounding said member
  • said barrier means comprises at least one tube surrounding said member.
  • An apparatus for continuously coating an advancing elongated member of indefinite length comprising:
  • (B) means providing a fluid bed of dielectric particles within said chamber
  • (C) means applying a high electrical potential to said particles thereby maintaining a cloud of charged particles above said bed, and means grounding said member
  • *(D) means supporting said member suspended within said cloud in said chamber, said member being separated at all points from said bed, whereby said member is electrostatically adherently coated with said particles and is loosely coated with additional of said particles, and
  • blower means for removing said additional particles while retaining said electrostatically adherent particles.
  • said chamber comprises upstream and downstream walls, tubes extending through each of said walls, said member passing through said tubes, sealing means in the upstream of said tubes, and means for slidably adjusting at least one of said tubes relative to said walls.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

Aug. 13, 1968 BEEBE' ET AL CONTINUOUS COATING APPARATUS Filed Oct. 21, 1966 m w 3 m w MEWLMM M HW Hmu wV W W Q mwm z, N vwv 8 wv 5 0690 @o Q@ 060G @g mw mw United States Patent 3,396,699 CONTINUOUS COATING APPARATUS Norman P. Beebe, Ferrysburg, Ivan W. Wade, Jr., Muskegon, and Daniel G. Stone, Grand Rapids, Mich, as-
signors to Anaconda Wire and Cable Company, a corporation of Delaware Filed Oct. 21, 1966, Ser. No. 588,511 8 Claims. (Cl. 118-634) ABSTRACT OF THE DISCLOSURE Wire or strip is continuously coated by passing it through a cloud of electrostatically charged particles of enamel maintained above the upper surface of a fluid bed within a covered chamber. The thickness deposited is controlled by adjustable tubes through which the work passes on entering and leaving the chamber and agglomerates of the powder are removed by blowers at the chamber exit. The work passes directly from the chamber through an oven where the enamel is fused.
Our invention relates to an apparatus for continuously coating a wire or strip and particularly for electrostatically coating said wire or strip above a fluid bed.
In the enamelling of magnet wire, both round and rectangular, and of magnet strip, it has been known to apply repeated coats of the enamel in solution until a wall thickness having the desired dielectric strength is built up. Because this process requires the evaporation of enamel solvent, in addition to the curing or fusion of the enamel resin, it is slow, and because the solvents are usually wasted, it is expensive. These shortcomings of known continuous enamelling processes could be overcome if it were possible continuously to apply an insulating powder electrostatically and to fuse the powder onto the wire before it drops off. For a useful electrical product this must be done with a precise insulating wall thickness, free from gaps and lumpiness.
We have now found that this can be done with an apparatus We have invented. This apparatus comprises a chamber with means providing a fluid bed of fusible dielectric particles within the chamber and means applying a high electrical potential to the particles which then form a cloud of charged particles above the bed. Our apparatus has an oven positioned adjacent to the chamber and means for supporting the elongated member suspended within the chamber and the oven so that the member is free from contact between the chamber and the oven. There are means for continuously advancing the elongated member downstream through the cloud of particles in the chamber, whereby a coating of particles are deposited on the member, and through the oven while the oven is heated to a temperature suflicient to fuse the particles.
We have invented a chamber for our apparatus which preferably comprises an adjustable barrier means, such as at least one tube surrounding the elongated member and segregating a portion of the member from the cloud, and blower means for blowing loose particles from the elongated member. In a preferred embodiment the barrier tube is spaced around the farthest downstream portion of the elongated member and our apparatus comprises means blowing gas into the chamber through this tube so as to remove excess loose particles from both the member and the inside of the tube.
In a preferred embodiment the chamber of our apparatus comprises upstream and downstream walls with the elongated member that is being coated passing through tubes extending through these walls. Means are provided so that at least one of the tubes is slidably adjustable relative to the walls. The upstream tube has a seal through ice which the member passes, and gas is blown upstream through the downstream tube and vented from the chamber through a filter. In addition to affording a means for fine control of insulation thickness the tubes allow higher voltages to be applied for higher speed operation without excessive powder deposit.
A more thorough understanding of our invention may be gained from the study of the appended drawing.
In the drawing:
FIGURE 1 shows a side view, in section, of the apparatus of our invention.
FIGURE 2 shows a side section of an element of FIG- URE 1.
FIGURE 3 shows a pictorial representation of a feature of an embodiment of our invention.
An elongated member which in the illustrated case is a rectangular copper wire -11 is paid from a supply reel 12 over a supporting sheave 13 through a chamber 14 and oven 16, over a supporting sheave 17 onto a take-up reel 18 that is driven by a motor 19. The chamber 14 has a downstream wall 21 and upstream wall 22 pierced respectively by tubes 23, 24 through which the wire 11 passes. A seal in the form of a felt plug 26 seals the tube 24, fitting closely around the wire 11. Between the plug 26 and the sheave 17 the wire 11 is free from any solid contact, and is suspended freely, tensions being applied at the reels 12, 18 or otherwise in a known manner to prevent excessive sagging. The chamber 14 has a gas permeable false bottom plate 27 formed of porous ceramic, and an impermeable bottom plate 28. The two plates 27, 28 form the top and bottom of an air passage 29 into which dried air is blown through a pipe 31 from a low pressure source, not shown. Above the porous plate 27 there is a fluid bed 32 of dielectric powder which is maintained fluid by the continuous upward passage of air through the porous plate 27. Embedded in the plate 27 are a large plurality of electrodes 33-33 which are evenly spaced over the entire upper surface of the plate 27 and protrude upwardly into the bed of powder 32. The electrodes 33 are all electrically connected by means of a lead 34 to a high voltage generator 36 which applies a high negative D-C voltage of the order of -100 kilovolts to the electrodes 33 and thus to the fluid bed 32. The application of high potential to the bed 32 causes the formation of a cloud 37 of particles within the chamber 14 that rises high above the fluid bed 32 and completely surrounds the advancing wire 11 within the chamber. The tube 24 is slidably mounted within a bushing 38 secured to the wall 22 by a reinforcing plate 39, and can be locked in position by means of set screws 4141. Similarly the tube 23 slides in a bushing 42 and is locked by set screws 4343. Access to the chamber 14 is afforded by a removable -but close-fitting cover 44. At the downstream end of the tube 23 there is secured a hollow ring 46 connected by means of an air hose 47 to an air supply, not shown. The ring 46 (FIGURE 2) has a series of apertures opening into vent tubes 48 so that air is blown into the chamber 14 upstream through the tube, and also against the wire 11 within the tube and the chamber. The chamber 14 is mounted on rubber or other flexible footings 49-49 and is vibrated by a vibrator 50 which can be of a number of known types such as air or electric vibrators. The speed and amplitude of the vibrator 50 are preferably variable and are set to establish optimum conditions for a fluid bed which are determined by trial.
The oven 16 is equipped with infra-red lamps 5151 sufiicient in number to thoroughly fuse the coating on the Wire. and the sheave 17 is spaced sufliciently downstream of the oven 16 to allow the coating to cool to a substantially non-tacky state before passing over the sheave. Other means of heating the oven 16 such as resistance heating and gas heating might also be used. Known means of accelerated cooling, such, for an example, as blowers, may be applied to the coated wire between the sheave 17 and oven 16, within the scope of our invention.
' With reference to FIGURE 3 we show a means for releasing the air blown into the chamber 14 through the ring 46 and pipe 31. A side wall 52 of the chamber 14 has an aperture 53 highly placed therein. This aperture opens into a pipe or hose 54 connecting to a settling bin 56 having a filter 57 as its cover. The bottom of the bin 56 forms a funnel 58 for settling powder carried over with the air into a recovery jar 59 from which it can be returned to the chamber 14 without loss of material.
Fluid beds used as a means for generating a cloud of charged particles are not new. Commercial equipment of this type has been sold by Sames, U.S.A. Incorporated of Palisades Park, N]. In this known equipment and also in the apparatus of our invention it should be recognized that the fluid bed is a well defined entity and that there is a definite interface between the top of the fluid bed 32 and the cloud 37 of charged particles above it. While it has been known that individual articles could be dipped into a cloud of charged particles above a fluid bed to receive a coating of resinous particles no apparatus has hitherto been known for continuously coating an elongated member of indefinite length with a uniform, controlled thickness of material continuously fused thereon. To do this we have determined that the coating thickness is controlled by the following variables: the magnitude of the potential on the electrodes 33 and the air velocity through the porous plate 27 which affect the density of the cloud 37, the speed of the wire 11, and the length of the chamber 14. The speed of the wire 11, in commercial practice, should be maintained as high as the furnace 16 can satisfactorily heat. The voltage of the electrodes has a definite upper limit determined by the capacity of the high voltage generator 36 and the danger of arcing between the electrodes and the wire, and a lower limit below which the cloud 37 will be irregular and will not completely surround the wire. The proper conditions for obtaining the most effective cloud should be experimentally determined for each type of powder to be applied. However, we have found that a most delicate control of the effective length of the chamber 14 is obtainable by means of the tubes 23, 24 which can be separated or brought together to determine the length of the wire 11 exposed to the cloud 37. This exposure could be controlled by adjusting only one of the tubes 23, 24 but we have found that when both tubes are adjustable it is possible to select an optimum portion of the cloud formation for exposure of the wire 11. The tubes allow much higher voltages resulting in higher cloud densities which permit the application of denser coatings. We have found also that although the powder deposit on the wire 11 which is, at least temporarily, adherent due to the electrostatic charge, is uniformly distributed on the wire, there are, in addition, loose particles, such as agglomerates which may fall from the wall or cover, which if they were permitted to remain on the wire, would fuse into an uneven, lumpy coating in the oven 16. We have found, unexpectedly, that an air current will remove these excess particles and lumps and still will not disturb the desired coating layer. By placing the air ring 46 at the downstream end of the tube 23 we serve the triple purpose of freeing the wire 11 from lumps, keeping the cloud 37 from passing downstream out of the chamber, and freeing the tube 23 from any deposits of powder.
Operation When a continuous Wire is passed through the cloud 37 access to the top of the wire is available only from the sides, not from the back and front as when an individual article is dipped into the cloud. Yet we have found that fiat wires held in a horizontal plane can be satisfactorily coated in our apparatus, and we have coated thousands of pounds of copper wire .065 x .31 inch with an epoxy powder.
The wire 11 was passed at a speed of 35-40 feet per minute to apply a coating 0.0015 inch thick. This speed is about 5 times as fast as the speed for coating by wet methods with multiple passes, and to achieve this speed the oven 16 is about 9 feet long. Since the oven uses infra-red energy sources (the lamps 151) the actual air temperature in the oven is not the important factor in fusing the coating.
The fluid bed was maintained between about 24 inches deep and the wire 11 was passed 15 to 18 inches above the porous plate 27. Actually the volume of the fluid bed is not much greater, possibly 20%, than the volume occupied by the powder in an unfluidized condition, but in the absence of fluidization, the electrodes 33 and applied voltage would be useless for the purpose of generating the cloud 37. The length of wire exposed to the cloud 37 was about 18 inches but it is recommended that persons skilled in the art should establish a proper value for this distance by experimentation in each case.
In the application of epoxy resin to copper wire hereinabove described the applied potential on the electrodes 33 was -75 kilovolts. The wire 11 and oven 16 and all external parts of the chamber 14 were grounded.
The epoxy powder used has particle size distribution determined by sieve analysis as follows:
Mesh size: Percent on screen 11.9 17.4 200 19.0 230 19.0 270 20.7 325 8.9 Through 325 3.1
Testing this powder using a standard test for comparison shows that the powder will fuse and flow out adhering to a wire in 31 seconds at 230 C.
We have invented a new and useful apparatus of which the description hereinabove presented has been exemplary rather than definitive and for which we desire an award of Letters Patent as defined in the following claims.
We claim:
1. An apparatus for continuously coating an elongated member of indefinite length comprising:
(A) a covered chamber,
(B) means providing a fluid bed of fusible dielectric particles within said chamber,
(C) means applying a high electrical potential to said particles thereby maintaining a cloud of charged particles above said bed and means grounding said member,
(D) an oven positioned adjacent to said chamber,
(E) means supporting said elongated member suspended within said chamber and said oven,
(a) said member being free from contact in the distance between said supporting means, and (b) said member being at all points separated from said fluid bed,
(F) means continuously advancing said member downstream through said cloud in said chamber whereby said particles are electrostatically deposited on said member, and through said oven, and
(G) means heating said oven to a temperature sufficient to fuse said particles.
2. An apparatus for continuously coating an advancing elongated member of indefinite length comprising:
(A) a covered chamber,
(B) means providing a fluid bed of dielectric particles within said chamber,
(C) means applying a high potential to said particles thereby maintaining a cloud of charged particles above said bed, and means grounding said member,
(D) means supporting said elongated member suspended within said cloud in said chamber, and separated at all points from said fluid bed, and
(E) adjustable barrier means within said chamber segregating a portion of said member from said cloud.
3. The apparatus of claim 2 wherein said barrier means comprises at least one tube surrounding said member.
4. An apparatus for continuously coating an advancing elongated member of indefinite length comprising:
(A) a covered chamber,
(B) means providing a fluid bed of dielectric particles within said chamber,
(C) means applying a high electrical potential to said particles thereby maintaining a cloud of charged particles above said bed, and means grounding said member,
*(D) means supporting said member suspended within said cloud in said chamber, said member being separated at all points from said bed, whereby said member is electrostatically adherently coated with said particles and is loosely coated with additional of said particles, and
(E) blower means for removing said additional particles while retaining said electrostatically adherent particles.
5. The apparatus of claim 3 wherein said tube is spaced around the farthest downstream portion of said member within said chamber, and said apparatus comprises means blowing gas into said chamber through said tube, thereby removing loose particles from said wire and from the inside of said tube.
6. The apparatus of claim 1 wherein said chamber comprises upstream and downstream walls, tubes extending through each of said walls, said member passing through said tubes, sealing means in the upstream of said tubes, and means for slidably adjusting at least one of said tubes relative to said walls.
7. The apparatus of claim 6 comprising means blowing gas upstream through the downstream of said tubes.
8. The apparatus of claim 7 comprising filter means a venting said gas from said chamber.
References Cited UNITED STATES PATENTS 2,844,489 7/1958 Gemmer 118309 XR 3,019,126 1/1962 Bartholomew 117--21 XR 3,108,022 10/1963 Church 118629 XR 3,208,869 9/1965 Starr et a1. 118405 XR 3,248,253 4/1966 Barford et al. 118-627 XR 3,257,116 6/1966 Sharetts et a1. 11 8404 XR PETER FELDMAN, Primary Examiner.
US588511A 1966-10-21 1966-10-21 Continuous coating apparatus Expired - Lifetime US3396699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US588511A US3396699A (en) 1966-10-21 1966-10-21 Continuous coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US588511A US3396699A (en) 1966-10-21 1966-10-21 Continuous coating apparatus

Publications (1)

Publication Number Publication Date
US3396699A true US3396699A (en) 1968-08-13

Family

ID=24354139

Family Applications (1)

Application Number Title Priority Date Filing Date
US588511A Expired - Lifetime US3396699A (en) 1966-10-21 1966-10-21 Continuous coating apparatus

Country Status (1)

Country Link
US (1) US3396699A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544388A (en) * 1967-03-24 1970-12-01 Hooker Chemical Corp Method for coating metal
US3599603A (en) * 1968-10-23 1971-08-17 Ashdie Electrostatic coating system
US3660136A (en) * 1970-11-23 1972-05-02 Gen Electric Method of coating slotted articles
US3670699A (en) * 1970-06-24 1972-06-20 Minnesota Mining & Mfg Electrostatically charged fluidized bed apparatus
US3716024A (en) * 1969-11-04 1973-02-13 Carrier Sa A device for spraying an electrified powdered material onto a structure
US3844820A (en) * 1972-08-09 1974-10-29 Bethlehem Steel Corp Method of applying a coating to both sides of a moving strip
US3853581A (en) * 1972-06-02 1974-12-10 Air Ind Method of coating articles with electrostatically charged particles
US3865079A (en) * 1973-08-27 1975-02-11 Gen Motors Corp Electrostatic fluid bed powder coating system
US3894514A (en) * 1973-12-20 1975-07-15 Ibm Toner recovery system
US4011832A (en) * 1975-02-26 1977-03-15 Westinghouse Electric Corporation Build control for fluidized bed wire coating
US4051809A (en) * 1976-09-22 1977-10-04 Westinghouse Electric Corporation Apparatus for cleaning and coating an elongated metallic member
US4100883A (en) * 1976-10-18 1978-07-18 General Electric Company Apparatus for electrostatic deposition on a running conductor
US4131690A (en) * 1975-05-05 1978-12-26 Northern Electric Company Limited Method of powder coating an insulated electrical conductor
US4286021A (en) * 1971-01-22 1981-08-25 Rohm And Haas Company Powder coatings containing copolymer containing isobornyl methacrylate as melt flow modifier
US4344381A (en) * 1980-12-29 1982-08-17 Allied Tube & Conduit Corporation Apparatus for continuously electrostatically coating an elongated object
US4606928A (en) * 1985-03-07 1986-08-19 Electrostatic Technology Incorporated Vortex effect electrostatic fluidized bed coating method and apparatus
US4808432A (en) * 1986-08-18 1989-02-28 Electrostatic Technology Incorporated Electrostatic coating apparatus and method
US5059446A (en) * 1990-02-14 1991-10-22 Armco Inc. Method of producing plastic coated metal strip
US5176755A (en) * 1990-02-14 1993-01-05 Armco Inc. Plastic powder coated metal strip
US5328736A (en) * 1990-03-15 1994-07-12 Societe Nationale Des Poudres Et Explosifs Apparatus and process for impregnating fibers with an aerosol of electrostatically charged polymer powder particles
US5405475A (en) * 1993-05-28 1995-04-11 Ward/Kraft Method and apparatus for continuous manufacture of printed laminated stock from uncoated web
WO1995011759A1 (en) * 1993-10-27 1995-05-04 Fata Hunter, Inc. Combined coil and blank powder coating apparatus
ES2071576A2 (en) * 1993-08-04 1995-06-16 Navalon Saez Concepcion Method for continuous painting of metallic link chains and the corresponding installation
US5773097A (en) * 1994-05-26 1998-06-30 Nordson Corporation Vertical electrostatic coater having vortex effect
WO2002098577A1 (en) * 2001-06-06 2002-12-12 International Coatings Limited Powder coating process with electrostatically charged fluidised bed
US20060062929A1 (en) * 2002-12-12 2006-03-23 Akzo Nobel Coatings International B.V. Powder coating process
US20070005037A1 (en) * 2005-06-29 2007-01-04 Mansfield Todd L Disposable absorbent article containing an unapertured skinless elastomeric layer
US7384671B2 (en) 2002-12-12 2008-06-10 Akzo Nobel Coatings International B.V. Apparatus and process for forming a powder coating on a substrate using a fluidised bed and tribostatic charging of the powder coating composition
US9182174B2 (en) 2011-12-13 2015-11-10 Rolls-Royce Plc Fluidised bed treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844489A (en) * 1957-12-20 1958-07-22 Knapsack Ag Fluidized bed coating process
US3019126A (en) * 1959-03-24 1962-01-30 United States Steel Corp Method and apparatus for coating metal strip and wire
US3108022A (en) * 1960-05-09 1963-10-22 Polymer Processes Inc Apparatus for coating an elongate body with fluidized coating material
US3208869A (en) * 1961-01-16 1965-09-28 Jones & Laughlin Steel Corp Fluidized coating of pipe
US3248253A (en) * 1962-06-22 1966-04-26 Sames Sa De Machines Electrost Electrostatic transfer method and apparatus for coating articles with a fluidized composition
US3257116A (en) * 1962-01-08 1966-06-21 Polymer Corp Air seal structure for installation in an opening in a wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2844489A (en) * 1957-12-20 1958-07-22 Knapsack Ag Fluidized bed coating process
US3019126A (en) * 1959-03-24 1962-01-30 United States Steel Corp Method and apparatus for coating metal strip and wire
US3108022A (en) * 1960-05-09 1963-10-22 Polymer Processes Inc Apparatus for coating an elongate body with fluidized coating material
US3208869A (en) * 1961-01-16 1965-09-28 Jones & Laughlin Steel Corp Fluidized coating of pipe
US3257116A (en) * 1962-01-08 1966-06-21 Polymer Corp Air seal structure for installation in an opening in a wall
US3248253A (en) * 1962-06-22 1966-04-26 Sames Sa De Machines Electrost Electrostatic transfer method and apparatus for coating articles with a fluidized composition

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544388A (en) * 1967-03-24 1970-12-01 Hooker Chemical Corp Method for coating metal
US3599603A (en) * 1968-10-23 1971-08-17 Ashdie Electrostatic coating system
US3716024A (en) * 1969-11-04 1973-02-13 Carrier Sa A device for spraying an electrified powdered material onto a structure
US3670699A (en) * 1970-06-24 1972-06-20 Minnesota Mining & Mfg Electrostatically charged fluidized bed apparatus
US3660136A (en) * 1970-11-23 1972-05-02 Gen Electric Method of coating slotted articles
US4286021A (en) * 1971-01-22 1981-08-25 Rohm And Haas Company Powder coatings containing copolymer containing isobornyl methacrylate as melt flow modifier
US3853581A (en) * 1972-06-02 1974-12-10 Air Ind Method of coating articles with electrostatically charged particles
US3844820A (en) * 1972-08-09 1974-10-29 Bethlehem Steel Corp Method of applying a coating to both sides of a moving strip
US3865079A (en) * 1973-08-27 1975-02-11 Gen Motors Corp Electrostatic fluid bed powder coating system
US3894514A (en) * 1973-12-20 1975-07-15 Ibm Toner recovery system
US4011832A (en) * 1975-02-26 1977-03-15 Westinghouse Electric Corporation Build control for fluidized bed wire coating
US4131690A (en) * 1975-05-05 1978-12-26 Northern Electric Company Limited Method of powder coating an insulated electrical conductor
US4051809A (en) * 1976-09-22 1977-10-04 Westinghouse Electric Corporation Apparatus for cleaning and coating an elongated metallic member
US4100883A (en) * 1976-10-18 1978-07-18 General Electric Company Apparatus for electrostatic deposition on a running conductor
US4344381A (en) * 1980-12-29 1982-08-17 Allied Tube & Conduit Corporation Apparatus for continuously electrostatically coating an elongated object
US4606928A (en) * 1985-03-07 1986-08-19 Electrostatic Technology Incorporated Vortex effect electrostatic fluidized bed coating method and apparatus
US4808432A (en) * 1986-08-18 1989-02-28 Electrostatic Technology Incorporated Electrostatic coating apparatus and method
US5059446A (en) * 1990-02-14 1991-10-22 Armco Inc. Method of producing plastic coated metal strip
US5176755A (en) * 1990-02-14 1993-01-05 Armco Inc. Plastic powder coated metal strip
US5328736A (en) * 1990-03-15 1994-07-12 Societe Nationale Des Poudres Et Explosifs Apparatus and process for impregnating fibers with an aerosol of electrostatically charged polymer powder particles
US5405475A (en) * 1993-05-28 1995-04-11 Ward/Kraft Method and apparatus for continuous manufacture of printed laminated stock from uncoated web
ES2071576A2 (en) * 1993-08-04 1995-06-16 Navalon Saez Concepcion Method for continuous painting of metallic link chains and the corresponding installation
US5439704A (en) * 1993-10-27 1995-08-08 Hunter Engineering Company, Inc. Combined coil and blank powder coating
WO1995011759A1 (en) * 1993-10-27 1995-05-04 Fata Hunter, Inc. Combined coil and blank powder coating apparatus
US5773097A (en) * 1994-05-26 1998-06-30 Nordson Corporation Vertical electrostatic coater having vortex effect
CN100366348C (en) * 2001-06-06 2008-02-06 国际涂料有限公司 Powder coating process with electrostatically charged fluidized bed
WO2002098577A1 (en) * 2001-06-06 2002-12-12 International Coatings Limited Powder coating process with electrostatically charged fluidised bed
GB2393407A (en) * 2001-06-06 2004-03-31 Int Coatings Ltd Powder coating process with electrostatically charged fluidised bed
US20040126487A1 (en) * 2001-06-06 2004-07-01 Kittle Kevin Jeffrey Powder coating process with electrostatically charged fluidised bed
GB2393407B (en) * 2001-06-06 2004-12-08 Int Coatings Ltd Powder coating process with tribostatically charged fluidised bed
US7041340B2 (en) 2001-06-06 2006-05-09 International Coatings Limited Powder coating process with tribostatically charged fluidized bed
AU2002302843B2 (en) * 2001-06-06 2006-11-02 International Coatings Limited Powder coating process with tribostatically charged fluidised bed
US20060062929A1 (en) * 2002-12-12 2006-03-23 Akzo Nobel Coatings International B.V. Powder coating process
US7323226B2 (en) 2002-12-12 2008-01-29 Akzo Nobel Coatings International B.V. Tribostatic fluidised bed powder coating process
US7384671B2 (en) 2002-12-12 2008-06-10 Akzo Nobel Coatings International B.V. Apparatus and process for forming a powder coating on a substrate using a fluidised bed and tribostatic charging of the powder coating composition
US20070005037A1 (en) * 2005-06-29 2007-01-04 Mansfield Todd L Disposable absorbent article containing an unapertured skinless elastomeric layer
EP2110107A1 (en) 2005-06-29 2009-10-21 The Procter and Gamble Company Disposable absorbent article containing an unapertured skinless elastomer layer
US8187243B2 (en) 2005-06-29 2012-05-29 The Procter & Gamble Company Disposable absorbent article containing an unapertured skinless elastomeric layer
US9554947B2 (en) 2005-06-29 2017-01-31 The Procter & Gamble Company Disposable absorbent article containing an unapertured skinless elastomeric layer
US9182174B2 (en) 2011-12-13 2015-11-10 Rolls-Royce Plc Fluidised bed treatment

Similar Documents

Publication Publication Date Title
US3396699A (en) Continuous coating apparatus
US3248253A (en) Electrostatic transfer method and apparatus for coating articles with a fluidized composition
US3916826A (en) Electrostatic coating apparatus
US3566833A (en) Continuous coating apparatus
US2097233A (en) Electrical deposition in pattern form
US3798048A (en) Method and apparatus for electrostatically coating an object
JPS60108B2 (en) Electric discharge coating equipment
US3593678A (en) Electrostatic coating methods and apparatus
US2863812A (en) Irradiation process
US3670699A (en) Electrostatically charged fluidized bed apparatus
GB1023575A (en) Improvements in or relating to the coating of objects
US4188413A (en) Electrostatic-fluidized bed coating of wire
EP0510128A4 (en)
US2608176A (en) Apparatus for electrostatically coating articles
JPS6320188B2 (en)
GB1022360A (en) Method of and apparatus for coating an article
US2604870A (en) Electrostatic coating apparatus
US3503778A (en) Method of coating a substrate with a plastic material
US3470010A (en) Method for applying streams of insulating particles to stator and rotor winding slots
US4100883A (en) Apparatus for electrostatic deposition on a running conductor
US2795512A (en) Electrostatic method and apparatus for lining molds
US4233335A (en) Electrostatic coating method
US4285296A (en) Lubricating apparatus
US4035521A (en) Build control for fluidized bed wire coating
US2555519A (en) Method of painting electrostatically nonconducting articles

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATLANTIC RICHFIELD COMPANY, A PA CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANACONDA COMPANY THE, A DE CORP;REEL/FRAME:003992/0218

Effective date: 19820115