US3385268A - Method of operating a once-through vapor generator - Google Patents
Method of operating a once-through vapor generator Download PDFInfo
- Publication number
- US3385268A US3385268A US42603565A US3385268A US 3385268 A US3385268 A US 3385268A US 42603565 A US42603565 A US 42603565A US 3385268 A US3385268 A US 3385268A
- Authority
- US
- United States
- Prior art keywords
- vapor
- tubes
- fluid
- once
- operating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/023—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
- F22B1/026—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group with vertical tubes between to horizontal tube sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/08—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam
Definitions
- Mass flow is defined as the amount of fluid passing through a specific planar area in a given period of time. It was long believed that high rates of mass flow were needed in once-through vapor generators to increase the quality at which nucleate boiling breaks down and to improve the film heat transfer coefficient at and above the point of departure from nucleate boiling.
- nucleate boiling DNB
- 'Nucleate boiling is characterized by the formation and release of vapor bubbles on the heat transmitting face of the heat transfer surface with the liquid still wetting the face, while in film boiling the heat transmitting face is coated with a film of vapor.
- a temperature gradient is necessary to transfer heat from the transmitting face to the liquid. For a given set of operating conditions the magnitude of this gradient depends mainly on whether nucleate or film boiling is taking place.
- the temperature of the heat absorbing surface is at a higher level than that resulting with nucleate boiling for the same mass flow conditions and the point at which nucleate boiling changes to film boiling is known as departure from nucleate boiling (DNB).
- DDB departure from nucleate boiling
- T o obtain maximum efficiency in a vapor generator, for example, a once-through type unit, it is important to maintain nucleate boiling over as wide a range of steam qualities as possible.
- the optimum condition would be to maintain nucleate boiling during vapor generation from zero to 100 percent quality.
- achieving such range is not always possible.
- once-through boiler operation had to be carried out in a relatively high range of mass flow, that is above 600,000 'lbs./hr./ft. It had appeared that as a mass flow dropped off the DNB quality limit would also continue to decrease.
- more recent research has indicated that a point exists where the DNB quality starts to increase with a further decrease in the mass 3,385,268 Patented May 28, 1968 flow. As a matter of fact, it appears that the DNB quality approaches percent for extremely low values of mass flow.
- Another object of the invention is to incorporate superheating with such a method of once-through vapor generation.
- a further object of the invention is to incorporate a method of preheating the secondary feedfluid so that it will be at substantially saturation temperature corresponding to secondary vapor pressure operating at the commencement of its passage in heat transfer relationship' with the primary heating fluid.
- Still another object of the invention is to provide natural circulation induced flow of the vaporizable secondary fluid.
- Yet another object of the invention is the utilization of a portion of the vapor generated to heat the feedfluid substantially to saturation temperature.
- Another main object of the invention is the provision of vertically disposed tubular heat exchanger arranged to carry out the above method of once-through vapor generation.
- a further object of the invention is to provide means for heating feedfluid in the heat exchanger in an integral section, separated from the vapor generating space. Further, the heat exchanger is arranged so that vapor may be removed from the vapor generating space and introduced into the separate feedfluid inlet space for heating the feedfluid to saturation temperature.
- Yet another object of the invention is to provide a special baffle construction for assuring that the vapor which is generated flows a tortuous path through the superheating space of the heat exchanger.
- the invention comprises a method of vaporizing and superheating a fluid by circulating it through a heat exchanger in indirect heat transfer relationship with a heating fluid at mass flow rates below 400,000 lbs./hr./ ft.
- a heating fluid at mass flow rates below 400,000 lbs./hr./ ft.
- the invention comprises a vertically elongated heat exchanger having a bundle of heat exchanger tubes extending between a pair of spaced tube sheets.
- a cylindrically shaped shroud encloses the bundle of tubes for a substantial portion of its length, thereby providing a riser chamber about the tubes and an annular downcomer passage between the shroud and the heat exchanger shell. Openings are provided through the upper end of the shroud for admitting vapor, generated within the chamber, into the annular passageway wherein it mixes and heats the feedfluid by direct contact.
- FIG. 1 is a veriical sectional view of a once-through vapor generator embodying the present invention
- FIG. 2 is a plan View of the vapor generator shown in FIG. 1,
- FIG. 3 is a transverse section taken along line 33 in FIG. 1,
- FIG. 4 is another transverse section taken along line 44 in FIG. 1, and
- FIG. 5 is a plot illustrating a typical relationship of mixture velocity and DNB quality for a given vapor pressure, heat flux and geometry.
- FIG. 1 there is shown a once-through vapor generating and superheating unit comprising a vertically elongated cylindrically shaped pressure shell 12 closed at its opposite ends by an upper head member 14 and a lower head member 16.
- a transversely arranged upper tube sheet 18 is integrally attached to the shell and upper head member 14 and forms in combination with the head member a fluid inlet chamber 20.
- a fluid outlet chamber 24 is integrally attached to the shell and lower head member, forms in combination with the head member a fluid outlet chamber 24.
- a bank of straight tubes 26 Vertically extending between the tube sheets 18 and 22 is a bank of straight tubes 26. Disposed about the tubes is a cylindrically shaped lower shroud 28 which extends from a plane closely spaced above the lower tube sheet to another plane spaced a considerable distance below the upper tube sheet. This lower shroud forms a riser chamber 30 including the bank of tubes and in combination with the shell 12 forms an annular shaped downcomer passageway 31. Closely spaced below the upper end of the lower shroud 28 and passing through it are a number of openings 32 which afford communication between the riser chamber 30 and the annular downcomer passageway 31. The upper end of the annular passageway is sealed by an annular plate 34 welded about its outer edge to the shell and around its inner edge to the shroud 28. Within the riser chamber a number of lattice type tube supports 38 are spaced along the length of the bank of tubes 26.
- a cylindrically shaped upper shroud 40 Extending upwardly from the lower shroud to a plane located below the upper tube sheet is a cylindrically shaped upper shroud 40 which also encircles the bank of tubes 26. Transversely positioned within this upper shroud 40 are a number of vertically spaced disk and doughnut flow directing bafiles 42, 44A and 44B, respectively, see FIGS. 1, 3, and 4 for imparting a tortuous flow path to the fluid flowing about the tubes.
- Support bars 46 anchored to and extending vertically upward from the lower tube sheet 22 through the tube bundle carry the disk and doughnut baflles.
- the space within the upper shroud 40 and extending upwardly to the lower face of the upper tube sheet provides a superheating chamber 48.
- the space between the upper shroud and the shell forms an outlet passageway 49 from which vapor outlets 50 extend for delivering superheated vapor to a point of use.
- a pair of feedfluid inlets 52 extend through the shell 12 and are connected to a ring shaped feedfluid header 54 which circles the lower shroud 28 at its upper extremity.
- header has a plurality of small openings 56 in its lower surface. Between the shell and shroud at spaced locations are a number of transversely arranged centering pins 58 for properly locating the shroud.
- a nozzle 60 provides a fluid inlet to the chamber 20, see FIGS. 1 and 2, while in the lower head a nozzle 62 forms a fluid outlet from the chamber 24. Further, in the upper and lower heads respectively manways 64, 66 are provided for gaining admission to the chambers 20, 24.
- the vapor generator 10 At its lower end the vapor generator 10 is supported by a skirt 68 which extends downwardly from the lower end of the shell 12 to a support pad 70.
- the secondary coolant enters the heat exchanger through the inlets 52 flowing then into the feedfluid header 54. From the header the secondary coolant or feedfluid at a temperature somewhat below its saturation temperature corresponding to the operating pressure of the secondary system is uniformly distributed into the upper end of the annular passageway 31. Coincidentally vapor is drawn off from the riser chambers 30 through the openings 32 in the shroud 28. At substantially percent quality and upon passing through the space around the feedfluid header, it mixes with the atomized feedfluid. The vapor is condensed causing a slight reduction in pressure which provides an aspirating effect causing withdrawal of vapor from within the chamber 30 into the annular passageway 31.
- the vapor gives up its latent heat of vaporization to the feedfluid with the mixture being heated substantially to saturation temperature.
- the secondary fluid passes into riser chamber 30 and since it is at substantially saturation temperature vapor generation immediately commences.
- the secondary coolant flows upwardly about the tubes and nucleate boiling is maintained as it passes in counter flow and indirect heat transfer relationship with the primary heating liquid within the tubes.
- the low rate and temperature of the secondary coolant supplied to and flowing within the annular passageway is proportioned to assure natural or thermosyphonic circulation of the secondary coolant in its upward flow about the tubes 26.
- vapor is generated ranging from zero quality at the lower tube sheet 22 to substantially 100 percent quality adjacent the upper end of the lower shroud 28. From this point that portion of the vapor which is to be superheated passes in a tortuous or sinuous path about the disk and doughnut balfies 42, 44A and 44B and is thus superheated in chamber 48 before it reverses direction about the upper shroud 40, flows downwardly into the outlet passageway 49 between the upper shroud and the shell and finally exits from the unit through the vapor outlet 50.
- the primary coolant is preferably in a liquid state and typical operating parameters for both the primary and secondary coolants in such a unit as follows:
- the DNB curve illustrates qualitatively a typical relationship between DNB quality and mixture velocity.
- the zone D At the lower end of the mixture velocity scale between zero and approximately 3 feet per second is the zone D in which natural liberation and separation of steam from a body of water occurs in the course of vapor generating. This phenomenon is characterized as pot type boiling because of its similarity to boiling in a pot of water on a stove. As the pot is heated nucleation points develop and the steam bubbles break away from the surface of the pot to pass upwardly through the water, finally leaving the liquid. It will be noted that in this zone there is an upper DNB quality limit of 100 percent.
- zone C extending roughly between velocities of from 3 to 12 ft./second and having a DNB quality limit of percent is the normal design range of operation for natural circulation boilers.
- Natural circulation may be achieved by effective utilization of the force produced by differences in the density of the heated fluid mixture and the feedfluid supply. As heat is imparted to a fluid it becomes less dense than the fluid supply and it is this differential density phenomenon which, in properly proportioned downcomer and riser systems, promotes natural circulation of the fluid being heated.
- a typical natural circulation boiler is disclosed in the Blazer et al. Patent No. 2,862,479 wherein the fluid to be heated flows first in an annular downcomer and then upwardly and is heated as it passes over the bank of shaped tubes.
- the weight of the column of vaporizable fluid in the downcomer passageway is greater than the weight of steam-Water mixture Within the riser passageway because the mixture, upon being heated, becomes less dense, thereby providing a fluid density differential which promotes natural circulation flow through the unit.
- natural circulation boilers have generally been designed for a mixture quality maximum of 20 percent by weight leaving the vapor generating section. Since the design exit quality is thus far below the limiting DNB quality of 100 percent from FIG. 5, zone C, it is apparent that for normal operating conditions of such units nucleate boiling exists throughout the entire vapor generating flow path.
- zone A The upper portion of the plotted curve designated as zone A identifies the region of mixture velocity generally associated with forced flow, once-through boiler design.
- units of this type employ a high temperature heat source so that high velocities and correspondingly high mass flows over or through the tubular conduits are required to avoid burnout.
- the limiting DNB quality in this domain reduces rapidly, viz from 80 percent to 50 percent quality, for a corresponding mixture velocity reduction from 110 feet per second to 90 feet per second.
- this distinctive characteristic would persist as the mixture velocity was further reduced and it was concluded that once-through vapor generators could not be designed for satisfactory operation below this relatively high mixture velocity.
- the temperature of the primary coolant is relatively low and at the same time large quantities of it are available from the reactor.
- a comparatively low pressure secondary coolant system By employing a comparatively low pressure secondary coolant system, with relatively low mass flows through the unit it is possible to achieve very high DNB quality provided the temperature of the heat source and heat flux are limited in accordance with the conditions previously discussed.
- the change in temperature of the primary coolant as indicated previously in Table 1 is quite small, thereby limiting the deleterious effect of temperature differential within the unit and as a result limiting thermal stresses particularly on the tube walls in the region where DNB occurs.
- the most important feature of this invention is the ability to maintain nucleate boiling throughout the entire range of vapor generation i.e., from zero to substantially percent quality.
- the vaporizable fluid By properly coordinating the sizing of the unit and its geometric arrangement and by maintaining the operating conditions within established design limits it is possible to assure that the vaporizable fluid would be in a liquid state at substantially saturation temperature at its point of introduction into riser chamber 30 for flow about the tubes.
- the vaporizable fluid In the heat exchanger construction shown in FIG. 1 the vaporizable fluid is transformed from a liquid at saturation temperature into a vaporous state in the course of its upward flow from the lower end of tube bank 26 to the upper portion of the tubes adjacent the upper end of the lower shroud 28.
- the vaporizable fluid will exist as vapor at substantially 100 percent quality.
- the rate of feedfluid supply to the unit will be equivalent to the amount of superheated vapor taken from the outlet 50, while the total flow rate in the downcomer passageway 31 will be the sum of the feedfluid and the saturated steam withdrawn from the chamber 30 through the openings 32.
- this unit has been designated as a oncethrough unit utilizing natural circulation to effect fluid flow therethrough. It will also be observed that there is some degree of recirculation since a portion of the vapor generated is utilized to attain the saturation temperature of the feedfluid, which contributes to the uniqueness of this arrangement and the distinctive method of operation. Ordinarily, with natural circulation it is a liquid fraction of the heated fluid with is recirculated. In the present invention a portion of the vapor is Withdrawn for recirculation first in vaporous state and then as a liquid. In the Blazer et al.
- the method of operating a once-through steam generator having a vessel occupied by a bank of tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure and vaporizing the feed fluid by directing it over and along the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of feet per second to 12 feet per second.
- the method of operating a once-through steam generator having a vessel occupied by tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, successively vaporizing and superheating the feed fluid by directing it over and along the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second while being vaporized, and flowing most of the resulting superheated vapor to a point of use.
- the method of operating a once-through steam generator having a vessel occupied 'by a bank of tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and superheating most of the resulting saturated vapor by directing it over and along the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
- the method of operating a once-through steam generator having a vessel occupied by a bank of upright tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and superheating most of the resulting saturated vapor by directing it over and along the remaining length of the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
- the method of operating a once-through steam generator having a vessel occupied by a bank of straight vertical tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and
- the method of operating a once-through steam generator having a vessel occupied by a bank of straight vertical tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and directing a part of the resulting saturated vapor into mixing relation with the feed fluid inflow to the vessel in a quantity sufficient to provide feed fluid at saturation temperature as it starts to flow over the tubes,
- the method of operating a once-through steam generator having a vessel occupied by a bank of upright tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing the feed fluid by directing it over and along a portion of the length of the tubes in counterflow indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, superheating most of the resulting saturated vapor by directing it over and along the remaining length of the tubes, and withdrawing a portion of the feed fluid at a point in the course of its passage along the tubes and delivering it in mixing relation with the feed fluid entering the vessel.
- the method of operating a once-through steam generator having a vessel occupied by a bank of upright tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing the feed fluid by directing it over and along a portion of the length of the tubes in counterflow indirect heat absorbing relation with the heating fluid at a mass flow in the range of 100,000 to 300,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, superheating most of the resulting vapor by directing it over and along the remaining length of the tubes, and withdrawing a portion of the feed fluid at a point in the course of its passage along the tubes and delivering it in mixing relation with the feed fluid entering the vessel.
- the method of operating a once-through steam generator having a vessel occupied by a bank of straight vertical tubes which comprises directing a low temperature subcritical pressure heating fluid through the tubes, supplying a subcooled vaporizable feed fluid to the vessel at subcritical pressure, vaporizing the fed fluid by directing it over and along a portion of the length of the tubes in indirect counterflow heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, superheating most of the resulting vapor by directing it over and along the remaining length of the tubes, and withdrawing a portion of the feed fluid at a point in the course of its passage along the tubes and delivering it in mixing relation with the feed fluid entering the vessel.
- the method of operating a once-through steam generator having a vessel divided by tube sheets into heating fluid inflow and outflow compartments and a tube bank compartment, and a bank of straight vertical tubes in the tube bank compartment connected to the tube sheets, said method comprising directing a heating fluid to the inflow compartment through the tubes to the outflow compartment, supplying a vaporizable feed fluid to the bank compartment, vaporizing the feed fluid directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow in the range of 100,000 to 300,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and superheating most of the resulting saturated vapor by directing it through a tortuous path over and along the remaining length of the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
May 28, 1968 T. s. SPRAGUE METHOD OF OPERATING A ONCE-THROUGH VAPOR GENERATOR Filed Jan. 18, 1965 0 $2 w k N @mm p m JV "H wme M; M A W m 9/ 4w 9 w an RC6 Nwk nvgikg United States Patent "ice 3,385,268 METHOD OF OPERATING A ONCE-THROUGH VAPOR GENERATOR Theodore Smith Sprague, Hudson, Ohio, assignor to The Babcock & Wilcox Company, New York, N.Y., a corporation of New Jersey Filed Jan. 18, 1965, Ser. No. 426,035 Claims. (Cl. 12232) T his invention relates in general to once-through vapor generators and superheaters and more particularly to such units operating at relatively low mass flows, that is, below 400,000 lbs./hr./ft.
Mass flow is defined as the amount of fluid passing through a specific planar area in a given period of time. It was long believed that high rates of mass flow were needed in once-through vapor generators to increase the quality at which nucleate boiling breaks down and to improve the film heat transfer coefficient at and above the point of departure from nucleate boiling.
The point of departure from nucleate boiling, DNB, in a once-through vapor generator is particularly significant since it provides a sharp distinction between the heat transfer rates usually associated with nucleate boiling conditions and the relative very low heat transfer rates which distinguishes film boil conditions. 'Nucleate boiling is characterized by the formation and release of vapor bubbles on the heat transmitting face of the heat transfer surface with the liquid still wetting the face, while in film boiling the heat transmitting face is coated with a film of vapor. To transfer heat from the transmitting face to the liquid a temperature gradient is necessary. For a given set of operating conditions the magnitude of this gradient depends mainly on whether nucleate or film boiling is taking place.
In nucleate boiling the vapor bubbles generated at nucleation points or sites on the heat transfer surface rapidly detach themselves and move into the bulk liquid, the resulting agitation of the mixture producing an excellent heat transfer coefficient. In film boiling a film of vapor forms over the heat transfer surface so that steam generation does not occur at the heat transfer surface but at the liquid-vapor interface. The vapor film prevents the liquid from wetting the surface and the resulting heat transfer coefficients are poor. In effect the vapor film acts as a layer of insulation which retards the rate at which heat is transferred from the heat absorbing surface to the liquid. Therefore, the temperature of the heat absorbing surface is at a higher level than that resulting with nucleate boiling for the same mass flow conditions and the point at which nucleate boiling changes to film boiling is known as departure from nucleate boiling (DNB). It will be appreciated that while burnout will not occur in tubes when nucleate boiling prevails through the heat transfer domain there may be a serious problem of tube burnout in the film boiling range, depending on heat fiux and mass flow within the heat transfer region.
T o obtain maximum efficiency in a vapor generator, for example, a once-through type unit, it is important to maintain nucleate boiling over as wide a range of steam qualities as possible. The optimum condition would be to maintain nucleate boiling during vapor generation from zero to 100 percent quality. However, achieving such range is not always possible. In the past it was the general belief that once-through boiler operation had to be carried out in a relatively high range of mass flow, that is above 600,000 'lbs./hr./ft. It had appeared that as a mass flow dropped off the DNB quality limit would also continue to decrease. However, more recent research has indicated that a point exists where the DNB quality starts to increase with a further decrease in the mass 3,385,268 Patented May 28, 1968 flow. As a matter of fact, it appears that the DNB quality approaches percent for extremely low values of mass flow.
Design of a once-through vapor generator is dependent upon a number of factors such as velocity, mass flow, heat flux, pressure and geometry or physical arrangement of the boiler. Previously it was assumed that high mas flows were necessary for once-through vapor generators to maintain the necessary high DNB quality limit and also to provide the maximum cooling effect of the heat exchange surfaces in the film boiling range to avoid burnout. When it became apparent that once-through operation was possible in the relatively low ranges of mass flow it was recognized that such low mass flow conditions might advantageously be applied to once-through vapor generators utilized in combination with nuclear reactors, particularly of the pressurized water type. The primary coolant outlet temperatures from such reactors are relatively low generally not exceeding 625 F. The coolant is pressurized to avoid boiling in the reactor and as a result it circulates from the reactor at high pressures, 2,000 to 2,500 p.s.i., but as already stated at rather low temperatures.
With the requirements of a heat exchanger for a nuclear reactor primary coolant system in mind, but without being limited to such a system, it is the primary object of the invention to provide a method of operating a once-through vapor generator using low mass flows and in the nucleate boiling domain.
Another object of the invention is to incorporate superheating with such a method of once-through vapor generation.
A further object of the invention is to incorporate a method of preheating the secondary feedfluid so that it will be at substantially saturation temperature corresponding to secondary vapor pressure operating at the commencement of its passage in heat transfer relationship' with the primary heating fluid.
Still another object of the invention is to provide natural circulation induced flow of the vaporizable secondary fluid.
Yet another object of the invention is the utilization of a portion of the vapor generated to heat the feedfluid substantially to saturation temperature.
Another main object of the invention is the provision of vertically disposed tubular heat exchanger arranged to carry out the above method of once-through vapor generation.
A further object of the invention is to provide means for heating feedfluid in the heat exchanger in an integral section, separated from the vapor generating space. Further, the heat exchanger is arranged so that vapor may be removed from the vapor generating space and introduced into the separate feedfluid inlet space for heating the feedfluid to saturation temperature.
Yet another object of the invention is to provide a special baffle construction for assuring that the vapor which is generated flows a tortuous path through the superheating space of the heat exchanger.
Accordingly, the invention comprises a method of vaporizing and superheating a fluid by circulating it through a heat exchanger in indirect heat transfer relationship with a heating fluid at mass flow rates below 400,000 lbs./hr./ ft. Prior to passing the vaporizable fluid through the heat exchanger it is mixed with a portion of vaporized fluid which has absorbed heat, in the course of its passage about the tubes, to thereby heat the feedfluid to substantially saturation temperature.
Additionally, the invention comprises a vertically elongated heat exchanger having a bundle of heat exchanger tubes extending between a pair of spaced tube sheets. A cylindrically shaped shroud encloses the bundle of tubes for a substantial portion of its length, thereby providing a riser chamber about the tubes and an annular downcomer passage between the shroud and the heat exchanger shell. Openings are provided through the upper end of the shroud for admitting vapor, generated within the chamber, into the annular passageway wherein it mixes and heats the feedfluid by direct contact.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this specification. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be had to the accompanying drawing and descriptive matter in which there is illustrated and described a preferred embodiment of the invention.
Of the drawings FIG. 1 is a veriical sectional view of a once-through vapor generator embodying the present invention,
FIG. 2 is a plan View of the vapor generator shown in FIG. 1,
FIG. 3 is a transverse section taken along line 33 in FIG. 1,
FIG. 4 is another transverse section taken along line 44 in FIG. 1, and
FIG. 5 is a plot illustrating a typical relationship of mixture velocity and DNB quality for a given vapor pressure, heat flux and geometry.
In FIG. 1 there is shown a once-through vapor generating and superheating unit comprising a vertically elongated cylindrically shaped pressure shell 12 closed at its opposite ends by an upper head member 14 and a lower head member 16. Within the unit a transversely arranged upper tube sheet 18 is integrally attached to the shell and upper head member 14 and forms in combination with the head member a fluid inlet chamber 20. At the opposite end of the unit lower tube sheet 22, integrally attached to the shell and lower head member, forms in combination with the head member a fluid outlet chamber 24.
Vertically extending between the tube sheets 18 and 22 is a bank of straight tubes 26. Disposed about the tubes is a cylindrically shaped lower shroud 28 which extends from a plane closely spaced above the lower tube sheet to another plane spaced a considerable distance below the upper tube sheet. This lower shroud forms a riser chamber 30 including the bank of tubes and in combination with the shell 12 forms an annular shaped downcomer passageway 31. Closely spaced below the upper end of the lower shroud 28 and passing through it are a number of openings 32 which afford communication between the riser chamber 30 and the annular downcomer passageway 31. The upper end of the annular passageway is sealed by an annular plate 34 welded about its outer edge to the shell and around its inner edge to the shroud 28. Within the riser chamber a number of lattice type tube supports 38 are spaced along the length of the bank of tubes 26.
Extending upwardly from the lower shroud to a plane located below the upper tube sheet is a cylindrically shaped upper shroud 40 which also encircles the bank of tubes 26. Transversely positioned within this upper shroud 40 are a number of vertically spaced disk and doughnut flow directing bafiles 42, 44A and 44B, respectively, see FIGS. 1, 3, and 4 for imparting a tortuous flow path to the fluid flowing about the tubes. Support bars 46 anchored to and extending vertically upward from the lower tube sheet 22 through the tube bundle carry the disk and doughnut baflles. The space within the upper shroud 40 and extending upwardly to the lower face of the upper tube sheet provides a superheating chamber 48. The space between the upper shroud and the shell forms an outlet passageway 49 from which vapor outlets 50 extend for delivering superheated vapor to a point of use.
At the upper end of the annular passageway 31 a pair of feedfluid inlets 52 extend through the shell 12 and are connected to a ring shaped feedfluid header 54 which circles the lower shroud 28 at its upper extremity. The
header has a plurality of small openings 56 in its lower surface. Between the shell and shroud at spaced locations are a number of transversely arranged centering pins 58 for properly locating the shroud.
In the upper head 14 a nozzle 60 provides a fluid inlet to the chamber 20, see FIGS. 1 and 2, while in the lower head a nozzle 62 forms a fluid outlet from the chamber 24. Further, in the upper and lower heads respectively manways 64, 66 are provided for gaining admission to the chambers 20, 24.
At its lower end the vapor generator 10 is supported by a skirt 68 which extends downwardly from the lower end of the shell 12 to a support pad 70.
During normal operation primary coolant received from a pressurized water reactor or similar heat source is supplied to the chamber 20 through nozzle 60. From chamber 20 the primary coolant flows downwardly through tubes 26 and into the lower chamber 24 finally leaving the vapor generator through nozzle 62.
The secondary coolant enters the heat exchanger through the inlets 52 flowing then into the feedfluid header 54. From the header the secondary coolant or feedfluid at a temperature somewhat below its saturation temperature corresponding to the operating pressure of the secondary system is uniformly distributed into the upper end of the annular passageway 31. Coincidentally vapor is drawn off from the riser chambers 30 through the openings 32 in the shroud 28. At substantially percent quality and upon passing through the space around the feedfluid header, it mixes with the atomized feedfluid. The vapor is condensed causing a slight reduction in pressure which provides an aspirating effect causing withdrawal of vapor from within the chamber 30 into the annular passageway 31.
Within the passageway the vapor gives up its latent heat of vaporization to the feedfluid with the mixture being heated substantially to saturation temperature. From the annular passageway the secondary fluid passes into riser chamber 30 and since it is at substantially saturation temperature vapor generation immediately commences. The secondary coolant flows upwardly about the tubes and nucleate boiling is maintained as it passes in counter flow and indirect heat transfer relationship with the primary heating liquid within the tubes. The low rate and temperature of the secondary coolant supplied to and flowing within the annular passageway is proportioned to assure natural or thermosyphonic circulation of the secondary coolant in its upward flow about the tubes 26.
As the secondary coolant flows upwardly through the riser chamber 30 vapor is generated ranging from zero quality at the lower tube sheet 22 to substantially 100 percent quality adjacent the upper end of the lower shroud 28. From this point that portion of the vapor which is to be superheated passes in a tortuous or sinuous path about the disk and doughnut balfies 42, 44A and 44B and is thus superheated in chamber 48 before it reverses direction about the upper shroud 40, flows downwardly into the outlet passageway 49 between the upper shroud and the shell and finally exits from the unit through the vapor outlet 50.
As indicated, the primary coolant is preferably in a liquid state and typical operating parameters for both the primary and secondary coolants in such a unit as follows:
It will be noted that an extremely large quality of heating liquid passes through the vapor generator and that While the temperature diflerential between the inlet and outlet is only 42 degrees there is a large reservoir of heat availability. In a typical unit such as the one shown in FIG. 1 there would be more than l5,000'-% O.D. tubes in the tube bank.
In FIG. 5 the DNB curve illustrates qualitatively a typical relationship between DNB quality and mixture velocity. At the lower end of the mixture velocity scale between zero and approximately 3 feet per second is the zone D in which natural liberation and separation of steam from a body of water occurs in the course of vapor generating. This phenomenon is characterized as pot type boiling because of its similarity to boiling in a pot of water on a stove. As the pot is heated nucleation points develop and the steam bubbles break away from the surface of the pot to pass upwardly through the water, finally leaving the liquid. It will be noted that in this zone there is an upper DNB quality limit of 100 percent.
Again in FIG. 5 the area identified as zone C, extending roughly between velocities of from 3 to 12 ft./second and having a DNB quality limit of percent is the normal design range of operation for natural circulation boilers. Natural circulation may be achieved by effective utilization of the force produced by differences in the density of the heated fluid mixture and the feedfluid supply. As heat is imparted to a fluid it becomes less dense than the fluid supply and it is this differential density phenomenon which, in properly proportioned downcomer and riser systems, promotes natural circulation of the fluid being heated.
A typical natural circulation boiler is disclosed in the Blazer et al. Patent No. 2,862,479 wherein the fluid to be heated flows first in an annular downcomer and then upwardly and is heated as it passes over the bank of shaped tubes. The weight of the column of vaporizable fluid in the downcomer passageway is greater than the weight of steam-Water mixture Within the riser passageway because the mixture, upon being heated, becomes less dense, thereby providing a fluid density differential which promotes natural circulation flow through the unit. However, from experience natural circulation boilers have generally been designed for a mixture quality maximum of 20 percent by weight leaving the vapor generating section. Since the design exit quality is thus far below the limiting DNB quality of 100 percent from FIG. 5, zone C, it is apparent that for normal operating conditions of such units nucleate boiling exists throughout the entire vapor generating flow path.
In order to provide exceptionally dry, saturated steam in units of the Blazer et a1. type, the steam-water mixture must pass through mechanical separating equipment to separate the saturated steam from the water, the latter being then available for recirculation through the unit. When the mixture velocity through the boiler circuitry exceeds the upper limit defined by zone C as shown in the graph in FIG. 5 the resultant high circulation rate to produce so high a fluid pressure drop (resistance to flow) that natural circulation of fluid within the boiler unit is seriously impaired.
The upper portion of the plotted curve designated as zone A identifies the region of mixture velocity generally associated with forced flow, once-through boiler design. As previously indicated units of this type employ a high temperature heat source so that high velocities and correspondingly high mass flows over or through the tubular conduits are required to avoid burnout. As illustrated by the curve in FIG. 5 the limiting DNB quality in this domain reduces rapidly, viz from 80 percent to 50 percent quality, for a corresponding mixture velocity reduction from 110 feet per second to 90 feet per second. Heretofore, it has generally been presumed that this distinctive characteristic would persist as the mixture velocity was further reduced and it was concluded that once-through vapor generators could not be designed for satisfactory operation below this relatively high mixture velocity. However, subsequent research has demonstrated that the limiting DNB quality curve reverses itself with decreasing mixture velocities. In FIG. 5 it will be noted in zone B that at approximately ft./ sec. the curve starts to show increasing limiting values of DNB quality with decreasing velocity of mixture. The DNB quality rises quite rapidly from 45 percent to percent for mixture velocities from 70 to 50 ft./sec. respectively. In zone B, on FIG. 5 between 12 and 45 ft./sec. the limiting DNB quality ranges from almost 100 percent down to percent.
Besides mass flow and mixture velocity, however, the design of once-through boilers is dependent upon a number of other design criteria, such as heat flux, pressure and geometry of the flow channel. Thus, it is not possible to employ this 'lower region identified as zone B in FIG. 5 for the design of units having high temperature heat sources because of the incipient danger of tube failure or high heat flux because of thermal fatigue in the zone of rapidly changing metal temperatures due to cyclical changes from nucleate to film boiling and back. As indicated earlier for the unit illustrated the operating parameters which characterize the primary coolant from a pressurized water reactor as a heat source make it especially adaptable for use in a once-through boiler operating in the low mixture velocity, high quality region. The temperature of the primary coolant is relatively low and at the same time large quantities of it are available from the reactor. By employing a comparatively low pressure secondary coolant system, with relatively low mass flows through the unit it is possible to achieve very high DNB quality provided the temperature of the heat source and heat flux are limited in accordance with the conditions previously discussed. Further, the change in temperature of the primary coolant as indicated previously in Table 1 is quite small, thereby limiting the deleterious effect of temperature differential within the unit and as a result limiting thermal stresses particularly on the tube walls in the region where DNB occurs. However, the most important feature of this invention is the ability to maintain nucleate boiling throughout the entire range of vapor generation i.e., from zero to substantially percent quality.
If during the operation of a once-through vapor generator film boiling occurs in a portion of the units the heat transfer from the heating fluid to the heated fluid is substantially lessened and the absorption efficiency of the unit reduced. During nucleate boiling in the unit shown in FIG. 1 vapor bubbles from the secondary fluid form on the exterior of the tube walls, break away, and travel upwardly as an integral part of a vapor-liquid mixture. Moreover, since the secondary coolant or feedfluid is introduced at substantially saturation temperature steam generation commences immediately. As the vapor-liquid mixture flows upwardly along and around each individual tube a boundary layer of liquid is maintained on the outside surface of the tubes to provide nucleation sites for the generation of steam bubbles. As the steam bubbles break away from the sites, they travel upwardly through the body of liquid at a velocity greater than that of the liquid. This phenomenon, known as steam slip characterizes vapor flow within a two phase fluid. Its effect is particularly significant at relatively low fl-uid velocities and operating pressures, and this is of especial importance as regards the steam generating system here disclosed. Since the vapor fraction of the mixture is less dense than the liquid fraction the effect of gravity on the more dense liquid will retard its upward velocity relative to that of the less dense vapor and thus will cause the vapor to travel upwardly faster than the liquid. This tendency of the vapor to flow at a higher relative velocity promotes the maintenance of the liquid film upon the tubes.
It is readily recognized that steam slip is a function of the pressure and corresponding relative specific weight or density of the vaporous and liquid constituents comprising the two phase fluid mixture. Thus as the pressure approaches the critical value, i.e., 3206 p.s.i.-a., the differential density of the constituents is continually reducing so that at 3206 p.s.i.a. there is no differential and steam slip is non-existent. Obviously, the optimal relationship of these phase densities with respect to the corresponding liquid density and considering fluid flow friction characteristics, will produce the highest natural circulation head. Experience has indicated that this optimum condition generally prevails in the 800 to 1400 psi. range and that natural circulation units operating within this range benefit substantially from steam slip both from optimization of heat transfer in the nucleate boiling domain and in economy of overall heating surface requirements for a specified performance condition.
By properly coordinating the sizing of the unit and its geometric arrangement and by maintaining the operating conditions within established design limits it is possible to assure that the vaporizable fluid would be in a liquid state at substantially saturation temperature at its point of introduction into riser chamber 30 for flow about the tubes. In the heat exchanger construction shown in FIG. 1 the vaporizable fluid is transformed from a liquid at saturation temperature into a vaporous state in the course of its upward flow from the lower end of tube bank 26 to the upper portion of the tubes adjacent the upper end of the lower shroud 28. Thus, at the upper end of the shroud the vaporizable fluid will exist as vapor at substantially 100 percent quality.
From the upper end of the lower shroud a certain amount of vaporized fluid flows from the chamber into the passageway due to the aspirating effect produced as feedfluid spray collapses the vapor. The vaporizable feedfluid is sprayed into the passageway at a subcooled temperature and condenses the vapor withdrawn from the chamber. This condensation results in a sudden decrease in pressure at the top of the passageway 31 and as a consequence vapor is continuously withdrawn from within the chamber 30.
By establishing the amount and temperature of the vaporizable feedfluid supplied to the unit through the header 54 and by properly selecting the size of the openings 32 in the lower shroud 28 it is possible to admit suflicient vapor into the passageway so that the feedfluid can be heated to substantially saturation temperature within the passageway 31. Accordingly, the rate of feedfluid supply to the unit will be equivalent to the amount of superheated vapor taken from the outlet 50, while the total flow rate in the downcomer passageway 31 will be the sum of the feedfluid and the saturated steam withdrawn from the chamber 30 through the openings 32.
Earlier this unit has been designated as a oncethrough unit utilizing natural circulation to effect fluid flow therethrough. It will also be observed that there is some degree of recirculation since a portion of the vapor generated is utilized to attain the saturation temperature of the feedfluid, which contributes to the uniqueness of this arrangement and the distinctive method of operation. Ordinarily, with natural circulation it is a liquid fraction of the heated fluid with is recirculated. In the present invention a portion of the vapor is Withdrawn for recirculation first in vaporous state and then as a liquid. In the Blazer et al. patent previously mentioned, especial care is taken to prevent the admission of any vapor to the down flowing separated coolant and this is common of all such units, however, in the present invention the complete opposite is desired, i.e., the vapor is purposely mixed with the feedfluid to heat it to saturation temperature to serve as supply for the steam generating portion of the unit. If the output demand on the steam generator changes, the temperature and, quantity of the feedfluid may be varied to maintain the desired operating characteristics.
Accordingly, by maintaining the proper limits of temperature, velocity, heat flux, pressure and geometry, it is possible to operate a once-through vapor generator and superheater in the mass fiow range which had not previously been considered possible.
While in accordance with the provisions of the statutes, I have illustrated and described herein a specific form of the invention now known to me, those skilled in the art will understand that changes may be made in the foim of the apparatus disclosed without departing from the spirit of the invention covered by my claims, and that certain features of the invention may sometimes be used to advantage without a corresponding use of the other features.
What is claimed is:
1. The method of operating a once-through steam generator having a vessel occupied by a bank of tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure and vaporizing the feed fluid by directing it over and along the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of feet per second to 12 feet per second.
2. The method of operating a once-through steam generator having a vessel occupied by tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, successively vaporizing and superheating the feed fluid by directing it over and along the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second while being vaporized, and flowing most of the resulting superheated vapor to a point of use.
3. The method of operating a once-through steam generator having a vessel occupied 'by a bank of tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and superheating most of the resulting saturated vapor by directing it over and along the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
4. The method of operating a once-through steam generator having a vessel occupied by a bank of upright tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and superheating most of the resulting saturated vapor by directing it over and along the remaining length of the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
5. The method of operating a once-through steam generator having a vessel occupied by a bank of straight vertical tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and
superheating most of the resulting saturated vapor by directing it through a tortuous path over and along the remaining length of the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
6. The method of operating a once-through steam generator having a vessel occupied by a bank of straight vertical tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing all the feed fluid by directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and directing a part of the resulting saturated vapor into mixing relation with the feed fluid inflow to the vessel in a quantity sufficient to provide feed fluid at saturation temperature as it starts to flow over the tubes,
while superheating the remainder of the saturated vapor by directing it over and along the remaining length of the tubes.
7. The method of operating a once-through steam generator having a vessel occupied by a bank of upright tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing the feed fluid by directing it over and along a portion of the length of the tubes in counterflow indirect heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, superheating most of the resulting saturated vapor by directing it over and along the remaining length of the tubes, and withdrawing a portion of the feed fluid at a point in the course of its passage along the tubes and delivering it in mixing relation with the feed fluid entering the vessel.
8. The method of operating a once-through steam generator having a vessel occupied by a bank of upright tubes which comprises directing a heating fluid through the tubes, supplying a vaporizable feed fluid to the vessel at subcritical pressure, vaporizing the feed fluid by directing it over and along a portion of the length of the tubes in counterflow indirect heat absorbing relation with the heating fluid at a mass flow in the range of 100,000 to 300,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, superheating most of the resulting vapor by directing it over and along the remaining length of the tubes, and withdrawing a portion of the feed fluid at a point in the course of its passage along the tubes and delivering it in mixing relation with the feed fluid entering the vessel.
9. The method of operating a once-through steam generator having a vessel occupied by a bank of straight vertical tubes which comprises directing a low temperature subcritical pressure heating fluid through the tubes, supplying a subcooled vaporizable feed fluid to the vessel at subcritical pressure, vaporizing the fed fluid by directing it over and along a portion of the length of the tubes in indirect counterflow heat absorbing relation with the heating fluid at a mass flow less than 400,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, superheating most of the resulting vapor by directing it over and along the remaining length of the tubes, and withdrawing a portion of the feed fluid at a point in the course of its passage along the tubes and delivering it in mixing relation with the feed fluid entering the vessel.
10. The method of operating a once-through steam generator having a vessel divided by tube sheets into heating fluid inflow and outflow compartments and a tube bank compartment, and a bank of straight vertical tubes in the tube bank compartment connected to the tube sheets, said method comprising directing a heating fluid to the inflow compartment through the tubes to the outflow compartment, supplying a vaporizable feed fluid to the bank compartment, vaporizing the feed fluid directing it over and along a portion of the length of the tubes in indirect heat absorbing relation with the heating fluid at a mass flow in the range of 100,000 to 300,000 pounds per hour per square foot and at a velocity in the range of 70 feet per second to 12 feet per second, and superheating most of the resulting saturated vapor by directing it through a tortuous path over and along the remaining length of the tubes, while passing the remainder of the saturated vapor into mixing relation with the feed fluid entering the vessel.
References Cited UNITED STATES PATENTS 2,336,832 12/1943 Badenhausen 122-34 2,862,479 12/1958 Blaser et a1 122-34 3,076,444 2/ 1963 Bell 122-34 3,088,494 5/1963 Koch et a1 165-1 X 3,129,697 4/1964 Trepaud 122-34 3,179,573 4/1965 Maillet 165-177 3,250,258 5/1966 Heathcote 122-34 FOREIGN PATENTS 1,140,383 4/1957 France.
536,592 5/ 1941 Great Britain.
KENNETH W. SPRAGUE, Primary Examiner.
Claims (1)
1. THE METHOD OF OPERATING A ONCE-THROUGH STEAM GENERATOR HAVING A VESSEL OCCUPIED BY A BANK OF TUBES WHICH COMPRISES DIRECTING A HEATING FLUID THROUGH THE TUBES, SUPPLYING A VAPORIZABLE FEED FLUID TO THE VESSEL AT SUBCRITICAL PRESSURE AND VAPORIZING THE FEED FLUID BY DIRECTING IT OVER AND ALONG THE TUBES IN INDIRECT HEAT ABSORBING RELATION WITH THE HEATING FLUID AT A MASS FLOW LESS THAN 400,000 POUNDS PER HOUR PER SQUARE FOOT AND AT A VELOCITY IN THE RANGE OF 70 FEET PER SECOND TO 12 FEET PER SECOND.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42603565 US3385268A (en) | 1965-01-18 | 1965-01-18 | Method of operating a once-through vapor generator |
DE19661526996 DE1526996A1 (en) | 1965-01-18 | 1966-01-15 | Process for operating a heat exchanger and carrying out the same |
SE58166A SE315601B (en) | 1965-01-18 | 1966-01-17 | |
FR46096A FR1463672A (en) | 1965-01-18 | 1966-01-17 | Improvements to steam production processes and installations |
BE675283D BE675283A (en) | 1965-01-18 | 1966-01-18 | |
GB225066A GB1090485A (en) | 1965-01-18 | 1966-01-18 | Improvements in or relating to a method of and apparatus for generating vapour |
NL6600647A NL6600647A (en) | 1965-01-18 | 1966-01-18 | |
US675538A US3447509A (en) | 1965-01-18 | 1967-10-16 | Once-through vapor generator |
NL7300178.A NL161251C (en) | 1965-01-18 | 1973-01-05 | HEAT EXCHANGER. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42603565 US3385268A (en) | 1965-01-18 | 1965-01-18 | Method of operating a once-through vapor generator |
Publications (1)
Publication Number | Publication Date |
---|---|
US3385268A true US3385268A (en) | 1968-05-28 |
Family
ID=23689020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US42603565 Expired - Lifetime US3385268A (en) | 1965-01-18 | 1965-01-18 | Method of operating a once-through vapor generator |
Country Status (7)
Country | Link |
---|---|
US (1) | US3385268A (en) |
BE (1) | BE675283A (en) |
DE (1) | DE1526996A1 (en) |
FR (1) | FR1463672A (en) |
GB (1) | GB1090485A (en) |
NL (1) | NL6600647A (en) |
SE (1) | SE315601B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3576178A (en) * | 1969-12-24 | 1971-04-27 | Combustion Eng | Shell-and-tube steam generator with economizer |
US3661123A (en) * | 1970-12-31 | 1972-05-09 | Combustion Eng | Steam generator feedwater preheater |
US3724532A (en) * | 1970-03-02 | 1973-04-03 | Babcock & Wilcox Co | Once-through vapor generator |
JPS5134521B1 (en) * | 1970-11-20 | 1976-09-27 | ||
US4312303A (en) * | 1979-09-25 | 1982-01-26 | Westinghouse Electric Corp. | Recirculating steam generator with super heat |
US4422899A (en) * | 1980-01-24 | 1983-12-27 | Rintekno Oy | Apparatus and method for the vaporization of liquid |
US20070187079A1 (en) * | 2006-01-31 | 2007-08-16 | Sang Baek Shin | Baffle structure improving heat transfer efficiency of reactor or heat exchanger |
CN104613452A (en) * | 2014-12-18 | 2015-05-13 | 方萌 | Large-discharge-capacity steam supply equipment |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635287A (en) * | 1970-03-02 | 1972-01-18 | Babcock & Wilcox Co | Once-through vapor generator |
US3653363A (en) * | 1970-12-10 | 1972-04-04 | Combustion Eng | Downcomer flow control |
GB1524815A (en) * | 1974-08-23 | 1978-09-13 | Babcock & Wilcox Ltd | Heat exchangers |
SE430716B (en) * | 1982-04-22 | 1983-12-05 | Stal Laval Apparat Ab | MELLANOVERHETTARE |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB536592A (en) * | 1939-11-18 | 1941-05-20 | Ervin George Bailey | Improvements in or relating to tubulous vapour generators |
US2336832A (en) * | 1941-11-01 | 1943-12-14 | Badenhausen John Phillips | Steam generator |
FR1140383A (en) * | 1954-10-09 | 1957-07-19 | Tno | Process of heat transfer to a liquid |
US2862479A (en) * | 1956-04-06 | 1958-12-02 | Babcock & Wilcox Co | Vapor generating unit |
US3076444A (en) * | 1962-01-31 | 1963-02-05 | Foster Wheeler Corp | Vapor generators |
US3088494A (en) * | 1959-12-28 | 1963-05-07 | Babcock & Wilcox Co | Ribbed vapor generating tubes |
US3129697A (en) * | 1959-01-14 | 1964-04-21 | Trepaud Georges | Heat exchanger and boiler, particularly to use the heat given off by nuclear reactors |
US3179573A (en) * | 1962-02-08 | 1965-04-20 | Commissariat Energie Atomique | Cell structure for heat exchanger |
US3250258A (en) * | 1964-06-29 | 1966-05-10 | Foster Wheeler Corp | Straight tubes in a vertical shell steam generator |
-
1965
- 1965-01-18 US US42603565 patent/US3385268A/en not_active Expired - Lifetime
-
1966
- 1966-01-15 DE DE19661526996 patent/DE1526996A1/en active Pending
- 1966-01-17 FR FR46096A patent/FR1463672A/en not_active Expired
- 1966-01-17 SE SE58166A patent/SE315601B/xx unknown
- 1966-01-18 BE BE675283D patent/BE675283A/xx unknown
- 1966-01-18 GB GB225066A patent/GB1090485A/en not_active Expired
- 1966-01-18 NL NL6600647A patent/NL6600647A/xx unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB536592A (en) * | 1939-11-18 | 1941-05-20 | Ervin George Bailey | Improvements in or relating to tubulous vapour generators |
US2336832A (en) * | 1941-11-01 | 1943-12-14 | Badenhausen John Phillips | Steam generator |
FR1140383A (en) * | 1954-10-09 | 1957-07-19 | Tno | Process of heat transfer to a liquid |
US2862479A (en) * | 1956-04-06 | 1958-12-02 | Babcock & Wilcox Co | Vapor generating unit |
US3129697A (en) * | 1959-01-14 | 1964-04-21 | Trepaud Georges | Heat exchanger and boiler, particularly to use the heat given off by nuclear reactors |
US3088494A (en) * | 1959-12-28 | 1963-05-07 | Babcock & Wilcox Co | Ribbed vapor generating tubes |
US3076444A (en) * | 1962-01-31 | 1963-02-05 | Foster Wheeler Corp | Vapor generators |
US3179573A (en) * | 1962-02-08 | 1965-04-20 | Commissariat Energie Atomique | Cell structure for heat exchanger |
US3250258A (en) * | 1964-06-29 | 1966-05-10 | Foster Wheeler Corp | Straight tubes in a vertical shell steam generator |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3576178A (en) * | 1969-12-24 | 1971-04-27 | Combustion Eng | Shell-and-tube steam generator with economizer |
US3724532A (en) * | 1970-03-02 | 1973-04-03 | Babcock & Wilcox Co | Once-through vapor generator |
JPS5134521B1 (en) * | 1970-11-20 | 1976-09-27 | ||
US3661123A (en) * | 1970-12-31 | 1972-05-09 | Combustion Eng | Steam generator feedwater preheater |
US4312303A (en) * | 1979-09-25 | 1982-01-26 | Westinghouse Electric Corp. | Recirculating steam generator with super heat |
US4422899A (en) * | 1980-01-24 | 1983-12-27 | Rintekno Oy | Apparatus and method for the vaporization of liquid |
US20070187079A1 (en) * | 2006-01-31 | 2007-08-16 | Sang Baek Shin | Baffle structure improving heat transfer efficiency of reactor or heat exchanger |
US8043583B2 (en) * | 2006-01-31 | 2011-10-25 | Lg Chem, Ltd. | Baffle structure improving heat transfer efficiency of reactor or heat exchanger |
CN104613452A (en) * | 2014-12-18 | 2015-05-13 | 方萌 | Large-discharge-capacity steam supply equipment |
Also Published As
Publication number | Publication date |
---|---|
SE315601B (en) | 1969-10-06 |
BE675283A (en) | 1966-05-16 |
NL6600647A (en) | 1966-07-19 |
GB1090485A (en) | 1967-11-08 |
FR1463672A (en) | 1966-12-23 |
DE1526996A1 (en) | 1970-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3385268A (en) | Method of operating a once-through vapor generator | |
US3147743A (en) | Vertical recirculating type vapor generator | |
US3437077A (en) | Once-through vapor generator | |
US3635287A (en) | Once-through vapor generator | |
US3942481A (en) | Blowdown arrangement | |
US3447509A (en) | Once-through vapor generator | |
US3483848A (en) | Vapor generator with integral economizer | |
US3114353A (en) | Vapor generating unit and method of operating same | |
US3245881A (en) | Integral boiler nuclear reactor | |
US3097630A (en) | Steam generator | |
US3807365A (en) | U-tube steam generator with segment superheater | |
US3545411A (en) | Saturated-steam generator | |
US3547084A (en) | Vapor generator with integral economizer | |
US3545412A (en) | Molten salt operated generator-superheater using floating head design | |
US3267907A (en) | Steam generator | |
US3683866A (en) | Superheating steam generator | |
US3719172A (en) | Boiler systems of the water tube type | |
GB2160629A (en) | Hybrid preheat/recirculating steam generator | |
US3576178A (en) | Shell-and-tube steam generator with economizer | |
US3613781A (en) | Bayonet tube bank vapor generator | |
US3394051A (en) | Integral nuclear reactor-steam generator arrangement | |
US4331105A (en) | Forced-flow once-through boiler for variable supercritical pressure operation | |
US3724532A (en) | Once-through vapor generator | |
US3315645A (en) | Hot water boiler | |
JPH06137501A (en) | Supercritical variable pressure operating steam generator |