US3383033A - Sealing means for axial flow compressor discharge - Google Patents

Sealing means for axial flow compressor discharge Download PDF

Info

Publication number
US3383033A
US3383033A US545611A US54561166A US3383033A US 3383033 A US3383033 A US 3383033A US 545611 A US545611 A US 545611A US 54561166 A US54561166 A US 54561166A US 3383033 A US3383033 A US 3383033A
Authority
US
United States
Prior art keywords
ring member
rotor
compressor
sealing
sealing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US545611A
Other languages
English (en)
Inventor
Clinton C Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US545611A priority Critical patent/US3383033A/en
Priority to DE19661628263 priority patent/DE1628263A1/de
Priority to FR90568A priority patent/FR1516087A/fr
Priority to GB3678/67A priority patent/GB1138272A/en
Priority to BE693208D priority patent/BE693208A/xx
Application granted granted Critical
Publication of US3383033A publication Critical patent/US3383033A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/342Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with means for feeding fluid directly to the face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3436Pressing means
    • F16J15/3448Pressing means the pressing force resulting from fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention concerns an axial flow compressor having a rotor, an outer casing forming an annular flow path for pressurized gases, an inner frame forming with the outer casing a continuation of the flow path, and fluid biased axially movable seal means between the frame and the rotor.
  • the present invention relates to improvements in axial flow compressors and more particularly to improvements in providing improved sealing means between the usual rotor thereof and adjacent stationary frame members at the discharge of the compressor.
  • a compressor rotor defines the inner surface of an annular flow path which is defined by a relatively stationary frame member in directing the presurized air to a point of ultimate use.
  • the amount of air lost at the juncture of the rotor and frame member is an important factor to the efficiency of axial flow compressors.
  • the object of the invention is, therefore, to provide an improved, reliable, highly effective, and economical seal between the rotor of an axial flow compressor and the adjacent frame member which define a flow path for the pressurized air discharged from the compressor.
  • sealing means characterized by the provision of an axially movable ring member adjacent the rear end of the compressor rotor.
  • Primary sealing means are formed on the ring and rotor and comprise a radial sealing surface and an annular tooth projecting theretowards which coact to prevent leakage of pressurized air.
  • Air bearing means spaced radially inwardly from the primary sealing means are also formed by cooperative portions of the ring member and rotor. The air bearing means are effective when the ring member and rotor are in close proximity to maintain an accurate, closely spaced rleation of the primary sealing means, whereby the sealing means are highly effective.
  • the ring member, the compressor rotor, and the adjacent frame form an annular chamber opening into the flow path for pressurized air discharged from the compressor.
  • the radial area of the ring member which is exposed to this chamber is sufficiently great to provide a yieldable force which displaces the ring member into close proximity with the compressor rotor when the pressure of the air discharged from the compressor reaches ice ing means to thus maintain a highly effective seal at the juncture of the inner frame and rotor.
  • vent the area between the primary sealing means and the air bearing to a substantially lower pressure, usually atmospheric, in order to obtain greater effectiveness of the air bearing.
  • secondary. sealing means he formed on the ring member and rotor and comprise a cylindrical surface; and a tooth projecting radially theretowards.
  • the ring member be configured such that the summation of torque forces about the center of gravity of the longitudinal half section thereof, resulting from pressurization of the annular chamber which is defined thereby, be substantially zero.
  • the summation of torque forces about the center of gravity of the longitudinal half section thereof, resulting from pressurization of the annular chamber which is defined thereby be substantially zero.
  • FIGURE 1 is a diagrammatic view of a gas turbine engine having an axial flow compressor and sealing means therefor which embody the present invention
  • FIGURE 2 is an enlarged longitudinal section of the discharge portion of the axial flow compressor seen in FIGURE 1, under a condition of relatively high discharge pressure;
  • FIGURE 3 is a section similar to FIGURE 2 illustrating a condition of relatively low compressor discharge pressure
  • FIGURE 4 is a section taken on line IVIV in FIGURE 3.
  • FIGURE 5 is a longitudinal section through the discharge portion of an axial flow compressor illustrating sealing means embodying an alternate embodiment of the invention.
  • FIGURE 1 schematically shows a gas turbine engine 10 in which the present invention finds particular utility.
  • the engine 10 comprises a compressor 12, a combustor 14, a turbine 16, and a discharge nozzle 18.
  • the compressor 12 includes a rotor 20 having a plurality of blades 22 arranged in stages along its length and cooperating with stator blades 24 extending inwardly from an outer casing 28, thereby forming an axial flow compressor for delivering pressurized air to support combustion in the combustor 14.
  • the hot gas stream thus generated drives the turbine 16 to derive power for rotating the compressor rotor 20, being connected thereto by a hollow shaft 30. After passing through the turbine 16, the hot gas stream may be discharged through the nozzle 18 to provide a propulsive force in the operation of aircraft.
  • the compressor casing 28, in combination with the rotor 20, defines an annular flow path leading to the combustor 14.
  • This annular flow path, beyond the compressor 12, is defined by an extension of the casing 28 and a frame member 32 which is generally aligned with the rear end of the rotor 20.
  • the rear end of the compressor rotor 20 (FIGURES 24) comprises a disc 34 to which is secured an annular sealing plate 36 means of bolts 38.
  • the stationary frame 32 is compositely formed by a frame member 40 which has a lip 42 substantially aligned with the outer circumference of the rear end of the rotor 20 and is closely spaced therefrom to provide a smooth flow path for pressurized air discharged from the compressor.
  • Bolts 44 join this compositely formed frame structure.
  • a ring member or seal body 46 is guided for movement toward and away from the rotor 20 by cooperating flanges 48 and 50.
  • a circumferential labyrinth sealing tooth 52 projects from the ring member 46 towards the sealing plate 36.
  • the ring member 46 is also provided with a radial flange 54 which terminates in a labyrinth sealing tooth 56.
  • a flange 58 projects from the sealing plate 36 and overlies the tooth 56 in all positions of the ring member 46.
  • the rotor 20, the ring member 46, and the frame member 40 define an annular chamber 60 which opens into the flow path of air discharged from the compressor 12, and therefore, the chamber 60 is pressurized to substantially the same value as the compressor discharge pressure.
  • a split ring 62 provides a seal for the chamber 60 between the axially movable ring member 46 and the frame member 40, being maintained in sealing engagement therewith by pressurization of chamber 60. It will be noted that the contact area of ring 62 engaging the frame 40 and ring member 46 is relatively small in order to minimize frictional drag on the latter as it is displaced toward and away from the rotor 20, as later described.
  • a highly effective compressor discharge seal is provided by the labyrinth tooth 52 which is closely spaced from the plate 36, in the order of .001 inch.
  • a force derived from the compressor discharge air yieldingly urges the ring member 46 towards the sealing plate 36 and the close spacing of the labyrinth sealing tooth 52 is maintained by an air bearing 63 between the ring member 46 and plate 36.
  • the ring member 46 thus can float and accommodate, Within limits, variations in the axial position of the compressor rotor 20,
  • Expansible chamber means are shown in FIGURES 2-4 for obtaining the force urging the ring member toward the plate 36.
  • These expansible chamber means comprise a plurality of pistons 64 which are slidable axially in the ring member 46 with their outer ends bearing against the frame member 40. Passageways 66 lead from the annular chamber 60 to chambers 68 in which the pistons 44 are slidable.
  • the pistons are provided with radial holes 70 so that pressurized air leaking therethrough will minimize friction to facilitate displacement of the ring member 46.
  • the air bearing 63 is preferably externally pressurized by the provision of passageways 72 which direct pressurized air from the chambers 68 between the opposed surfaces of the ring member 46 and sealing plate 36 which comprise the air bearing. It is also preferable that the area between the air bearing and the labyrinth sealing tooth 52 be vented to a lower pressure, usually atmospheric, for most effective air bearing operation. To this end a counter bored clearance hole 74 opens into the area between the air bearing and the sealing tooth 52 so that air from this area may be vented through the ring member 46 and then through holes 76 in the frame 40 to the opposite side thereof which is at atmospheric pressure or substantially so.
  • the y'ieldable force provided by the pistons 64 in combination with the described air bearing, maintains the desired spacing of the labyrinth sealing tooth 52 and a highly effective sealing action regardless of any variations in the axial position of the compressor rotor 20.
  • the present seal has the further benefit of being highly effective over a wide range of compressor discharge pressures. This results from the fact that there is no substan tial twisting moment on the ring member. More specifically there is no twisting moment on the illustrated, longitudinal half section of the ring member. Thus, it will be evident that the effective force vector F of the air bearing 63 and the effective force vector F of the expansible chambers on the ring member are equal and opposite, with no resultant twisting or torque force on the ring member. Further, the radially inward force exerted on the outer surface of the ring member 46 which defines the chamber 60 is distributed from the tooth 52 to the point of engagement of the sealing ring 62 therewith.
  • the effective radial force vector F passes through the center of gravity cg of the ring member 46 so that there is no resultant twisting force therefrom.
  • the air pressure forces on opposite sides of the flange 54 are equal and opposite and consequently there is no resultant effective force vector in an axial direction.
  • the described air pressure forces are the only forces of significance which could tend to deform the ring member 46 by twisting and result in a change in the orientation of the end face of the tooth 52 relative to the sealing plate 36.
  • the end face of the tooth 52 may be accurately machined to provide an effective sealing action over the full range of compressor discharge pressures.
  • means are provided for yieldingly urging the ring member in spaced relation therefrom. These means comprise a plurality of springs 78 which are coiled about bolts 80.
  • the outer set of bolts 80 extend through the counter bored clearance holes 74, pass through the frame 40, and have nuts 82 threaded thereon to adjust the force exerted by the springs 78 on the ring member 46.
  • the inner set of bolts 80 similarly pass through the ring member 46 and frame 40 and are likewise provided with adjusting nuts 82.
  • the ring member 46 When operation of the engine 10' is initiated, the ring member 46 is maintained in spaced relation from the rotor 20 by the springs 78. As compressor discharge pressure builds up there is a pressure increase in the annular chamber 60 due to the sealing action of the tooth 56. This develops a pressure differential on opposite sides of the flange 54 with a resultant force tending to displace the ring member to its operative position contiguous with the sealing plate 36. Simultaneously there is a pressure increase in the chambers 68 which also tends to develop a force displacing the ring member to its operative position wherein the tooth 52 becomes the primary sealing means, as above described.
  • the portion of the ring member 46 which forms a part of the air bearing 63 is surfaced with a layer 84 of sacrificial material, such as a low melting point metal alloy.
  • a layer 84 of sacrificial material such as a low melting point metal alloy.
  • coils of springs 78 are arranged so that their solid heights will serve as a positive limit to displacement of the ring member 46 towards the rotor 20 so that engagement of the substrate to which the layer 84 is bonded with the plate 36 is prevented.
  • FIGURE illustrates an alternate embodiment of the invention wherein a different form of ring member 46' is provided with a primary sealing tooth 52 which is arranged to cooperate with the sealing plate 36 which is mounted on the compressor 20, as before described.
  • the ring member 46 likewise has a secondary sealing tooth 56, projecting from a radial flange 54 which cooperaates with the sealing plate flange 58.
  • the annular chamber 60 is again defined by the rotor 20, a modified frame member 40, and the ring member 46'.
  • This chamber is further provided with a sealing ring 62 which seals the chamber 60 at the juncture of the frame 40 and ring member 46' while permitting the ring member 46' to be displaced toward and away from the compressor rotor 20.
  • the sealing ring 62 is again relieved so that frictional forces are minimized to facilitate such displacement of the ring member 46'.
  • a garter spring 83 and a plurality of compression springs 85 are provided to insure effective sealing by the split ring 62' when the pressure in chamber 60 is relatively low.
  • Passageways 86 extend from the chamber 60 to passageways 88 which direct pressurized air between the opposed surfaces of the ring member 46' and sealing plate 36 to provide an air hearing, as before, which accurately spaces the sealing tooth 52 from the sealing plate 36 and thus maintains a highly efficient sealing action.
  • Angularly spaced passageways 90 vent the area between the air bearing 63 and the sealing tooth 52 to atmosphere for optimum sealing operation.
  • the primary difference in the present embodiment is that the expansible chamber means have been eliminated in utilizing the compressor discharge pressure to yieldably maintain the ring member in a position where the air hearing accurately positions it.
  • T 0 this end the ring member 46 is configured so that there is a pressure differential on opposite sides of the radial flange 54' due to the location of the primary sealing tooth 52.
  • F effective force which displaces and yieldably maintains the ring member 46 in its operative position wherein the sealing tooth 52 is closely spaced from the plate 36.
  • This end is similarly achieved by a balance of the effective air pressure forces on the longitudinal half section of the ring member 46' as illustrated in FIGURE 5.
  • the axial force vector F produces a counterclockwise turning moment about the center of gravity C.G., on this longitudinal half section.
  • the effective force vector F of the air bearing likewise produces a counterclockwise torque about the center of gravity.
  • means are provided for retracking the ring member 46 from the compressor rotor 20 when compressor discharge pressure falls below a given value.
  • studs 92 project through the frame member 40' and have springs 94 coiled there-abouts and confined by nuts 96 so that there will be no contact between the ring member 46 and the rotor 20 at low pressure levels.
  • an axial flow compressor having a rotor and an outer casing forming an annular flow path for pressurized gas to be discharged therefrom, an inner stationary frame aligned with and adjacent the dischage end of said rotor and forming, in combination with said casing, a continuation of said flow path,
  • sealing means for preventing, or at least minimizing
  • said sealing means comprising, an axially movable ring member, primary sealing means respectively formed on said ring and rotor and comprising a radial sealing surface and an annular tooth projecting towards said surface,
  • air bearing means spaced radially inwardly from said primary sealing means and formed by cooperative portion on said rotor and said ring member, said air bearing means being effective when said ring and rotor are in close proximity to maintain an accurate, closely spaced relation of said primary sealing means,
  • the air bearing means may accurately control the spacing between said tooth and said radial sealing surface and thus maintain a highly effective seal at the juncture of the inner frame and rotor.
  • the air bearing means is externally pressurized by way of passageways extending thereto through said ring, from said chamber.
  • secondary sealing means are respectively formed on said ring member and rotor and comprise a cylindrical surface and a tooth projecting radially towards said surface, the axial extent of said cylindrical surface being suflicient to form a seal with said radially projecting tooth throughout the range of axial movement of the ring member.
  • expansible chamber means are provided between said ring and said frame and passageway means connect said expansible chamber means with said annular chamber whereby said expansible chamber means is pressurized by air discharged from the compressor to provide the force which is effective to displace said ring to its position wherein the air bearing means accurately positions the primary sealing means.
  • the ring member has a plurality of axially disposed pistons slidable therein and angularly spaced from one another around the ring member, the outer ends of said pistons engaging said frame member and the inner ends of said pistons defining expansible chambers,
  • passageway means connect said expansible chambers with said annular chamber, whereby pressurization of said annular chamber and the expansible chambers will provide the force for displacing said ring member into close proximity with said rotor to render the air bearing effective in maintaining the desired spacing of the primary sealing means, and further wherein,
  • passageway means extend from said expansible chambers to said air bearing to provide external pressurization thereof from said annular chamber.
  • said ring member has a flange extending radially outwardly therefrom into said annular chamber and terminates in a labyrinth tooth
  • said rotor has a flange projecting into overlying relation with said radial flange to provide in cooperation with the tooth thereon a secondary sealing means
  • the effective force vector of the air bearing on said ring member is essentially aligned with the axes of said pistons
  • the ring member is configured so that the radially inwardly effective force vector on its outer surface defining aid annular chamber passes essentially through the center of gravity of the half section,
  • the means for urging said ring member to an axially retracted position comprise a plurality of compression springs which are compressed as the ring member is displaced towards said rotor,
  • the annular tooth of the primary sealing means is formed on said ring member
  • the portion of the air bearing means formed on said ring member is surfaced with a layer of sacrifical material bonded thereto and,
  • the solid height of the compression springs serves as a limit to displacement of the ring member towards said rotor and prevents contact between the rotor and the substrate to which said sacrificial layer is said bonded in the event of a failure of said air bearing means.
  • one of the cooperative portions of said ring member and rotor forming said air bearing means is surfaced with a layer of sacrificial material bonded thereto and means are provided for limiting displacement of the ring member towards said rotor and preventing contact therebetween with the substrate to which the sacrificial layer is bonded.
  • the ring member is configurated such that there is no substantial turning moment about the center of gravity of its longitudinal half section resulting from air pressure force-s thereon.
  • the ring member has a flange extending radially outwardly therefrom into said annular chamber and terminates in a labyrinth tooth
  • said rotor has a flange projecting into overlying relation with said radial flange to provide in cooperation with the tooth thereon a secondary sealing means
  • ring member being configured such that the radial force vector thereon resulting from pressurization of said annular chamber produces a torque thereon relative to its center of gravity which balances the torque resulting from said other effective force vectors, whereby there is no resultant twisting moment on the longitudinal half section relative to its center of gravity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
US545611A 1966-04-27 1966-04-27 Sealing means for axial flow compressor discharge Expired - Lifetime US3383033A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US545611A US3383033A (en) 1966-04-27 1966-04-27 Sealing means for axial flow compressor discharge
DE19661628263 DE1628263A1 (de) 1966-04-27 1966-12-30 Abdichtung fuer einen Axialstroemungskompressor
FR90568A FR1516087A (fr) 1966-04-27 1967-01-10 Dispositif d'étanchéité pour la décharge d'un compresseur à écoulement axial
GB3678/67A GB1138272A (en) 1966-04-27 1967-01-25 Improvements in sealing means for axial flow compressor discharge
BE693208D BE693208A (ar) 1966-04-27 1967-01-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US545611A US3383033A (en) 1966-04-27 1966-04-27 Sealing means for axial flow compressor discharge

Publications (1)

Publication Number Publication Date
US3383033A true US3383033A (en) 1968-05-14

Family

ID=24176889

Family Applications (1)

Application Number Title Priority Date Filing Date
US545611A Expired - Lifetime US3383033A (en) 1966-04-27 1966-04-27 Sealing means for axial flow compressor discharge

Country Status (5)

Country Link
US (1) US3383033A (ar)
BE (1) BE693208A (ar)
DE (1) DE1628263A1 (ar)
FR (1) FR1516087A (ar)
GB (1) GB1138272A (ar)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3501245A (en) * 1968-03-04 1970-03-17 Avco Corp Seal assemblies
US3501089A (en) * 1968-07-17 1970-03-17 Gen Electric Jet pump ejector
US3529906A (en) * 1968-10-30 1970-09-22 Westinghouse Electric Corp Static seal structure
US3549270A (en) * 1968-01-18 1970-12-22 Rolls Royce Sealing device
FR2485090A1 (fr) * 1980-05-10 1981-12-24 Rolls Royce Joint d'etancheite entre le rotor de turbine d'un moteur a turbine a gaz et la structure statique dudit moteur
FR2499198A1 (fr) * 1981-01-31 1982-08-06 Rolls Royce Joint a gaz sans contact pour pieces tournant l'une par rapport a l'autre
EP0340883A1 (en) * 1988-05-06 1989-11-08 General Electric Company High pressure seal
US5174584A (en) * 1991-07-15 1992-12-29 General Electric Company Fluid bearing face seal for gas turbine engines
US5284347A (en) * 1991-03-25 1994-02-08 General Electric Company Gas bearing sealing means
US5292138A (en) * 1992-09-21 1994-03-08 General Elecric Company Rotor to rotor split ring seal
US5311734A (en) * 1991-09-11 1994-05-17 General Electric Company System and method for improved engine cooling in conjunction with an improved gas bearing face seal assembly
US20020014743A1 (en) * 2000-07-12 2002-02-07 Xiaoqing Zheng Rotary face seal assembly
WO2003036140A1 (fr) * 2001-10-25 2003-05-01 Snecma Moteurs Joint d'etancheite a deux levres concentriques
EP1348834A2 (en) * 2002-03-26 2003-10-01 General Electric Company Aspirating face seal with axially biasing one-piece annular spring
EP1369552A2 (en) * 2002-06-06 2003-12-10 General Electric Company Structural cover for gas turbine engine bolted flanges
EP1431519A1 (en) * 2002-12-19 2004-06-23 General Electric Company Apparatus for controlling fluid leakage through gas turbine engines
US20070007730A1 (en) * 2004-05-28 2007-01-11 Garrison Glenn M Air riding seal
US20070140877A1 (en) * 2005-10-11 2007-06-21 Sanville Mark E Shutdown seal for reactor coolant pump
US20070253809A1 (en) * 2006-05-01 2007-11-01 General Electric Company Methods and apparatus for assembling gas turbine engines
US20080018054A1 (en) * 2006-07-20 2008-01-24 General Electric Company Aspirating labyrinth seal
US20080310953A1 (en) * 2007-01-26 2008-12-18 Garrison Glenn M Carbon hydrostatic face seal
US7780399B1 (en) 2006-01-12 2010-08-24 Stein Seal Company Reverse pressure double dam face seal
US20110016872A1 (en) * 2009-07-27 2011-01-27 General Electric Company Oxyfuel gas turbine system and method
US20140255156A1 (en) * 2013-03-07 2014-09-11 United Technologies Corporation Non-contacting seals for geared gas turbine engine bearing compartments
EP2871327A1 (de) * 2013-11-06 2015-05-13 MTU Aero Engines GmbH Dichtungsanordnung für eine Strömungsmaschine
US20150130138A1 (en) * 2013-11-11 2015-05-14 General Electric Company Rotary machine aspirating seal assembly and method of assembling the same
US9416674B1 (en) * 2013-05-02 2016-08-16 S&J Design Llc Floating air riding seal for a turbine
EP2401491A4 (en) * 2009-02-27 2017-09-06 Stein Seal Company Improved air riding seal
CN109505773A (zh) * 2018-12-28 2019-03-22 中国船舶重工集团公司第七0三研究所 一种氦气低压压气机整体密封结构
US10329938B2 (en) * 2017-05-31 2019-06-25 General Electric Company Aspirating face seal starter tooth abradable pocket
US10359117B2 (en) * 2017-03-06 2019-07-23 General Electric Company Aspirating face seal with non-coiled retraction springs
US10428673B2 (en) 2016-05-02 2019-10-01 General Electric Company Aspirating face seal assembly and a method of operating the same
US10443443B2 (en) 2013-03-07 2019-10-15 United Technologies Corporation Non-contacting seals for geared gas turbine engine bearing compartments
WO2020106719A3 (en) * 2018-11-19 2020-07-02 General Electric Company Seal assembly for a turbo machine
US10711629B2 (en) 2017-09-20 2020-07-14 Generl Electric Company Method of clearance control for an interdigitated turbine engine
US11028718B2 (en) 2017-09-20 2021-06-08 General Electric Company Seal assembly for counter rotating turbine assembly
US11041398B2 (en) * 2018-06-08 2021-06-22 Pratt & Whitney Canada Corp. Controlled gap seal with surface discontinuities
CN114215789A (zh) * 2021-12-06 2022-03-22 中国航发沈阳发动机研究所 一种双层机匣的引气结构
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326299A1 (de) * 1983-07-21 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Spaltausbildung zwischen einem feststehenden und einem sich drehenden teil
US7797941B2 (en) 2007-10-26 2010-09-21 United Technologies Corporation Gas turbine engine systems involving hydrostatic face seals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR716811A (fr) * 1931-05-08 1931-12-28 Henri Et Maurice Farman Soc Perfectionnements aux compresseurs centrifuges entraînés à vitesse élevée
US2326824A (en) * 1940-11-16 1943-08-17 Wright Aeronautical Corp Oil seal
US2686657A (en) * 1947-08-02 1954-08-17 United Aircraft Corp Diaphragm seal for turbines
US2925290A (en) * 1956-05-16 1960-02-16 Garrett Corp Self-equalizing seal for a rotating shaft
US3118593A (en) * 1961-05-03 1964-01-21 Rolls Royce Fluid flow machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR716811A (fr) * 1931-05-08 1931-12-28 Henri Et Maurice Farman Soc Perfectionnements aux compresseurs centrifuges entraînés à vitesse élevée
US2326824A (en) * 1940-11-16 1943-08-17 Wright Aeronautical Corp Oil seal
US2686657A (en) * 1947-08-02 1954-08-17 United Aircraft Corp Diaphragm seal for turbines
US2925290A (en) * 1956-05-16 1960-02-16 Garrett Corp Self-equalizing seal for a rotating shaft
US3118593A (en) * 1961-05-03 1964-01-21 Rolls Royce Fluid flow machine

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549270A (en) * 1968-01-18 1970-12-22 Rolls Royce Sealing device
US3501245A (en) * 1968-03-04 1970-03-17 Avco Corp Seal assemblies
US3501089A (en) * 1968-07-17 1970-03-17 Gen Electric Jet pump ejector
US3529906A (en) * 1968-10-30 1970-09-22 Westinghouse Electric Corp Static seal structure
FR2485090A1 (fr) * 1980-05-10 1981-12-24 Rolls Royce Joint d'etancheite entre le rotor de turbine d'un moteur a turbine a gaz et la structure statique dudit moteur
FR2499198A1 (fr) * 1981-01-31 1982-08-06 Rolls Royce Joint a gaz sans contact pour pieces tournant l'une par rapport a l'autre
EP0340883A1 (en) * 1988-05-06 1989-11-08 General Electric Company High pressure seal
US4916892A (en) * 1988-05-06 1990-04-17 General Electric Company High pressure seal
US5284347A (en) * 1991-03-25 1994-02-08 General Electric Company Gas bearing sealing means
US5174584A (en) * 1991-07-15 1992-12-29 General Electric Company Fluid bearing face seal for gas turbine engines
US5311734A (en) * 1991-09-11 1994-05-17 General Electric Company System and method for improved engine cooling in conjunction with an improved gas bearing face seal assembly
US5292138A (en) * 1992-09-21 1994-03-08 General Elecric Company Rotor to rotor split ring seal
US20020014743A1 (en) * 2000-07-12 2002-02-07 Xiaoqing Zheng Rotary face seal assembly
WO2002004844A3 (en) * 2000-07-12 2002-07-11 Perkinelmer Fluid Sciences Rotary face seal assembly
US7044470B2 (en) 2000-07-12 2006-05-16 Perkinelmer, Inc. Rotary face seal assembly
WO2003036140A1 (fr) * 2001-10-25 2003-05-01 Snecma Moteurs Joint d'etancheite a deux levres concentriques
FR2831637A1 (fr) * 2001-10-25 2003-05-02 Snecma Moteurs Joint d'etancheite a deux levres concentriques
US20040239039A1 (en) * 2001-10-25 2004-12-02 Daniel Plona Gasket with two concentric lips
EP1306591A3 (fr) * 2001-10-25 2004-03-17 Snecma Moteurs Joint d'étanchéité à deux lèvres concentriques
US7086649B2 (en) 2001-10-25 2006-08-08 Snecma Moteurs Gasket with two concentric lips
EP1348834A2 (en) * 2002-03-26 2003-10-01 General Electric Company Aspirating face seal with axially biasing one-piece annular spring
EP1348834A3 (en) * 2002-03-26 2005-06-22 General Electric Company Aspirating face seal with axially biasing one-piece annular spring
EP1369552A2 (en) * 2002-06-06 2003-12-10 General Electric Company Structural cover for gas turbine engine bolted flanges
EP1369552A3 (en) * 2002-06-06 2005-11-16 General Electric Company Structural cover for gas turbine engine bolted flanges
US6932567B2 (en) 2002-12-19 2005-08-23 General Electric Company Method and apparatus for controlling fluid leakage through gas turbine engines
US20040120807A1 (en) * 2002-12-19 2004-06-24 Albers Robert Joseph Method and apparatus for controlling fluid leakage through gas turbine engines
EP1431519A1 (en) * 2002-12-19 2004-06-23 General Electric Company Apparatus for controlling fluid leakage through gas turbine engines
US20070007730A1 (en) * 2004-05-28 2007-01-11 Garrison Glenn M Air riding seal
US20070235946A9 (en) * 2004-05-28 2007-10-11 Garrison Glenn M Air riding seal
US20070140877A1 (en) * 2005-10-11 2007-06-21 Sanville Mark E Shutdown seal for reactor coolant pump
US7780399B1 (en) 2006-01-12 2010-08-24 Stein Seal Company Reverse pressure double dam face seal
US20070253809A1 (en) * 2006-05-01 2007-11-01 General Electric Company Methods and apparatus for assembling gas turbine engines
US20080018054A1 (en) * 2006-07-20 2008-01-24 General Electric Company Aspirating labyrinth seal
US8206083B2 (en) 2007-01-26 2012-06-26 Stein Seal Company Carbon hydrostatic face seal
US20080310953A1 (en) * 2007-01-26 2008-12-18 Garrison Glenn M Carbon hydrostatic face seal
EP2401491A4 (en) * 2009-02-27 2017-09-06 Stein Seal Company Improved air riding seal
US8479488B2 (en) * 2009-07-27 2013-07-09 General Electric Company Oxyfuel gas turbine system and method
CN101968007A (zh) * 2009-07-27 2011-02-09 通用电气公司 氧燃料燃气涡轮机系统和方法
US20110016872A1 (en) * 2009-07-27 2011-01-27 General Electric Company Oxyfuel gas turbine system and method
US10443443B2 (en) 2013-03-07 2019-10-15 United Technologies Corporation Non-contacting seals for geared gas turbine engine bearing compartments
US20140255156A1 (en) * 2013-03-07 2014-09-11 United Technologies Corporation Non-contacting seals for geared gas turbine engine bearing compartments
US10352195B2 (en) 2013-03-07 2019-07-16 United Technologies Corporation Non-contacting seals for geared gas turbine engine bearing compartments
US9574459B2 (en) * 2013-03-07 2017-02-21 United Technologies Corporation Non-contacting seals for geared gas turbine engine bearing compartments
US9416674B1 (en) * 2013-05-02 2016-08-16 S&J Design Llc Floating air riding seal for a turbine
EP2871327A1 (de) * 2013-11-06 2015-05-13 MTU Aero Engines GmbH Dichtungsanordnung für eine Strömungsmaschine
US10047619B2 (en) 2013-11-06 2018-08-14 MTU Aero Engines AG Seal configuration for a turbo machine
US9291067B2 (en) * 2013-11-11 2016-03-22 General Electric Company Rotary machine aspirating seal assembly and method of assembling the same
US20150130138A1 (en) * 2013-11-11 2015-05-14 General Electric Company Rotary machine aspirating seal assembly and method of assembling the same
US10428673B2 (en) 2016-05-02 2019-10-01 General Electric Company Aspirating face seal assembly and a method of operating the same
US10359117B2 (en) * 2017-03-06 2019-07-23 General Electric Company Aspirating face seal with non-coiled retraction springs
US10329938B2 (en) * 2017-05-31 2019-06-25 General Electric Company Aspirating face seal starter tooth abradable pocket
US10711629B2 (en) 2017-09-20 2020-07-14 Generl Electric Company Method of clearance control for an interdigitated turbine engine
US11028718B2 (en) 2017-09-20 2021-06-08 General Electric Company Seal assembly for counter rotating turbine assembly
US11041398B2 (en) * 2018-06-08 2021-06-22 Pratt & Whitney Canada Corp. Controlled gap seal with surface discontinuities
WO2020106719A3 (en) * 2018-11-19 2020-07-02 General Electric Company Seal assembly for a turbo machine
US11118469B2 (en) 2018-11-19 2021-09-14 General Electric Company Seal assembly for a turbo machine
CN109505773A (zh) * 2018-12-28 2019-03-22 中国船舶重工集团公司第七0三研究所 一种氦气低压压气机整体密封结构
CN109505773B (zh) * 2018-12-28 2023-09-08 中国船舶重工集团公司第七0三研究所 一种氦气低压压气机整体密封结构
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly
CN114215789A (zh) * 2021-12-06 2022-03-22 中国航发沈阳发动机研究所 一种双层机匣的引气结构

Also Published As

Publication number Publication date
DE1628263A1 (de) 1970-05-06
FR1516087A (fr) 1968-03-08
GB1138272A (en) 1968-12-27
BE693208A (ar) 1967-07-03

Similar Documents

Publication Publication Date Title
US3383033A (en) Sealing means for axial flow compressor discharge
US2976013A (en) Turbine construction
US4744721A (en) Turbopump sealing device
US3527053A (en) Gas turbine engine with improved gas seal
US2936715A (en) Seal assembly
US2925290A (en) Self-equalizing seal for a rotating shaft
US5078410A (en) Centrifugal seal
US3410565A (en) Centrifugal and face contact seal
US2963268A (en) Pressurized seal
US2948555A (en) Controlled gap seal
US5954341A (en) Bellows seal with drive collar for reverse pressure capability
US1932214A (en) Sealing device
JP3936911B2 (ja) 水力ターボ機械用のシール装置
JPH07504485A (ja) パッキングセグメント重量荷重を消去する重力スプリングを有する流体タービン用の引込み式セグメントパッキングリング
US2984507A (en) Baffle to protect axial contact seal
US3062554A (en) Rotary shaft seal
US20090033037A1 (en) Seal assembly
US3122399A (en) Self-balancing bearing construction
US3096985A (en) Empergency shaft sealing device
US20110229311A1 (en) Seal assembly
JPS6125913B2 (ar)
GB931904A (en) Fluid flow machine
CN108591473B (zh) 机械密封装置
US4989997A (en) Radial load reducing device, and sliding bearing and screw compressor using the device
US4088329A (en) Controlled aperture seal with drag pad