US3392216A - Method for producing carbon structures from molten baked substances - Google Patents
Method for producing carbon structures from molten baked substances Download PDFInfo
- Publication number
- US3392216A US3392216A US406603A US40660364A US3392216A US 3392216 A US3392216 A US 3392216A US 406603 A US406603 A US 406603A US 40660364 A US40660364 A US 40660364A US 3392216 A US3392216 A US 3392216A
- Authority
- US
- United States
- Prior art keywords
- temperature
- filaments
- carbon
- substance
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000126 substance Substances 0.000 title description 54
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title description 39
- 238000004519 manufacturing process Methods 0.000 title description 11
- 238000000034 method Methods 0.000 description 39
- 229910052799 carbon Inorganic materials 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 19
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 238000003763 carbonization Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 238000001125 extrusion Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000011261 inert gas Substances 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229920000915 polyvinyl chloride Polymers 0.000 description 8
- 239000004800 polyvinyl chloride Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 4
- 229940073608 benzyl chloride Drugs 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 230000004992 fission Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical group [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- -1 polycyclic aromatic compound Chemical class 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/20—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
- D01F9/21—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F9/22—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/524—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
- D01F9/15—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/145—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
- D01F9/155—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/16—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/20—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
- D01F9/21—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/20—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
- D01F9/24—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/19—Inorganic fiber
Definitions
- the shaped articles resulting from the process are likewise provided.
- the method comprises the steps of (a) heating a natural or synthetic organic substance in the presence of an inert gas to a temperature in the range of about 300 to 500 C., which temperature is below the carbonization temperature of such substance,
- the shaped articles are useful for a wide range of uses,
- thermal insulation materials such as for example, thermal insulation materials, carbon electrodes, and the like.
- This invention relates to techniques in the production of carbon structures including shaped articles and more particularly to a new method for producing shaped articles of carbon from molten baked organic substances.
- a method for producing shaped articles of carbon which 3,302,215 Patented July 9, 1968 ice comprises melt extrusion and stretching of a molten stock resulting from the baking, at a temperature of from 300 to 500 C., of a natural or synthetic organic substances.
- the melt extrusion is accomplished at the baking temperature of said starting material or in the temperature region therebelow.
- the extrusion is followed by an oxilation treatment and a carbonization treatment of the re sulting filament under nitrogen.
- the present invention is based on the remarkable discovery that when many kinds of organic compounds are heated at a suitable temperature in the range from 300 to 500 C., the resulting molten products shortly before carbonization exhibit excellent spinnabiiity.
- Examples of natural or synthetic organic substances which can be used in the practice of the present invention are synthetic high-polymer substances such as polyvinyl chloride and polyacrylonitrile, and high-polymer or lowpolymer organic substances such as petroleum pitch, coal and coal pitch, distillation residues of benzyl chloride and chlorobenzene, and by-products of DDT.
- synthetic high-polymer substances such as polyvinyl chloride and polyacrylonitrile
- high-polymer or lowpolymer organic substances such as petroleum pitch, coal and coal pitch, distillation residues of benzyl chloride and chlorobenzene, and by-products of DDT.
- the resultin substance in the pitch state is considered to be a polycyclic aromatic compound closely related in structure to aromatic plane component making up amorphous carbon. if the temperature is raised to 500 C., this polycyclic aromatic compound will again harden without remarkable weight loss and become a lustrous, massive substance which is insoluble and unmeltable.
- the aforementioned substance in the pitch state is cooled to C., or lower temperature, it will also become a black, lustrous solid. This solid can be readily dissolved in benzene, chloroform, and other solvents and melts when heated over 150 C.
- the term carbon is herein used in the crystallographical meaning to designate that structure wherein con densed polycyclic planes are arranged in laminar form.
- the temperature region higher than so called thermaldecomposition temperature and lower than the carbonization temperature is herein called the temperature region shortly before the carbonization. This temperature region differs with different substances and, even with the same substance, it varies somewhat depending on the surrounding atmosphere and the rate of heating. However, in any case this temperature region does not depart greatly from the range of approximately from 300 to 500 C.
- the natural or synthetic organic substance used in the method of this invention is heated to a temperature in the region of 300 to 500 C. shortly before the carbonization in a nitrogen gas (N carbon dioxide gas (CO or some other inert gas atmosphere, or under conditions wherein oxygen does not exist.
- N carbon dioxide gas CO or some other inert gas atmosphere, or under conditions wherein oxygen does not exist.
- the substance is shaped into the desired form such as filaments, which, as a result of the succeeding oxidation treatment with air or other agent and heat treatment, is unexpectedly rendered unmeltable in a very easy manner.
- this extruded material further to carbonization or graphitization, it is possible to obtain the objective carbon or graphite article such as filaments.
- the starting material by heating the starting material at a suitable temperature below the carbonization temperature within the range of from 300 to 500 C. for a suitable time, for example, from 5 minutes to hours, the necessary rearrangement of the molecules is effected, and a plastic material suitable for melt extrusion (for example, melt spinning) is obtained.
- the baked substance in a pitch state, heated for a suitable time at a suitable temperature in the range of from 300 to 500 C. may be cooled once, preserved, and then reheated for the succeeding melt extrusion process, or it may be immediately subjected to an appropriate temperature change in order to adjust its molten viscosity for the succeeding extrusion process and then extruded (for example, spun as filaments).
- a temperature below the aforementioned baking temperature is ordinarily selected for the extrusion temperature.
- the extrusion process is preferably carried out in an atmosphere of an inert gas as mentioned hereinabove, but the extruded article (for example, filaments) is caused to contact air or an oxidizing gas at the extrusion temperature or lower temperature for a number of minutes or longer. It has been found that this process is remarkably etfective. It appears that, by this process, recoupling occurs together with the alinement of the modecules in the extrusion (filament) direction during the succeeding stretching process or subsequent process to which the extruded article is subjected, whereby high polymer carbon material (carbon filaments) of insoluble and unmeltable characteristic is further produced.
- the carbon extruded article (filaments) obtained in the above manner are subsequently carbonized amply in a state wherein they are not in contact with oxidizing gases such as air.
- the rate of heating during this step is preferably 10 C./minute or lower.
- this temperature rises above 600 to 700 C. to approximately 1,500 C. the shaped article (filaments) assumes mechanical strength of practical magnitude. If necessary, the article can be further subjected to heat treatment at 2,000 C. or higher temperature to produce a graphite article (filaments).
- Carbon filaments or graphite filaments produced in the above described manner can be used effectively for a wide range of uses, examples of which are thermal insulation materials, carbon electrode, other basic materials for carbon and graphite products, reinforcement materials in general, reinforcement materials for various products made of synthetic resins, electroconductive and heating mats, heat-resistant packings, fillers for electroconductive paints, and various resistance materials for electronics.
- Example 1 grams of polyvinyl chloride powder was heated in nitrogen gas (inert gas) at a rate of 1 C./minute up to 400i5 C., which temperature was maintained for one hour, whereupon 30 grams of a molten baked substance was obtained. (When this substance is cooled to room temperature, it solidifies, and, further, when it is crushed, it becomes a brownish black powder.)
- This substance was heated rapidly to 275 15 C. and melted as carbon dioxide gas was caused to flow over its surface.
- the molten substance was then extruded into air and stretched to produce filaments of diameters of from 20 to 30 microns.
- These filaments were heated from room temperature at a rate of 5 C./minute up to 250 C. at which temperature N gas was caused to flow to replace air, and the heating was continued at the same rate up to 900 C., which was then maintained constant for ten minutes.
- the filaments were then left to cool naturally.
- Example 2 The distillation residue which is a by-product in the production of benzyl chloride from the reaction of chlorine with toluene is a brownish black, tar-form substance. 250 grams of this substance was heated to 400 C. in a stream of N gas and subjected to dry distillation, the same temperature then being maintained for a further 30 minutes to remove low-temperature boiling point components and decomposition products.
- Example 3 250 grams of the same distillation residue of benzyl chloride as used in Example 2 was heated to 400 C. in a stream of N gas and dry distilled. The temperature was maintained for a further 30 minutes, and then, as the pitch state of the resulting substance was maintained, it was gradually cooled from 220 to 240 C. and then spun at this temperature, whereupon a filament-form product was readily obtained. By subjecting this product to the same heat treatment as set forth in Example 2, excellent carbon filaments were obtained.
- the present invention in another important aspect thereof, provides a new oxidation treatment step for the product subsequent to its melt extrusion.
- This treatment great saving is effected in the time and heat supply necessary for the process of producing carbon filaments and other carbon structures.
- This treatment affords not only economic advantage but also substantial improvement in the quality of the product, particularly making possible the production of carbon filaments of remarkably high strength.
- the extruded filaments are caused to contact air or an oxidizing gas at the extrusion temperature or lower temperature for several minutes or longer.
- a treatment is carried out on the filaments with air containing ozone or with oxygen gas for a suitable time of 7 hours or less at a suitable temperature in the range of from room temperature to 100 C., and immediately thereafter the filaments are subjected to oxida tion treatment in air at a temperature range up to 260 C.
- the filaments so obtained are then subjected to ample carbonization treatment in a state wherein they are not in contact with an oxidizing gas such as air as described hereinbefore.
- Example 4 by carrying out a 3-hour ozone treatment at 70 C., it is possible to shorten substantially and freely the time of preparatory oxidation treatment necessary for rendering the product insoluble without dfiiculty. This desirable effect cannot be expected from a simple heating in air. Moreover, a treatment imparting such a great effect on the quality of carbon filaments has heretofore been unknown as far as we are aware.
- Example 4 100 grams of polyvinyl chloride powder was heated in nitrogen gas (inert gas) at a rate of 1 C./minute up to 4001-5" C., which temperature was maintained for one hour, whereupon 30 grams of a molten baked substance was obtained as described in Example 1.
- This substance was heated rapidly to 275 i5 C. and melted as N gas was caused to flow over its surface.
- the molten substance was then extruded through a jet (spinneret) into air to produce filaments having diameters of from 5 to 30 microns. These filaments were ozone treated under the following conditions.
- Treatment temperatures 25, 50, and 70 degrees C.
- Ozone concentration 10.4 grams/cubic meter
- ozone flowrate liters/ hour.
- the filaments so treated were then heated in air to 260 C. and maintained at this temperature for one hour, after which they were carbonized by the normal procedure by heating in N gas to 1,000 C.
- Example 5 Samples similar to those in Example 4 except that the spinning conditions were varied suitably to obtain fila ments of diiferent diameters were prepared, which were all ozone treated 70 C. for 3 hours. The other treatment conditions were the same as those in Example 1. As a result, carbon filaments having final diameters of 15, 10, and 8.5 microns were obtained.
- a method for the production of carbon shaped articles which comprises:
- a method for the production of carbon shaped articles which comprises:
- organic substance is a member selected from the group consisting of polyvinyl chloride, polyacrylonitrile, petroleum pitch, coal, coal pitch, distillation residue of benzyl chloride and chlorobenzene, and by-products of DDT.
- oxidizing gas in (c) is selected from the group consisting of air, oxygen gas and air containing ozone.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5894263 | 1963-11-01 | ||
JP4977264 | 1964-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3392216A true US3392216A (en) | 1968-07-09 |
Family
ID=26390222
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US406603A Expired - Lifetime US3392216A (en) | 1963-11-01 | 1964-10-26 | Method for producing carbon structures from molten baked substances |
US00051817A Expired - Lifetime US3716607A (en) | 1963-11-01 | 1970-07-07 | Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00051817A Expired - Lifetime US3716607A (en) | 1963-11-01 | 1970-07-07 | Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes |
Country Status (3)
Country | Link |
---|---|
US (2) | US3392216A (enrdf_load_html_response) |
DE (1) | DE1302814B (enrdf_load_html_response) |
GB (1) | GB1071400A (enrdf_load_html_response) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3639953A (en) * | 1969-08-07 | 1972-02-08 | Kanegafuchi Spinning Co Ltd | Method of producing carbon fibers |
US3852428A (en) * | 1970-09-08 | 1974-12-03 | Coal Industry Patents Ltd | Manufacture of carbon fibres |
US3869302A (en) * | 1970-08-06 | 1975-03-04 | Great Lake Carbon Corp | Method for manufacture of graphite flour |
US3888958A (en) * | 1970-03-21 | 1975-06-10 | Bergwerksverband Gmbh | Process for making shaped pieces from low temperature coke of low bulk weight |
US3899574A (en) * | 1970-11-02 | 1975-08-12 | Gen Electric | Method for making graphite fiber and ribbon |
US3943213A (en) * | 1970-04-06 | 1976-03-09 | Great Lakes Carbon Corporation | Method for manufacturing high temperature graphite fiber-graphite composites |
US3959448A (en) * | 1969-08-27 | 1976-05-25 | Coal Industry (Patents) Limited | Process for the manufacture of carbon fibers |
FR2289468A1 (fr) * | 1974-10-28 | 1976-05-28 | Aerospace Corp | Procede d'application de revetements de carbone vitreux |
US3995014A (en) * | 1973-12-11 | 1976-11-30 | Union Carbide Corporation | Process for producing carbon fibers from mesophase pitch |
US3997654A (en) * | 1974-04-24 | 1976-12-14 | Bergwerksverband Gmbh | Method for the production of carbonaceous articles, particularly strands |
US4016247A (en) * | 1969-03-31 | 1977-04-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Production of carbon shaped articles having high anisotropy |
US4055583A (en) * | 1974-04-24 | 1977-10-25 | Bergwerksverband Gmbh | Method for the production of carbonaceous articles, particularly strands |
US4066737A (en) * | 1971-05-05 | 1978-01-03 | Koppers Company, Inc. | Method for making isotropic carbon fibers |
US4184942A (en) * | 1978-05-05 | 1980-01-22 | Exxon Research & Engineering Co. | Neomesophase formation |
US4356158A (en) * | 1981-07-04 | 1982-10-26 | Nippon Carbon Co., Ltd. | Process for producing carbon fibers |
EP0099425A1 (en) * | 1982-07-22 | 1984-02-01 | Amoco Corporation | Method for producing a mesophase pitch derived carbon yarn and fiber |
US5238672A (en) * | 1989-06-20 | 1993-08-24 | Ashland Oil, Inc. | Mesophase pitches, carbon fiber precursors, and carbonized fibers |
US20140120026A1 (en) * | 2011-08-30 | 2014-05-01 | Carbon Fiber Recycle Industry Ltd. | Device for Manufacturing Recycled Carbon Fibers, and Method for Manufacturing Recycled Carbon Fibers |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005183A (en) * | 1972-03-30 | 1977-01-25 | Union Carbide Corporation | High modulus, high strength carbon fibers produced from mesophase pitch |
US4017327A (en) * | 1973-12-11 | 1977-04-12 | Union Carbide Corporation | Process for producing mesophase pitch |
US3976729A (en) * | 1973-12-11 | 1976-08-24 | Union Carbide Corporation | Process for producing carbon fibers from mesophase pitch |
US4138525A (en) * | 1976-02-11 | 1979-02-06 | Union Carbide Corporation | Highly-handleable pitch-based fibers |
JPS5590621A (en) * | 1978-12-26 | 1980-07-09 | Kureha Chem Ind Co Ltd | Production of carbon fiber |
JPS5920381A (ja) * | 1982-07-28 | 1984-02-02 | Fuji Standard Res Kk | 微粒含油炭素質球の製造法 |
US4856179A (en) * | 1983-04-21 | 1989-08-15 | Hoechst Celanese Corp. | Method of making an electrical device made of partially pyrolyzed polymer |
US4581437A (en) * | 1985-01-22 | 1986-04-08 | E. I. Du Pont De Nemours And Company | Method of treating filaments of poly(p-phenylene-trans-benzobisthiazole) or poly(p-phenylene-cis-benzobisoxazole) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2437687A (en) * | 1943-11-24 | 1948-03-16 | Celanese Corp | Melt extrusion of artificial filaments, films and the like and apparatus therefor |
GB911542A (en) * | 1960-08-25 | 1962-11-28 | Tokai Denkyoku Seizo Kabushiki | Improvements in or relating to the manufacture of heat resistant and corrosion resistant polyacrylonitrile fibres |
US3092519A (en) * | 1961-03-17 | 1963-06-04 | Kendall & Co | Battery separator |
US3258363A (en) * | 1961-08-21 | 1966-06-28 | Leesona Corp | Carbonized polyvinylidenechloride fuel cell electrode |
-
1964
- 1964-10-26 US US406603A patent/US3392216A/en not_active Expired - Lifetime
- 1964-10-30 GB GB44324/64A patent/GB1071400A/en not_active Expired
- 1964-10-31 DE DE19641302814D patent/DE1302814B/de active Pending
-
1970
- 1970-07-07 US US00051817A patent/US3716607A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2437687A (en) * | 1943-11-24 | 1948-03-16 | Celanese Corp | Melt extrusion of artificial filaments, films and the like and apparatus therefor |
GB911542A (en) * | 1960-08-25 | 1962-11-28 | Tokai Denkyoku Seizo Kabushiki | Improvements in or relating to the manufacture of heat resistant and corrosion resistant polyacrylonitrile fibres |
US3092519A (en) * | 1961-03-17 | 1963-06-04 | Kendall & Co | Battery separator |
US3258363A (en) * | 1961-08-21 | 1966-06-28 | Leesona Corp | Carbonized polyvinylidenechloride fuel cell electrode |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016247A (en) * | 1969-03-31 | 1977-04-05 | Kureha Kagaku Kogyo Kabushiki Kaisha | Production of carbon shaped articles having high anisotropy |
US3639953A (en) * | 1969-08-07 | 1972-02-08 | Kanegafuchi Spinning Co Ltd | Method of producing carbon fibers |
US3959448A (en) * | 1969-08-27 | 1976-05-25 | Coal Industry (Patents) Limited | Process for the manufacture of carbon fibers |
US3888958A (en) * | 1970-03-21 | 1975-06-10 | Bergwerksverband Gmbh | Process for making shaped pieces from low temperature coke of low bulk weight |
US3943213A (en) * | 1970-04-06 | 1976-03-09 | Great Lakes Carbon Corporation | Method for manufacturing high temperature graphite fiber-graphite composites |
US3869302A (en) * | 1970-08-06 | 1975-03-04 | Great Lake Carbon Corp | Method for manufacture of graphite flour |
US3852428A (en) * | 1970-09-08 | 1974-12-03 | Coal Industry Patents Ltd | Manufacture of carbon fibres |
US3899574A (en) * | 1970-11-02 | 1975-08-12 | Gen Electric | Method for making graphite fiber and ribbon |
US4066737A (en) * | 1971-05-05 | 1978-01-03 | Koppers Company, Inc. | Method for making isotropic carbon fibers |
US3995014A (en) * | 1973-12-11 | 1976-11-30 | Union Carbide Corporation | Process for producing carbon fibers from mesophase pitch |
US4055583A (en) * | 1974-04-24 | 1977-10-25 | Bergwerksverband Gmbh | Method for the production of carbonaceous articles, particularly strands |
US3997654A (en) * | 1974-04-24 | 1976-12-14 | Bergwerksverband Gmbh | Method for the production of carbonaceous articles, particularly strands |
FR2289468A1 (fr) * | 1974-10-28 | 1976-05-28 | Aerospace Corp | Procede d'application de revetements de carbone vitreux |
US4184942A (en) * | 1978-05-05 | 1980-01-22 | Exxon Research & Engineering Co. | Neomesophase formation |
US4356158A (en) * | 1981-07-04 | 1982-10-26 | Nippon Carbon Co., Ltd. | Process for producing carbon fibers |
EP0099425A1 (en) * | 1982-07-22 | 1984-02-01 | Amoco Corporation | Method for producing a mesophase pitch derived carbon yarn and fiber |
US5238672A (en) * | 1989-06-20 | 1993-08-24 | Ashland Oil, Inc. | Mesophase pitches, carbon fiber precursors, and carbonized fibers |
US5614164A (en) * | 1989-06-20 | 1997-03-25 | Ashland Inc. | Production of mesophase pitches, carbon fiber precursors, and carbonized fibers |
US20140120026A1 (en) * | 2011-08-30 | 2014-05-01 | Carbon Fiber Recycle Industry Ltd. | Device for Manufacturing Recycled Carbon Fibers, and Method for Manufacturing Recycled Carbon Fibers |
US9463979B2 (en) * | 2011-08-30 | 2016-10-11 | Carbon Fiber Recycle Industry Ltd. | Device for manufacturing recycled carbon fibers, and method for manufacturing recycled carbon fibers |
Also Published As
Publication number | Publication date |
---|---|
US3716607A (en) | 1973-02-13 |
GB1071400A (en) | 1967-06-07 |
DE1302814B (enrdf_load_html_response) | 1972-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3392216A (en) | Method for producing carbon structures from molten baked substances | |
US3595946A (en) | Process for the production of carbon filaments from coal tar pitch | |
US4014725A (en) | Method of making carbon cloth from pitch based fiber | |
US4005183A (en) | High modulus, high strength carbon fibers produced from mesophase pitch | |
US3629379A (en) | Production of carbon filaments from low-priced pitches | |
US3919387A (en) | Process for producing high mesophase content pitch fibers | |
US3427120A (en) | Producing method of carbon or carbonaceous material | |
Ōtani et al. | On the raw materials of MP carbon fiber | |
US3718493A (en) | Process for the production of carbon filaments from coal tar pitch | |
US4115527A (en) | Production of carbon fibers having high anisotropy | |
US3556729A (en) | Process for oxidizing and carbonizing acrylic fibers | |
US3852428A (en) | Manufacture of carbon fibres | |
US4146576A (en) | Manufacture of carbon fibres | |
US4020145A (en) | Carbon fiber production | |
US3925524A (en) | Process for the production of carbon filaments | |
US3841079A (en) | Carbon filaments capable of substantial crack diversion during fracture | |
US3666417A (en) | Process for production of carbon fibers | |
US5399330A (en) | Carbon thread and process for producing it | |
US5076845A (en) | Process for producing formed carbon products | |
EP0402107A2 (en) | Method for the preparation of carbon fibers | |
WO1992003601A2 (en) | Carbon fiber and process for its production | |
USRE27794E (en) | Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes | |
CA1055664A (en) | Rapid thermosetting of carbonaceous fibers produced from mesophase pitch | |
US3652221A (en) | Process for producing carbon fibers | |
US4356158A (en) | Process for producing carbon fibers |