US3374292A - Phosphono carboxamides - Google Patents

Phosphono carboxamides Download PDF

Info

Publication number
US3374292A
US3374292A US646119A US64611967A US3374292A US 3374292 A US3374292 A US 3374292A US 646119 A US646119 A US 646119A US 64611967 A US64611967 A US 64611967A US 3374292 A US3374292 A US 3374292A
Authority
US
United States
Prior art keywords
solution
mixture
added
propionamide
hydroxymethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US646119A
Inventor
Zahir Sheik Abdul-Cader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Schweiz AG
Original Assignee
Ciba AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba AG filed Critical Ciba AG
Application granted granted Critical
Publication of US3374292A publication Critical patent/US3374292A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • D06M15/43Amino-aldehyde resins modified by phosphorus compounds
    • D06M15/432Amino-aldehyde resins modified by phosphorus compounds by phosphonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657181Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and, at least, one ring oxygen atom being part of a (thio)phosphonic acid derivative
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/288Phosphonic or phosphonous acids or derivatives thereof

Definitions

  • This invention relates to substituted phosphono-amides, to processes for their production, to compositions containing such compounds, and to the use of such compositions to impart flame-resistance to cellulose and cellulosecontaining materials.
  • a known single-bath process involving a metal oxide entails padding a dispersion of a chlorinated hydrocarbon and finely divided antimony oxide on to the fabric and heating to render the finish wash-proof.
  • the active agent in this case is antimony oxychloride which is formed by the interaction of the oxide with the hydrogen chloride liberated from the chlorinated hydrocarbon when flame temperatures are approached.
  • the handle of the finished fabric is deleteriously affected and this is especially so with fine, closely-woven fabrics.
  • Esterification of cellulosic materials with, for instance, diammonium hydrogen orthophosphate has also been used to impart flame resistance. It has the disadvantage that the treated-material is susceptible to ion-exchange in hard water or soap solutions, the inactive calcium or sodium salt being formed. The flame resistance must then be regenerated by steeping the material in ammonium chloride solution.
  • the present invention provides a new class of substituted phosphono-amides which can be used in conjunction with aminoplasts to confer flame-resistance on cellulosic materials by a process which avoids some or all of the disadvantages of known processes.
  • the new substituted phosphono-amides are those of the general Formula I:
  • R represents hydrogen, allyl or alkyl of up to six carbon atoms
  • n is either 1, when X represents hydrogen, methyl or a CH CON-HCH OR group, or zero, when X represents a -CH CONHCH OR group
  • R and R either each represent the same or different alkyl, alkenyl, cycloalkyl, cycloalkenyl, alkoxyalkyl, alkoxyalkenyl, aryl, alkoxyaryl, or alkylene residues, which may be substituted by one or more chlorine and/or bromine atoms, the terminal valency of any such alkylene residue being linked to a group of Formula II:
  • R and R together represent, a polymethylene chain containing from two to six carbon atoms which may be linked to a second polymethylene chain contain ing two to six carbon atoms, via a spiro carbon, which polymethylene chainsmay be substituted by one or more chlorine and/or bromine atoms and/or methyl groups, the terminal valencies of the second polymethylene chain, if such be present, being linked to a group of Formula II.
  • Preferred compounds of Formula I are those wherein R and R either represent identicalalkyl groups, particularly those; containing up to four carbon atoms, or identical alkenyl or alkylene groups, particularly those containing from two to four carbon atoms; or together represent a polymethylene group containing from two to sixcarbon atoms. Also preferred are those compounds wherein R and -R together represent a polymethylene chain containing from two to three carbon atoms linked to a second such polymethylene chain via a spiro-carbon. Further preferred are those compounds of Formula I wherein each of R and R contains up to four chlorine and/ or bromine atoms.
  • preferred compounds are N-hydroxymethyl-3-(diethylphosphono) propionamide, N-hydroxymethyl-3-(diallylphosphono) propionatnide,
  • the compound of Formula VII is added to an aqueous solution of formaldehyde, the pH of the reaction mixture being maintained at or above 7.0 by the addition of an alkaline-reacting substance, suitably sodium hydroxide, and to maintain the temperature of the reaction mixture between 40 C. and 60 C.
  • an alkaline-reacting substance suitably sodium hydroxide
  • the solution may be cooled and filtered.
  • the product may be incorporated in the flameproofing compositions hereinafter described as the aqueous solution so obtained.
  • Another preferred method comprises heating a compound of Formula VII with paraformaldehyde in the presence of an alkaline-reacting substance, suitably potassium carbonate or sodium carbonate. Temperatures between about 75 C. and about 150 C., may be employed; if a solvent, such as methanol is added, reaction may be effected at lower temperatures, e.g. about 50 C.
  • an alkaline-reacting substance suitably potassium carbonate or sodium carbonate.
  • R O o R 0 H VIII wherein R and R are as hereinbefore defined except that references to the group P.(CHz)n.(['/HCONIICI.I1OR o X should be understood as references to the group o with acrylamide, methacrylamide, itaconamide, fumaramide or maleamide.
  • a non-acidic condensation catalyst preferably an alkaline catalyst.
  • the latter may be an alkali metal, an alkaline P.CH:CH2C ONHCHzOH metal amide, an alkali metal hydride, a secondary or tertiary amine, an alkali metal salt of the phosphite diesters, a quaternary ammonium hydroxide or basic ionexchange resin, and, especially, a solution or slurry of an alkali metal alkoxide in the corresponding alcohol.
  • a volatile inert solvent particularly a high-boiling liquid, may be added to moderate the reaction. Addition of a solvent is desirable but not essential, when the unsaturated amide is a solid under the reaction conditions.
  • compounds of the general Formula I wherein R denotes an alkyl group containing from one to six carbon atoms are produced by reacting a compound of Formula I in which R is hydrogen with an aliphatic monohydric alcohol containing from one to six carbon atoms, in the presence of an acid.
  • compounds of the general Formula I wherein R denotes an allyl group are produced by reacting a compound of Formula I in which R is hydrogen with allyl alcohol in the presence of an acid.
  • compounds of the general Formula I wherein R denotes an alkyl group containing from one to six carbon atoms or an allyl group are prepared by reacting a compound of Formula VIII with one to two molar proportions of an N-alkoxymethylor N allyloxymethyl 0:,fl unsaturated amide of the Formula X:
  • compositions of utility in imparting flame-resistance to cellulosic materials, which contain at least one compound of the general Formula I having one -CONHCH OR group and an aminoplast, or at least one compound of the general Formula I having two CNHCH OR groups and, optionally, an aminoplast.
  • suc-h compositions also contain a latent acid catalyst to accelerate curing of the aminoplast and cross-linking of the compound of the general Formula I having two CONHCH OR groups.
  • the latent acid catalysts which may be used are well-known in the process of curing aminoplasts on cellulosic materials, and include for example, ammonium chloride, ammonium dihydrogen orthophosphate, magnesium chloride, zinc nitrate, etc.
  • the aminoplast employed may be a condensation product of formaldehyde with urea or a derivative thereof such as ethyleneurea or, preferably, with melamine or a derivative, such as an ether of the said melamineforma-ldehyde condensation product.
  • a process for rendering cellulose-containing materials flame-resistant by treatment with such a composition followed by heating the treated material to cure the said aminoplast, and/or to effect cross-linking of the compound of general Formula I containing two CONHCH OR groups is within the scope of the invention.
  • the propionamide (1440 g.) was then added gradually to formalin (36.5%, 564 g.) at 50 C., the pH of the mixture being maintained at 7.5-8.0 by adding approximately 5 ml. of 40% caustic soda solution. After the mixture had been stirred for 2 hours it was allowed to v6 cool to room temperature and filtered. Approximately 2000 g. of an 82.0% solution of N-hydroxymethyl-3- (diethylphosphono)propionamide was obtained.
  • the infra-red spectrum of the product indicated it to be the required N-hydroxymethyl compound by the presence of the characteristic amide-II band at 1550 cm.- and a broad band at about 3350 cm. due to the hydroxyl group and NH-stretching of the secondary amide.
  • This product (271.5 g., 1.5 moles) was added in portions to 36.5% formalin solution (123 g., 1.5 moles) at 55-60 C.
  • the pH of the mixture was maintained at 8.0 by the addition of 40% caustic soda solution, about 1 m1. being required.
  • the reaction mixture was stirred for 1 hour at 60 C., cooled and filtered to give a solution of the desired product.
  • This compound (119 g.) was similarly hydroxymethylated with 36.5% formalin solution (41 g.) at 55- 60 C. and a solution of the desired productobtained, as described in Example I.
  • This intermediate (237 g.) was treated with 36.5% formalin solution (82 g.) at 5560 0., about 0.2 ml. of 40% caustic soda solution being added.
  • the reaction mixture was stirred for 2 hours at 60 C., cooled and filtered to give a solution of the desired product.
  • the intermediate (11.05 g., 0.05 mole), paraformaldehyde (1.5 g., 0.05 mole) and methanol (25 ml.) were heated at 50 C. for 1 hour, the mixture being kept at pH 8.0 by addition of a few drops of concentrated methanolic sodium methoxide solution.
  • the hydroxymethyl derivative remained as a clear, resinous liquid on evaporation of the solvent.
  • Pentaerythritol (68 g., 0.5 mole) was transesterified with diethyl phosphite (276 g., 2 moles) in the presence of concentrated ethanolic sodium ethoxide solution (5 ml.), g. of ethanol being collected over 2 hours. Unchanged diethyl phosphite was then distilled off. The viscous, colourless residue (105.2 g.) set to a glassy solid on cooling.
  • the intermediate was reacted with acrylamide (64.5 g.) in dimethyl formamide (200 ml.) as described above, 40 ml. of 4.4 M-methanolic sodium methoxide solution being added. After distilling off the solvents, 185 g. of a resinous material remained. This was then reacted with 36.5% formalin (27.2 g.) as previously described.
  • This intermediate (23.9 g., 0.1 mole), paraformaldehyde (3.1 g.) and anhydrous potassium carbonate (0.2 g.) were heated at C. for 2 hours to yield the desired product as a yellow, viscous resin.
  • Ammonia gas was passed into a mixture of the ester (687.3 g.) and methanol (3 litres) for about six hours, i.e. until the mixture was saturated. The mixture was allowed to stand at room temperature for one week, and
  • the succinamide (26.6 g.) was dissolved in methanol .(100 ml.), and paraformaldehyde (6.0 g.) was added, followed by a few drops of methanolic sodium methoxide solution to adjust the pH of the mixture to 9.0. The mixture was then stirred at 50 C. for 3 hours.
  • Product E Product F. Ammonium d ydrogen orthophospha Magnesium chloride hcxahydrate Amonium chloride EXAMPLE XIX 30 Product D was a 75% aqueous solution of a highly NNLbh th I l etherified polymethylolmelamine.
  • Product F was a commercially-available nonionic wetting agent derived from ethylene oxide.
  • Samples of a bleached cotton fabric and of a bleached spun viscose material with raised woven effects were padded to a weight increase of 80% (cotton) or 100% (spun viscose), dried at 80 C., cured for 4.5 minutes at l55160 C., and rinsed for minutes with cold soft water.
  • Product B was a conventional flame-proofing agent con- 1 0 taining ammonium pyrophosphate.
  • N-(hydroxymethyl) 3 (diethylphosphono)-propionamide was incorporated (as an aqueous solution) into decorative paper-melamine formaldehyde laminates.
  • Product C was a commercially-available water-soluble F1 ofi properties were evaluated by the Su f Condensation Product of melamine and o aldehyde. Spread of Flame Test (British Standard Specification No.
  • Bleached cotton fabric was padded with each solution 7r 476, Part I, 1953).
  • the resin employed was used as a to give a weight increase of 85%, dried at 80 C., and 0 50% aqueous solution and prepared by the reaction of melamine (1 part by weight) with formaldehyde (2.45 quirements of British Standard Specification No. 3120 parts by weight, as an aqueous solution); it was cured at (1959). 145 C.
  • Cotton flannelette was padded with an aqueous solution N'hydroxymethyl 3 (blswmmomchlommethyl' i l)phosphono)propionamide. containlng, per litre, 300 g. of N-methoxymethyl-3-(d1- Propy ethylphosphono)Propionarnide, 140 g. of Product D and 40 N'auyloxymethyl 3 (diethylp hosp homo) p mp 10H- 5 g. of ammonium chloride. The impregnated fabric was amlde' dried and then heated at 150 C. for 5 minutes. The The compound of theformula: treated fabric met the requirements of British Standard (limo 0 Specification NO. 3119 (1959). RUECHCONHCHOH EXAMPLE XXV CaHaO dmoonnomon Cotton flannelette was padded with an aqueous sol-u- The compound of the formula:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)

Description

United States Patent 3,374,292 PHOSPHONO CARBOXAMIDES Sheik Abdul-Cader Zahir, Great Shelford, Cambridge,
England, assignor to Ciba Limited, Basel, Switzerland,
a Swiss company No Drawing. Continuation of application Ser. No. 362,998, Apr. 27, 1964. This application June 14, 1967, Ser. No. 646,119
Claims priority, application Great Britain, May 3, 1963, 17,563/ 63 9 Claims. (Cl. 260-943) This application is a continuation of Ser. No. 362,998, filed Apr. 27, 1964, now abandoned.
This invention relates to substituted phosphono-amides, to processes for their production, to compositions containing such compounds, and to the use of such compositions to impart flame-resistance to cellulose and cellulosecontaining materials.
Numerous methods for treating cellulosic materials to impart flame-resistance thereto have been suggested. For example, mixtures of boric acid or ammonium dihydrogen orthophosphate with borax have been used to treat textiles, but the treatment must be repeated after each wash. Methods of preparing wash-proof finishes include precipitation of metal oxides within or on the fibre, e.g. successive precipitation of ferric oxide and a mixture of tungstic acid and stannic oxide or successive precipitation of antimony trioxide and titanium dioxide. These are multi-bath processes involving the use of strongly acidic solutions and are therefore inconvenient. Moreover, because there is a surface deposit on the textile of white metal oxide difliculties are encountered in subsequent dyeing processes.
A known single-bath process involving a metal oxide entails padding a dispersion of a chlorinated hydrocarbon and finely divided antimony oxide on to the fabric and heating to render the finish wash-proof. The active agent in this case is antimony oxychloride which is formed by the interaction of the oxide with the hydrogen chloride liberated from the chlorinated hydrocarbon when flame temperatures are approached. The handle of the finished fabric is deleteriously affected and this is especially so with fine, closely-woven fabrics.
Esterification of cellulosic materials with, for instance, diammonium hydrogen orthophosphate has also been used to impart flame resistance. It has the disadvantage that the treated-material is susceptible to ion-exchange in hard water or soap solutions, the inactive calcium or sodium salt being formed. The flame resistance must then be regenerated by steeping the material in ammonium chloride solution.
Two more recent wash-fast flame-proofing. finishes involve:
(1) Treatment of the cellulosic material with tetrakis (hydroxymethyl)phosphonium chloride in conjunction with an aminoplast. If all the components are used in the same bath the amount of phosphoniu-m salt and aminoplast which has to be absorbed in order to confer adequate flame resistance is undesirably high, causing an increase in weight of the treated fabric of 20-25%. This. massive addition can modify the handle of the fabric and, moreover, many fabrics need to be specially pretreated to render them sutficiently absorbent to take up such a large amount of proofing agent. A means of circumventing this difficulty is disclosed in British specification No. 884,785 and entails the use of a two-stage process in which the fabric is first treated with the aminoplast and then with tetrakis(hydroxymethyl)phosphonium chloride.
3,374,292 Patented Mar. 19, 1968 (2) Treatment with a mixture of tetrakis(hydroxy- .methyl)phosphonium chloride and tris(aziridin-1-yl)phos- The treating bath is prepared immediately before use by mixing aqueous solutions of the two materials. It is unstable and must be kept cool. This process is also twostage, because the fabric must be softened as an aftertreatment. Further, tris(aziridin-1-yl)phosphine oxide is very toxic and excess must be carefully washed from the fibre after the process is completed. Moreover, process workers must be protected.
The present invention provides a new class of substituted phosphono-amides which can be used in conjunction with aminoplasts to confer flame-resistance on cellulosic materials by a process which avoids some or all of the disadvantages of known processes.
The new substituted phosphono-amides are those of the general Formula I:
where R represents hydrogen, allyl or alkyl of up to six carbon atoms; n is either 1, when X represents hydrogen, methyl or a CH CON-HCH OR group, or zero, when X represents a -CH CONHCH OR group; and R and R either each represent the same or different alkyl, alkenyl, cycloalkyl, cycloalkenyl, alkoxyalkyl, alkoxyalkenyl, aryl, alkoxyaryl, or alkylene residues, which may be substituted by one or more chlorine and/or bromine atoms, the terminal valency of any such alkylene residue being linked to a group of Formula II:
the free valency of which, if only one of R and R is alkylene, is linked to a further monovalent R or R residue, or R and R together represent, a polymethylene chain containing from two to six carbon atoms which may be linked to a second polymethylene chain contain ing two to six carbon atoms, via a spiro carbon, which polymethylene chainsmay be substituted by one or more chlorine and/or bromine atoms and/or methyl groups, the terminal valencies of the second polymethylene chain, if such be present, being linked to a group of Formula II.
Preferred compounds of Formula I are those wherein R and R either represent identicalalkyl groups, particularly those; containing up to four carbon atoms, or identical alkenyl or alkylene groups, particularly those containing from two to four carbon atoms; or together represent a polymethylene group containing from two to sixcarbon atoms. Also preferred are those compounds wherein R and -R together represent a polymethylene chain containing from two to three carbon atoms linked to a second such polymethylene chain via a spiro-carbon. Further preferred are those compounds of Formula I wherein each of R and R contains up to four chlorine and/ or bromine atoms.
Specific examples of preferred compounds are N-hydroxymethyl-3-(diethylphosphono) propionamide, N-hydroxymethyl-3-(diallylphosphono) propionarnide,
N-methoxymethyl-3- (bis (2,3-dichloropropyl) phosphono) propionamide,
N-hydroxymethyl-3 (diethylphosphono) -2-methylpropionamide,
N-hydroXymethyl-3- (2,2-dimethyltrimethylenephosphono propionamide,
N-hydroxymethyl-3-(1-methyltrimethylenephosphono) propionamide,
N-hydroxymethyl-3- (bis (bromotrichloropropyl phosphono propionamide,
N-allyloxymethyl-3- (diethylphosphono propionamide,
and those of the formulae:
CzI IsO CHzCONHCHzOH III and CrIl'zO P.(|]HCONHCII20II (EH 0 CIIzC ONIICHaOH and those of the formulae:
(derived from pentaerythritol diphosphite and from ethylene glycol diphosphite respectively).
According to a feature of the invention the compounds of the general Formula I wherein R=H are produced by the reaction of compounds of the general Formula VII:
O X VII wherein R R n and X are as hereinbefore defined except that references to the group /i .(cHi)n.(l3HC0NrrorIi0R o X are to be understood as references to the group P.(CH2)n.(|3NCONH1 0 X in neutral or alkaline solution with formaldehyde or a substance liberating formaldehyde under the reaction conditions.
- It is preferred to add the compound of Formula VII to an aqueous solution of formaldehyde, the pH of the reaction mixture being maintained at or above 7.0 by the addition of an alkaline-reacting substance, suitably sodium hydroxide, and to maintain the temperature of the reaction mixture between 40 C. and 60 C. After the reaction is completed, the solution may be cooled and filtered. The product may be incorporated in the flameproofing compositions hereinafter described as the aqueous solution so obtained.
Another preferred method comprises heating a compound of Formula VII with paraformaldehyde in the presence of an alkaline-reacting substance, suitably potassium carbonate or sodium carbonate. Temperatures between about 75 C. and about 150 C., may be employed; if a solvent, such as methanol is added, reaction may be effected at lower temperatures, e.g. about 50 C.
Compounds of the general Formula VII have been described by A. N. Pudovick and D. Kh. Yarmukhametova (Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci., 1952, 657-660) and in United States Patent Nos 2,754,319 and r 4 2,754,320. They can be made by reacting a monoor diphosphite ester of Formula VIII:
R O o R 0 H VIII wherein R and R are as hereinbefore defined except that references to the group P.(CHz)n.(['/HCONIICI.I1OR o X should be understood as references to the group o with acrylamide, methacrylamide, itaconamide, fumaramide or maleamide.
It is usual to conduct the reaction in the presence of a non-acidic condensation catalyst, preferably an alkaline catalyst. The latter may be an alkali metal, an alkaline P.CH:CH2C ONHCHzOH metal amide, an alkali metal hydride, a secondary or tertiary amine, an alkali metal salt of the phosphite diesters, a quaternary ammonium hydroxide or basic ionexchange resin, and, especially, a solution or slurry of an alkali metal alkoxide in the corresponding alcohol. The reaction, after an induction period, becomes vigorously exothermic and the mixture may be cooled as necessary. A volatile inert solvent, particularly a high-boiling liquid, may be added to moderate the reaction. Addition of a solvent is desirable but not essential, when the unsaturated amide is a solid under the reaction conditions.
According to a further feature of the invention a process for the production of compounds of the general Formula I wherein R=H comprises reacting one to two molar proportions of an N-hydroxymethyl-a,fi-unsaturated amide of the Formula IX:
(CH2=)n(IJ.CONHCIInOII X IX wherein n is either 1, when X represents hydrogen, methyl or a CH CONH OH group, or zero, when X represents a =CHCONH OH group, with one molar proportion of a phosphite or diphosphite of Formula VIII.
According to a still further feature of the invention, compounds of the general Formula I wherein R denotes an alkyl group containing from one to six carbon atoms, are produced by reacting a compound of Formula I in which R is hydrogen with an aliphatic monohydric alcohol containing from one to six carbon atoms, in the presence of an acid.
According to another feature of the invention, compounds of the general Formula I wherein R denotes an allyl group are produced by reacting a compound of Formula I in which R is hydrogen with allyl alcohol in the presence of an acid.
According to further features of the invention compounds of the general Formula I wherein R denotes an alkyl group containing from one to six carbon atoms or an allyl group are prepared by reacting a compound of Formula VIII with one to two molar proportions of an N-alkoxymethylor N allyloxymethyl 0:,fl unsaturated amide of the Formula X:
(orn=)no.ooNno1noR wherein n, X and R are as hereinbefore defined.
Compounds of the general Formula IX have been described in British patent specification No. 482,897 and by Kamogawa, Murase and Sekiya (Textile Res. 1., 1960,
5 30, 774-81). Compounds of the general Formula X have been described by Muller, Dinges and Graulich (Makromol. Chem, 1962, 57, 27).
The invention includes within its scope compositions of utility in imparting flame-resistance to cellulosic materials, which contain at least one compound of the general Formula I having one -CONHCH OR group and an aminoplast, or at least one compound of the general Formula I having two CNHCH OR groups and, optionally, an aminoplast. Preferably, suc-h compositions also contain a latent acid catalyst to accelerate curing of the aminoplast and cross-linking of the compound of the general Formula I having two CONHCH OR groups. The latent acid catalysts which may be used are well-known in the process of curing aminoplasts on cellulosic materials, and include for example, ammonium chloride, ammonium dihydrogen orthophosphate, magnesium chloride, zinc nitrate, etc. The aminoplast employed may be a condensation product of formaldehyde with urea or a derivative thereof such as ethyleneurea or, preferably, with melamine or a derivative, such as an ether of the said melamineforma-ldehyde condensation product. A process for rendering cellulose-containing materials flame-resistant by treatment with such a composition followed by heating the treated material to cure the said aminoplast, and/or to effect cross-linking of the compound of general Formula I containing two CONHCH OR groups is within the scope of the invention.
Compounds of general Formula I containing chlorine and/ or bromine atoms may be prepared by using halogencontaining starting materials in the aforesaid processes or by halogenation of the intermediates or final products. Particularly preferred halogen-containing compounds are those obtained by reaction of 3-(diallyl-phosphono)propionamide with a polyhalogenated methane, especially bromotrichloromethane, in the presence of a free-radical catalyst such as =benzoyl peroxide, followed by hydroxymethylation.
Compounds of Formula I in which one or more of R, R and R are allyl groups may be polymerized in the presence of a free-radical catalyst to give polymers which may be used for flame-proofing cellulosic materials in the same way as the compounds of Formula I themselves. Such products, compositions thereof with aminoplasts, and the use of such products and compositions as flame-proofing agents, constitute further features of the invention.
The following examples illustrate the invention.
EXAMPLE I Preparation of N-hydr0xymethyl-3-(diethylphosphono) propionamide Freshly-prepared ethanolic sodium ethoxide solution (2.90 M, 70 ml.) was added slowly to a solution of acrylamide (568 g., 8 moles) in freshly-distilled diethyl phos phite (2208 g.,. 16 moles). A vigorous exothermic reaction occurred after about half of the sodium ethoxide solution had been added; the temperature of the reaction mixture was maintained at 80-90 C. by further cautious addition of the catalyst until the exothermic reaction had subsided. The product was isolated by seeding the cooled solution and filtering off the precipitated crystals. These were washed with benzene and dried. The yield of 3-(diethylphosphono)propionamide was 1277 g. and a further 400 g. was isolated by evaporating the filtrate in vacuo to dryness. The product had a meltingpoint of 73.574.5 C. Elementary analysis gave the fol lowing results: P=l5.3%; N=6.7%: C H NO P requires P=14.8-5%; N=6.'7%.
The propionamide (1440 g.) was then added gradually to formalin (36.5%, 564 g.) at 50 C., the pH of the mixture being maintained at 7.5-8.0 by adding approximately 5 ml. of 40% caustic soda solution. After the mixture had been stirred for 2 hours it was allowed to v6 cool to room temperature and filtered. Approximately 2000 g. of an 82.0% solution of N-hydroxymethyl-3- (diethylphosphono)propionamide was obtained.
A sample of the solution was evaporated to dryness in vacuo. Elementary analysis of the residue gave the following results; P=l2.3%; N=5.0%: C H NO P requires P=12.95%; N=5.9%.
The infra-red spectrum of the product indicated it to be the required N-hydroxymethyl compound by the presence of the characteristic amide-II band at 1550 cm.- and a broad band at about 3350 cm. due to the hydroxyl group and NH-stretching of the secondary amide.
EXAMPLE II Preparation of N-hydroxymethyl-3-(dimethylphosphono) propionamide Methanolic sodium methoxide solution (3.04 M, ml.), was added to acrylamide (284 g., 4 moles) in dimethyl phosphite (440 g., 4 moles) and dioxane (400 ml.). A vigorous exothermic reaction ensued when about 90 ml. of the sodium methoxide solution had been added, and the temperature of the reaction mixture was maintained at 8090 C. by adding further quantities of the catalyst. The mixture was cooled to room temperature, and the dioxane distilled in vacuo to leave 3-(dimethylphosphono)propionamide as a white solid; yield, 600 g.
This product (271.5 g., 1.5 moles) was added in portions to 36.5% formalin solution (123 g., 1.5 moles) at 55-60 C. The pH of the mixture was maintained at 8.0 by the addition of 40% caustic soda solution, about 1 m1. being required. The reaction mixture was stirred for 1 hour at 60 C., cooled and filtered to give a solution of the desired product.
EXAMPLE III Preparation of N-(hydroxymethyl) -3-(diallylph0sph0n0 propionamide Preceeding as in Example I, methanolic sodium methoxide solution (4.35 M, 35 ml.) was added to acrylamide (72 g., 1 mole) in diallyl phosphite (162 g., 1 mole) and dioxane (250 ml.), a vigorous exothermic reaction ensuing when 32 ml. of the sodium methoxide solutionhad been added. The yield of the intermediate was 213.2 g.
This compound (119 g.) was similarly hydroxymethylated with 36.5% formalin solution (41 g.) at 55- 60 C. and a solution of the desired productobtained, as described in Example I.
EXAMPLE IV Preparation of N-hydr0xymethyl-3-(di-isopropylphosphono propionamide A slurry of sodium isopropoxide in isopropanol (equivalent to 4% w./w. of sodium) was added slowly to acrylamide (142 g.) dissolved in di-isopropyl phosphite (332 g., 2 mols) and dioxane (300 ml.). An exothermic reaction set in after some g. of the catalyst had been added, and the total amount of catalyst added before the exothermic reaction had ceased was g. The intermediate was induced to crystallise (in a yield of 456 g.) by adding a small piece of solid carbon dioxide to the cooled solution.
This intermediate (237 g.) was treated with 36.5% formalin solution (82 g.) at 5560 0., about 0.2 ml. of 40% caustic soda solution being added. The reaction mixture was stirred for 2 hours at 60 C., cooled and filtered to give a solution of the desired product.
EXAMPLE V Preparation of N-hydroxymethyl-3-(bis(2,3-dichl0ropropyl) phosphono propionamide A 3.6 M methanolic solution of sodium methoxide (8 ml.) was added slowly to acrylamide (7.1 g.) in
bis(2,3-dichloropropyl)phosphite (30.4 g.) and dioxane (30 ml.). After evaporation of the solvent in vacuo the residue was added to 36.5% formalin solution (8.2 ml.); the reaction mixture was maintained at pH 8 and at 50 C. For ease of stirring the mixture was diluted with water during the reaction. A solution of the desired product was obtained.
EXAMPLEVI Preparation of N hydroxymethyl-3-(1 -methyltrime'thylenephosphono) propionamide A mixture of acrylamide (59.3 g.) and 112 g. of the cyclic phosphite ester of butane-1,3-diol (prepared by transesterifying the diol with diethyl phosphite) in 100 ml. of dioxane was treated with methanolic sodium methoxide solution (5.6 M; 20 ml.), as described in Example I. A vigorous exothermic reaction ensued when about 14 ml. of the catalyst had been added.
The residue obtained by evaporation in vacuo of the solvent was added gradually to 36.5 formalin (67.5 g.). The mixture was maintained at 60 C. and at pH 8 during the addition, then stirred for 2 hours at 50 C., cooled and filtered. A solution of the desired product was obtained.
EXAMPLE VII Preparation of N hydroxymethyl 3-(dicyclohexylph0sphn0)propionamide Phosphorus trichloride (27.5 g., 0.2 mole) in dioxan (40 ml.) was added slowly to cyclohexanol (60 g., 0.5 mole) with vigorous stirring, the hydrogen chloride formed being removed in a stream of nitrogen. The mixture was refluxed for 1% hours, and then heated at 100 C. under a water pump vacuum and finally at 0.5 mm. pressure. The residue weighed 41.5 g. (84.5% yield).
A mixture of the dicyclohexyl phosphite so obtained (64.5 g., 0.26 mole) and acrylamide (18.6 g., 0.26 mole) was treated until alkaline with a saturated solution in cyclohexanol of sodium cyclohexoxide. A very small quantity of ethanolic sodium ethoxide was then added, further additions being made when the exothermic reaction had subsided. The solution was neutralised with glacial acetic acid, and volatile materials distilled off by heating the mixture at 100 C. under about 12 mm. pressure.
The residue, the infra-red spectrum of which it indicated it to be the required 3-(dicyclohexylphosphono)- propionamide, was stirred with paraformaldehyde (7.86 g., 0.26 mole) and anhydrous potassium carbonate (0.2 g.) at 120 C. for 2 /2 hours.
EXAMPLE VIII Preparation of N-hydr0xymethyl-3-(2,2-dimethyltrimethylenephosphono) propionamide Neopentyl glycol (312 g., 3 moles), diethyl phosphite (414 g., 3 moles) and 5.5 N-methanolic sodium methoxide solution (6 ml.) were heated together for 6 hours, the ethanol evolved being separated. On fractional distillation of the residue there was obtained 355 g. of the cyclic phosphite of neopentyl glycol, having a B.P. of 132 C. at 2 mm. and a M.P. of about 53 C.
To g. (0.1 mole) of the cyclic phosphite and 7.1 g. (0.1 mole) of acrylamide in 10 ml. of dimethylforamide was added dropwise 5.5 N-methanolic sodium methoxide solution. After the exothermic reaction had subsided, the mixture was cooled and allowed to stand overnight. The desired intermediate separated as a fine white powder, M.P. 1905 C.
The intermediate (11.05 g., 0.05 mole), paraformaldehyde (1.5 g., 0.05 mole) and methanol (25 ml.) were heated at 50 C. for 1 hour, the mixture being kept at pH 8.0 by addition of a few drops of concentrated methanolic sodium methoxide solution. The hydroxymethyl derivative remained as a clear, resinous liquid on evaporation of the solvent.
EXAMPLE IX Preparation of the bis(N-hya'r0xymefhylpropionamide) derivative 0 pentaerythritol diphosphite (A) Phosphorus trichloride (530 g., 4 moles) was added slowly to pentaerythritol (136 g., 1 mole), and the mixture heated slowly to 63 C. The clear solution so obtained was refluxed for 1% hours, and unreacted phosphorus trichloride was then distilled olf. The residue, which solidified on cooling, was dissolved in chloroform (200 ml.), and a mixture of ethanol (92 g.) in chloroform (100 ml.) was added in portions over about 30 minutes, the rate of addition being adjusted so as to moderate the rate of refluxing. The mixture was filtered and the chloroform distilled off. A pale yellow, clear, resinous liquid remained, the infra-red spectrum of which indicated the presence of P-H bonds.
Acrylamide (108.7 g., 0.75 mole) was added to a solution of this material (172.2 g., 0.75 mole) in dimethylformamide (300 ml.). Concentrated methanolic sodium methoxide solution (3 0 ml.) was then added dropwise. When the exothermic reaction had subsided, the solvents were distilled off. A glassy solid (280 g.) remained.
This solid was melted and added portionwise to 36.5% formalin (123.5 g.), the mixture being maintained at pH 8.0 by addition of aqueous 40% sodium hydroxide and at 50 C. for 2 hours. The mixture was cooled and filtered, 437.5 g. of a clear resin being obtained.
(B) The desired product was also prepared in the following manner.
Pentaerythritol (68 g., 0.5 mole) was transesterified with diethyl phosphite (276 g., 2 moles) in the presence of concentrated ethanolic sodium ethoxide solution (5 ml.), g. of ethanol being collected over 2 hours. Unchanged diethyl phosphite was then distilled off. The viscous, colourless residue (105.2 g.) set to a glassy solid on cooling.
The intermediate was reacted with acrylamide (64.5 g.) in dimethyl formamide (200 ml.) as described above, 40 ml. of 4.4 M-methanolic sodium methoxide solution being added. After distilling off the solvents, 185 g. of a resinous material remained. This was then reacted with 36.5% formalin (27.2 g.) as previously described.
EXAMPLE X Preparation of N-hydroxymethyl-3-(n-butyl ethylphosphono) propionamide A mixture of diethyl phosphite (276 g., 2 moles), nbutanol (148 g., 2 moles) and concentrated ethanolic sodium ethoxide solution (5 ml.) was heated, the ethanol evolved being separated. When ethanol was no longer evolved (i.e. after 3 hours), the residue was fractionated. The fraction boiling at -105' C./ 17 mm.
was shown by gas liquid chromatography to be n-butyl ethyl phosphite.
A concentrated solution (4 ml.) of sodium ethoxide and sodium n-butoxide (made by dissolving sodium in an equimolar mixture of ethanol and butanol) was added dropwise to n butyl ethyl phosphite (32.5 g., 0.196 mole) and acrylamide (13.9 g., 0.196 mole). After the vigorous reaction had been completed, volatile materials were distilled off, and the viscous residue induced to crystallise by cooling to 0 C. The crude intermediate melted at about 18 C.
This intermediate (23.9 g., 0.1 mole), paraformaldehyde (3.1 g.) and anhydrous potassium carbonate (0.2 g.) were heated at C. for 2 hours to yield the desired product as a yellow, viscous resin.
9 EXAMPLE x1 Preparation of the bis(N-hydroxymethylpropionamide) derivative of ethylene glycol diphosphite Diethyl' phosphite (82.8 g., 0.6 mole), ethylene glycol 37.2 g., 0.2 mole)--and -asmall piece ofsodium were heated for hours at 135-45, C. and 200 mrn.,.pressure.
Onfractional distillation of the mixture, 37 got a product having B.P. 118 C./0.2 mm. and n =1.4750 were obtained. Petrov et al. (Zhur. Obshchei Khim., 1963,33, 1435) report a B.P. of 1326 C./2.5 mm. and
EXAMPLE XII Preparation of N hydroxymethyl-3-(diethylphosph0n0)- 2-ntethylpropionamide 2.6 M-ethanolic sodium ethoxide solution (20 ml.) was added dropwise to methacrylamide (42.5 g., 0.5 mole) dissolved in diethyl phosphite (350 g., 2.53 moles), a vigorous exothermic reaction occurring. Unchanged diethyl phosphite was then distilled off, and the residue allowed to solidify on cooling.
The residue (22.3 g., 0.1 mole), paraformaldehyde (3.0 g.) and anhydrous potassium carbonate (0.1 g.) were stirred together at 120 C. for 2 hours. The product was a yellow viscous liquid.
EXAMPLE XIII Preparation ofN-hydroxymethyl-3-(bis(2-ethovcye1hyl) ph0sphon0)pr0pi0na mide Di(2-ethoxyethyl)phosphite was obtained in 198.6 g.
yield and having a B.P. of 118121 C/1.4 mm. by heating 2-ethoxyethanol (180.2 g., -2 moles), diethyl phosphite (138g, 1 mole) and 2.5.ml.'of concentrated'eth-anolic sodium ethoxide solution for 8 hours, the liberated ethanol being separated.
5.5 M-methanolie sodium methoxide solution (0.8 ml.) was then added dropwise to di(2-ethoxyethyl) phosphite (22.6 g., 0.1 mole) and acrylamide (7.1 g., 0.1 mole), a vigorous exothermic reaction ensuing. On cooling the mixture it set to a white solid having an MP. of 41- 44" C.
'The resultant phosphonopropionamide (14.85 g.) wasthen added to 36.5% aqueous formaldehyde solution (4.5 g.), the mixture being heated at 50 C. for 1 hour,
and maintained at pH 8 by the addition of a few'd'ro ps of 40% aqueous sodium hydroxide solution.
EXAMPLE XIV Preparation of N methoxymethyl-3-(diethylphosphono) propionamide 3-(diethylphosphono)propionamide (418 g., 2 moles), prepared as described in Example I, paraformaldehyde 10 cous liquid having a nitrogen content of 5.56% (theoretical value, 5.55).
EXAMPLE XV Preparation of N,N-bis( hydroxym ethyl) -3- (diethylphosphono) methylsuccinamide To a mixture of dimethyl itaconate (474 g., 3 moles) and diethyl phosphite (414 g., 3 moles) was added dropwise 5.5 M-methanolic sodium methoxide solution. A vigorous exothermic reaction ensued. The mixture was neutralised with glacial acetic acid, filtered, and the filtrate distilled. The yield of dimethyl 3-(diethylphosphono)methylsuccinate, having B.P. 172-6 C./2 mm. and n '=1.4448, was 713.5 g., i.e. 80%.
Ammonia gas was passed into a mixture of the ester (687.3 g.) and methanol (3 litres) for about six hours, i.e. until the mixture was saturated. The mixture was allowed to stand at room temperature for one week, and
was then concentrated. The succinamide crystallised out in a yield of 402.7 g. and was filtered off. The succinamide had an M.P. of 1738 C. Elementary analysis gave the following results:
Found: C=39.80; H=7.22; N=10.42; P=11.68%. C H N O P requires C=40.60; H=7.19; N=10.52; P==1l.63%.
The succinamide (26.6 g.) was dissolved in methanol .(100 ml.), and paraformaldehyde (6.0 g.) was added, followed by a few drops of methanolic sodium methoxide solution to adjust the pH of the mixture to 9.0. The mixture was then stirred at 50 C. for 3 hours.
EXAMPLE XVI Preparation of N-allyl0xymethyl-3-(diethylphosphono) propionamide Acrylamide (71 g.), paraformaldehyde (33 g.) and allyl alcohol (68 ml.) were heated at 50 C. for 2 hours, the mixture being maintained at pH 9.0 by addition of a. few drops of 40% aqueous sodium hydroxide solution. A further 250 ml. of allyl alcohol, and 1 g. of hydroquinone were added, the solution was acidified with methanolic hydrogen chloride solution to a pH of approximately 2.5, and then heated at 8090 C. for 6 hours.
' After neutralisation of the mixture with sodium carbonate, followed by filtration, the filtrate was subjected to flash-distillation. N-(allyloxymethyl)acrylamide was obtained in 80% yield, and having a B.P. of 103-104 C./ 0.2 mm. and n =1.4820.
A concentrated ethanolic solution of sodium ethoxide was added dropwise to a mixture of N-(allyloxymethyl) 'acrylamide (14.1 g.) and diethyl phosphite (138 g.).
After the exothermic reaction had ceased, the solution 1 was neutralised with methanolic hydrogen chloride solution, filtered, and unchanged diethyl phosphite distilled off. The residue, (28 g.), was a clear, colourless liquid,
shown by infrared spectroscopy to be the addition product of diethyl phosphite and N- (allyloxymethyl)acrylamide. 1
. EXAMPLE XVII Polymerisation of N-hydroxymethyl-S-(diallylphosphono) (60 g., 2 moles) and anhydrous potassium carbonate (2 g.) were stirred together at 120 C. for 2% hours.
To the cooled'reaction product was added methanol (500 ml.), and the pH of the mixture was adjusted to 2.5-3 by adding 5 ml. of methanolic hydrogen chloride solution. The mixture was refluxed for IV; hours, cooled, rieutralised with sodium carbonate, filtered, and excess methanol distilled off. The residue was a light yellow vispropionamide To 16.45 g. of N-hydroxymethyl-3-(diallylphosphono) propionamide was added 0.3 g. of ammonium persulphate, and the solution was heated at C. under nitrogen for 4 hours. A clear, viscous, liquid was obtained.
EXAMPLE XVIII Preparation of N-hydr0xymethyl-3-(bis(br0motrichlor0- methylpropyl) phosphono propionamide To 3-(diallylphosphono)propionamide, prepared as described in Example III, was added 200 g. of bromotrichloromethane and 2 g. of benzoyl peroxide. The mixture l 1 1 2 was heated at 65 C. for 3 hours in an atmosphere of cured for 4.5 minutes at 155-160 C. The fabric sample nitrogen. from bath No. 1 was also rinsed in cold soft water.
Dioxan and unreacted bromotrichloromethane were then distilled off under reduced pressure, and the residue Assessment of samples Mixture No.
Appearance Normal Normal Normal Normal Normal Normal Handle Boll Soft Soft Soft Soft Soft Flammability index 5 3 4 4 2 a hydroxymethylated in 100 ml. of methanol by reaction The flammability index values were assigned accofdiflg with 100 ml. of 36.5% aqueous formaldehyde solution at t he arbi r ry scale: 5=non-mfiammable to 1=easlly 70 C. for 2 hours, the mixture being kept at a pH of lnfi approximately 8 by addition of 5 ml. of a 50% aqueous P E XX solution of sodium hydroxide. On evaporation of volatile 15 Mixtures having the f ll i Compositions were lTlal6flalS, the dGSll'Cd product was Obtfilllfid as a redpared [he figures again representing the eight in'grams brown resldueof each material added to one litre of Water.
Mixture No.
Aqueous solution (83% w./v.) of N- hydroxymcthyl-3-(diethylphosphono)- p p ide 400 400 400 400 400 400 Product A l Product C Product D.
Product E Product F. Ammonium d ydrogen orthophospha Magnesium chloride hcxahydrate Amonium chloride EXAMPLE XIX 30 Product D was a 75% aqueous solution of a highly NNLbh th I l etherified polymethylolmelamine.
' of fgfi gggzgi 1e hylphos Product E was an aqueous emulsion contalnlng 50% of a copolymer derived from vinylidene chloride and an alkyl acrylate.
Product F was a commercially-available nonionic wetting agent derived from ethylene oxide.
Samples of a bleached cotton fabric and of a bleached spun viscose material with raised woven effects were padded to a weight increase of 80% (cotton) or 100% (spun viscose), dried at 80 C., cured for 4.5 minutes at l55160 C., and rinsed for minutes with cold soft water. Samples were also subjected thrice to the washing Di n propyl 2 (diethylphosphono) succinate, having B.P. l346 C./0.5 mm. and n =1.4398, was prepared 35 from di-n-propyl maleate and diethyl phosphite as in Example XV, a concentrated ethanolic solution of sodium ethoxide being used as catalyst.
The ester was then reacted with methanolic ammonia as in Example XV. The resultant succinamide, which had a M.P. of l87-9 C., was then hydroxymethylated in methanol with paraformaldehyde in the presence of methanolic sodium methoxide solution as described in Extest C of the Schweizerische Normen-Vereinigung test ample method (SNV-95821).
EXAMPLE XX Mixtures having the following compositions were pre- Assessment of samples Mixture N o.
Appearance:
Before washing Normal Normal Normal Normal Normal Normal After washing Normal Normal Normal Normal Normal Normal Handle:
Before washing Soft Harsh Full Full Full Full After washing Soft Harsh Full Full Full Full Flammability index:
Before washing. 2 4-5 2 3 l 3 After washing. 2 3-4 3 1 3 pared, the figures representing the weight in grams of the substance added to one litre of water.
Mixture No.
83% \v./v. Aqueous solution of N- hydroxy-mcthyl-B-(diethyl-phosphorlo)- proplonarnidc Product A Product B Product C Anhydrous sodium carbonate Magnesium chloride hexahydrato Product A was a commercially-available aqueous EXAMPLE XXII solution of an etherified methylolmelamine.
Product B was a conventional flame-proofing agent con- 1 0 taining ammonium pyrophosphate.
N-(hydroxymethyl) 3 (diethylphosphono)-propionamide was incorporated (as an aqueous solution) into decorative paper-melamine formaldehyde laminates. Product C was a commercially-available water-soluble F1 ofi properties were evaluated by the Su f Condensation Product of melamine and o aldehyde. Spread of Flame Test (British Standard Specification No.
Bleached cotton fabric was padded with each solution 7r 476, Part I, 1953). The resin employed was used as a to give a weight increase of 85%, dried at 80 C., and 0 50% aqueous solution and prepared by the reaction of melamine (1 part by weight) with formaldehyde (2.45 quirements of British Standard Specification No. 3120 parts by weight, as an aqueous solution); it was cured at (1959). 145 C. EXAMPLE XXVI Method of Impregnation Amount of flame-proofing agent Result Mixtures having the following compositions were preadded pared, the figures representing the weight in grams of Papers pletreated with 20%, 1.9. 2.6% P on weight of paper- Class 1. each material added to one litre of water.
the solution, dried, treated with the resin, Mixture No. and'eured.
38%, 1.0. 5% P on weight of decora- Class 2. 13 14 15 16 tive paper layer. 38% on weight 01 decorative paper Class 1. N -hydroxymethyl-3-(dlethylph layer and 011 phono)proplonamide 300 Y- k N-hydroxymethyl-S-(dimethylphos- Added to solution of resin 22 g. of solution to 7S g. of resin, Le. Class 2. phonwpmpionamiden 3 o before using. 3% P on resin solids. N hydroxymethy1.3 (bi5(umoroethyl) B0116 acid, 0n l'esln solids phosphonopropionamide L 300 Bone acid, 5% on resin solids Do. N-hydroxymethyl- -(l-methyltr1 1;
(ad usted to pH 7 by addition at ylenephosphonoprminn5mm 300 causticsodaJ- Product D. 135 135 135 135 Ammonium chloride 6 5 5 6 Both laminates prepared with bone acid had poor surfaces and appeared to have undergone pre-curing. Q f fabrl'c was P f Wlth each solutlon to a weight increase of 80%, dried at 80 C. and cured for EXAMPLE XXIII 4.5 minutes at 160 C. Part of the fabric was washed A halogenated product, believed to consist essentially fi times, f to test C P SNv 9 5821' 3 ofN -hydroxymethyl-3-(bisQbromotrichloromethylpro l) flammability indices of the fabric, determined as 1n phosphono)propionamide, prepared as described in Ex- Example XXWere: ample XVIII, was similarly evaluated as a flame-proofing Mixture No, agent. The resin employed was the melamine-formalde- Flammability Index 13 14 15 16 hyde resin used in Example XXII and was cured under B r h 5 5 5 5 SHmLar commons 313.53.21 .51? 4-5 c-s 4 4-5 Method of impregnating Amount oi flame-proofing agent Result What is claimed is:
added 1. N-hydroxymethyl 3 (diethylphosphono)propion- Paperspretreated with 18 in decorative paper Class 2. amide,
iih ifliiil iiti ieir i235, iii fiigt'iv 5555 i332 y y y 3 y p p )p p with resin and cured. overlay} i Cl 1 a id ifiiflifiii. 31155.3 Elir) 21.135533211321321: 0133331 3. N- y y 3 (b p py 011 resin- 3 phosphono)propionamide 4. N-hydroxymethyl 3 (diethylphosphono)-2-meth- EXAMPLE XXIV ylpropionamide. Cotton flannelette was padded with an aqueous solution N'hydroxymethyl 3 (blswmmomchlommethyl' i l)phosphono)propionamide. containlng, per litre, 300 g. of N-methoxymethyl-3-(d1- Propy ethylphosphono)Propionarnide, 140 g. of Product D and 40 N'auyloxymethyl 3 (diethylp hosp homo) p mp 10H- 5 g. of ammonium chloride. The impregnated fabric was amlde' dried and then heated at 150 C. for 5 minutes. The The compound of theformula: treated fabric met the requirements of British Standard (limo 0 Specification NO. 3119 (1959). RUECHCONHCHOH EXAMPLE XXV CaHaO dmoonnomon Cotton flannelette was padded with an aqueous sol-u- The compound of the formula:
tion containing, per litre, 300 g. of N-hydroxymethyl-3- :Ht0 0 (diethylphosphono)propionamide, 140 g. of Product D, CHCONHCH,QH
50 g. of a commercially available polyethylene wax emulsion employed as a textile softening agent, and 5 g. of CHICONHCEOH ammonium chloride, to a weight increase of The y ym hyl 3 (dimethylphosphono)protreated material was dried at 80 C. and then heated Pionamidefor 5 minutes at C. Part of the material was sub- 55 mitted to the washing test of Appendix A of British Standard Specification No. 3121 (1959). Both washed H51 and unwashed samples, tested in accordance with British C ES PARKER Pnmary Exammer' Standard Specification No. 3119 1959), met the re- ANTON H-SUTIQAssismnrEmminer- No references cited.

Claims (2)

1. N-HYDROXYMETHYL-3-(DIETHYLPHOSPHONO) PROPIONAMIDE.
7. THE COMPOUND OF THE FORMULA:
US646119A 1963-05-03 1967-06-14 Phosphono carboxamides Expired - Lifetime US3374292A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB17563/63A GB1011572A (en) 1963-05-03 1963-05-03 Phosphorus-containing carboxylic acid amides

Publications (1)

Publication Number Publication Date
US3374292A true US3374292A (en) 1968-03-19

Family

ID=10097384

Family Applications (1)

Application Number Title Priority Date Filing Date
US646119A Expired - Lifetime US3374292A (en) 1963-05-03 1967-06-14 Phosphono carboxamides

Country Status (5)

Country Link
US (1) US3374292A (en)
BE (1) BE647376A (en)
CH (2) CH474605A (en)
DE (1) DE1469281C3 (en)
GB (1) GB1011572A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699192A (en) * 1970-10-20 1972-10-17 U S Oil Co Inc Phosphonium compounds
US3765837A (en) * 1971-09-03 1973-10-16 Burlington Industries Inc Flame retardant finish for polyester/cotton blends
US3772068A (en) * 1970-04-27 1973-11-13 Ciba Geigy Ag Process for flameproofing fibre materials of polyesters and cellulose
US3894122A (en) * 1972-11-02 1975-07-08 Hoechst Ag Phosphorus compounds containing amide groups
US3903337A (en) * 1974-04-04 1975-09-02 Mitsui Toatsu Chemicals Method for processing cellulose containing material to impart flame resistance
US4007318A (en) * 1975-05-21 1977-02-08 General Electric Company Phosphorylated polystyrene and method for forming same
US4017462A (en) * 1974-08-22 1977-04-12 The United States Of America As Represented By The Secretary Of Agriculture Treatment of organic textiles with adduct polymers and phenols
US4162279A (en) * 1977-09-28 1979-07-24 Stauffer Chemical Company Phosphonoxycarboxamides
US4577013A (en) * 1983-12-22 1986-03-18 Ciba-Geigy Corporation Ionically modified cellulose material, its preparation and its use
US5320785A (en) * 1990-08-03 1994-06-14 Ciba-Geigy Corporation Compositions containing phosphono compounds and organic acids as flameproofing agents
EP2133461A1 (en) 2008-06-12 2009-12-16 Huntsman Textile Effects (Germany) GmbH Compound for treating fibrous material, in particular by the method of extraction
US20100044653A1 (en) * 2006-12-20 2010-02-25 Salman Dermeik Composition for treating fiber materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1279428C (en) * 1985-02-27 1991-01-22 Tsutomu Imai Fire retardant for woody materials
DE3682906D1 (en) * 1986-08-20 1992-01-23 Dainippon Ink & Chemicals FIRE RETARDANT AGENT FOR WOODEN FABRICS.
GB9004633D0 (en) * 1990-03-01 1990-04-25 Albright & Wilson Flame retardant composition and method of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772068A (en) * 1970-04-27 1973-11-13 Ciba Geigy Ag Process for flameproofing fibre materials of polyesters and cellulose
US3699192A (en) * 1970-10-20 1972-10-17 U S Oil Co Inc Phosphonium compounds
US3765837A (en) * 1971-09-03 1973-10-16 Burlington Industries Inc Flame retardant finish for polyester/cotton blends
US3894122A (en) * 1972-11-02 1975-07-08 Hoechst Ag Phosphorus compounds containing amide groups
US3903337A (en) * 1974-04-04 1975-09-02 Mitsui Toatsu Chemicals Method for processing cellulose containing material to impart flame resistance
US4017462A (en) * 1974-08-22 1977-04-12 The United States Of America As Represented By The Secretary Of Agriculture Treatment of organic textiles with adduct polymers and phenols
US4007318A (en) * 1975-05-21 1977-02-08 General Electric Company Phosphorylated polystyrene and method for forming same
US4162279A (en) * 1977-09-28 1979-07-24 Stauffer Chemical Company Phosphonoxycarboxamides
US4577013A (en) * 1983-12-22 1986-03-18 Ciba-Geigy Corporation Ionically modified cellulose material, its preparation and its use
US5320785A (en) * 1990-08-03 1994-06-14 Ciba-Geigy Corporation Compositions containing phosphono compounds and organic acids as flameproofing agents
US20100044653A1 (en) * 2006-12-20 2010-02-25 Salman Dermeik Composition for treating fiber materials
EP2133461A1 (en) 2008-06-12 2009-12-16 Huntsman Textile Effects (Germany) GmbH Compound for treating fibrous material, in particular by the method of extraction
US20110114904A1 (en) * 2008-06-12 2011-05-19 Huntsman Textile Effects (Germany) Gmbh Composition for treatment of fiber materials by exhaust method in particular
US8303835B2 (en) 2008-06-12 2012-11-06 Huntsman Textile Effects (Germany) Gmbh Composition for treatment of fiber materials by exhaust method in particular

Also Published As

Publication number Publication date
DE1469281A1 (en) 1969-05-08
CH474605A (en) 1969-08-15
DE1469281B2 (en) 1973-04-26
GB1011572A (en) 1965-12-01
CH297667A4 (en) 1969-03-14
DE1469281C3 (en) 1973-11-22
CH474540A (en) 1969-06-30
BE647376A (en)

Similar Documents

Publication Publication Date Title
US3374292A (en) Phosphono carboxamides
DE69110617T2 (en) New derivatives of phosphonalkane polycarboxylic acids and their use.
US3832227A (en) Use of triazinylaminoalkyl phosphonates for the flameproofing of textiles
US3969437A (en) Cyclic phosphorus esters
US3746572A (en) Process for flame retarding fabrics
US3381063A (en) Cyclic phosphono-carboxylic amides
US3579532A (en) Bis-phosphono-propionamide substituted ethylene glycols and imidazolidinones
US3787407A (en) Melamine-derivatives
US3381062A (en) Cyclic diphosphono-carboxylic amides
US3639539A (en) Phosphorus-containing n n-dimethylolcarboxylic acid amides
US4128558A (en) N(O,O dialkylphosphonyl alkylene) esters of oxazolidone, benzoxazolinone and dihydrooxazinone
US4162279A (en) Phosphonoxycarboxamides
US3669725A (en) Flameproofing of polyester-cellulose fibre materials
US4177300A (en) Phosphonoxycarboxamide flame retarding compositions
US3780144A (en) Halogenated ethylenically unsaturated phosphates
GB821503A (en) Polymeric compositions containing nitrilo methylol-phosphorus polymers and bromine
US3825630A (en) Phosphonate carbamates
US3423369A (en) Phosphorus-containing aminoplasts and process for their preparation
DE2215434A1 (en) N phosphonomethyl acrylamides
US3899549A (en) Poly(dialkylphosphonoalkyl)carbamates
US3894122A (en) Phosphorus compounds containing amide groups
US3679778A (en) Amide and carbamate diphosphonates and process for their manufacture
Vail et al. Chemistry of Hydroxymethyl Phosphorus Compounds: Part I: Introduction
US4049754A (en) Tribromoneopentyl phosphorus reactive flame retardants
US3969440A (en) Phosphorus containing acrylic esters and amides