US3362128A - Method of packaging articles - Google Patents

Method of packaging articles Download PDF

Info

Publication number
US3362128A
US3362128A US432307A US43230765A US3362128A US 3362128 A US3362128 A US 3362128A US 432307 A US432307 A US 432307A US 43230765 A US43230765 A US 43230765A US 3362128 A US3362128 A US 3362128A
Authority
US
United States
Prior art keywords
packages
film
package
stack
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US432307A
Inventor
Robert C James
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayssen Manufacturing Co
Original Assignee
Hayssen Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayssen Manufacturing Co filed Critical Hayssen Manufacturing Co
Priority to US432307A priority Critical patent/US3362128A/en
Priority to US684086A priority patent/US3458036A/en
Application granted granted Critical
Publication of US3362128A publication Critical patent/US3362128A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/00012Bundles surrounded by a film
    • B65D2571/00018Bundles surrounded by a film under tension
    • B65D2571/00024Mechanical characteristics of the shrink film

Definitions

  • FIGB 52 INVENTOR ROBERT 0 JAMES ATTORNEYS I I BY 56 H610 EZMYW United States Patent Ofifice 3,362,128 METHOD OF PACKAGING ARTICLES Robert C. James, Sheboygan, Wis., assignor, by mesne assignments, to Hayssen Manufacturing Company, Sheboygan, Wis., a corporation of Delaware Filed Feb. 12, 1965, Ser. No. 432,307 9 Claims. (Cl.
  • ABSTRACT OF THE DISCLOSURE This disclosure involves wrapping a heat shrinkable film about an aligned stack of the packaged articles, compressing the resulting wrapped stack to rigidify the same, but short of the point where crushing of the packages might occur, and heating the resulting wrapped stack while the slack is under compression to shrink the film into conformity with the stack and hold it in its compressed condition.
  • the present invention relates to a method and apparatus for packaging or consolidating individually packaged articles, particularly food articles. It also relates to an improved package of substantially greater rigidity and load bearing capabilities than presently available.
  • the method and apparatus of the present invention overcome these difiiculties and provide a consolidated composite package of improved rigidity, and composed of a compressed stack of aligned individual packages which are held in compressed relationship by a heat shrinkable film about the periphery of the packages.
  • the method of the present invention involves wrapping a heat shrinkable film about an aligned stack of the packaged articles, compressing the resulting wrapped stack to rigidity the same, but short of the point where crushing of the packages might occur, and heating the resulting wrapped stack while the stack is under compression to shrink the film into conformity with the stack and hold it in its compressed condition.
  • An object of the present invention is to provide an improved method for consolidating a plurality of individually packed articles into a package which is quite rigid and therefore has substantially greater load bearing properties.
  • the present invention makes use of the technique of compression bundling and, to that extent, it is similar to the subject matter of Wilson US. Patent No. 2,962,848, owned by the assignee of the present application.
  • a method and apparatus for compression bundling which was designed to eliminate the need for providing heavy corrugated or fiberboard cartons of shipping cases for small product packages.
  • the method involved conveying a group of individual packages and compacting the same into tight rows to thereby form a tight block, projecting the compacted block of unit packages adjacent a flexible wrapping sheet, draping the wrapping sheet over the block, and folding and securing the wrapping sheet about the block while the block was still being maintained in a compacted condition.
  • the wrapping materials used in accordance with the present invention are heat shrinkable films, normally composed of a thermoplastic resinous material which has been oriented at least in one direction by stretching during its process of manufacture to render it shrinkable by heat.
  • a cast or extruded film can be stretched to align the molecules into a more orderly pattern, giving the film increased strength and toughness as well as shrinkability.
  • the film may be biaxially oriented to provide equal shrink in both the longitudinal and transverse dimensions of the film. The orientation also serves to increase the resistance to cold cracking of the film, so that it retains its flexibility at low temperatures.
  • One of the particularly preferred materials for use in accordance with the present invention is a biaxially oriented polyvinyl chloride film. This material will shrink a maximum of about 60% at 325 F. With a source of hot air as the heating medium, the film is normally heated to 300 to 310 F. with a dwell time of about 2 to 5 seconds.
  • polyvinyl chloride represents the preferred embodiment of the present invention
  • other heat shrinkable polymers can also be employed, such as oriented polyvinylidene polymers, vinyl-vinylidene copolymers, rubber hydrochloride, polyethylene, polypropylene, and polyester films such as Mylar (polyethylene terephthalate).
  • the wrapping of the multi-unit package can be accomplished in several different ways. For one, a plurality of stacked individual units may be first wrapped in the heat shrinkable film, and then subjected to compression to rigidity the rows of packages, after which the compressed array can be subjected to heat which causes the overlying film wrapper to shrink and conform to the compressed package units. Alternatively, the compression and heating may be accomplished as part of a substantially simultaneous operation. Other features of apparatus and method will be described in conjunction with the attached sheets of drawings in which:
  • FIGURE 1 is a fragmentary view in perspective of a conveying mechanism which may be used to compress the articles
  • FIGURE 2 is a view in elevation, partly schematic, of a heating means which may be used in conjunction with the conveying means of FIGURE 1;
  • FIGURE 3 is a plan View of the conveyor and heating mechanism taken substantially along the lines III-III of FIGURE 2;
  • FIGURE 4 is a view in perspective of a wrapped stack of unit packages prior to compression
  • FIGURE 5 is a View in elevation of a compression mechanism which can be employed with the type of stack shown in FIGURE 4;
  • FIGURE 6 is a view of the compression mechanism in operation in conjunction with a heater which shrinks the wrapper about the stack;
  • FIGURE 7 is a view in elevation of a modified form of the invention, with the unit packages being supported within a tray prior to compression;
  • FIGURE 8 is a view similar to FIGURE 7 but illustrating the articles after compression
  • FIGURE 9 is an end elevational pleted package
  • FIGURE 10 is a fragmentary enlarged cross-sectional view taken substantially along the line XX of FIG- URE 9.
  • FIGURE 1 there is illustrated a conveyingmechanism including a plurality of bottom rails 11, 12 and 13 for slidably supporting the wrapped packages for movement therealong.
  • the packages in the specific illustration shown in FIGURE 1, and identified at reference view of the com numeral 14, include three rows of unit packages 16, with seven packages in a row.
  • the entire bundle of packages, 21 in all, were wrapped with an overwrap of a heat shrinkable film conforming as tightly as possible to the contour of the package.
  • a compression belt 17 is trained about a pair of rollers 18 and 19 supported on vertical axes, with an intermediate roller 21 engaging the belt '17 intermediate the rollers 18 and 19.
  • a compression belt 22 is mounted for movement on the other side of the conveying means, the belt 22 being driven from vertically supported rollers 23 and 24 with an intermediate roller 25 being positioned to engage the inner surface of the belt 22 intermediate the rollers 23 and 24.
  • the spatial arrangement is such that the belts 17 and 22 provide a relatively wide gap at the inlet end, the left side of the showing of FIGURE 1, but the positioning of the rollers 19, 21, 24 and 25 is such that the gap narrows as the belt propels the packages in the forward direction, whereupon the belts 17 and 22 exert a substantial compressive force on both sides of the package 14, causing a significant amount of compression to take place.
  • the heat shrinkable wrapper film being relatively limp does not compress to a significant degree in this stage, but, as illustrated in FIGURE 2, it is thereupon subjected to a heat treatment by means of hot air distributors 26 and 27 located above and below the conveyor system, respectively.
  • Each of the heating means includes an inlet conduit 28 which directs a stream of hot air at the heat shrinkable film on the conveyor as best illustrated in FIGURE 2 of the drawings. Normally, only a few seconds dwell time is required for the heat shrinkable film to shrink into conformity with the compressed individual packages. The shrink fit thus provided effectively holds the compressed unit packages in their compressed form.
  • the package 31 illustrated in FIGURE 4 includes 20 unit packages, wrapped in a heat shrinkable film 32 provided with overlapping end flaps 33 and 34. As illustrated in FIGURE 5, this aligned stack of unit packages is positioned with one end abutting against a fixed stop 36 on a platform 37, and being compressed by means of a piston 38 disposed on a shaft 39 which is operated by an air cylinder 41 or similar device for moving the piston 38 to compress the package 31, and retract it after sealing.
  • the package 31 is being simultaneously heated by means of an electrical heating element 42 disposed within a reflector 43 and energized from a suitable source of power by means of conductors 46 and 47.
  • the heat radiated by the electrical heating element 42 is sufficient to shrink the film 34 into close conformity with the package 31 which is still under compression.
  • the end flaps 33 and 34 may simultaneously be heat sealed together or adhesively secured in a subsequent operation.
  • a package 49 is made up consisting of the individual unit packages 51 slidably mounted along an open ended tray 52, the entire package consisting of the unit packages 51 and the tray 52 being wrapped with a heat shrinkable film 53 having end flaps 54 and 56 thereon.
  • the package is then put into a suitable compression mechanism, such as the type illustrated in FIGURES 5 and 6, to compress the packages 51 so that they are flush with the end of the tray 52, as illustrated in FIG- URE 8.
  • the film 53 is subjected to a shrinking operation by the application of heat, whereupon it shrinks to conform to the tray and package combination, and holds it in compressed relation.
  • the end flaps 54 and 56 may be heat sealed together.
  • individual packages 51 may be removed therefrom while still leaving a receptacle for holding the remaining packages.
  • the packages which were compressed, but which did not employ the heat shrinkable film also evidenced an average defiection of 0.165 inch.
  • the materials produced according to the present invention, and produced by compression of the contents and shrinking of the plastic film evidenced an average deflection of 0.145 inch. Projecting these figures based upon the deflection data, the maximum load for the packages of the present invention would be in the area of about 3500 to 3700 pounds, whereas the maximum load for the other samples averaged about 3230 pounds for the units packaged in the shrink film without compression, and 3025 pounds for those compressed but not wrapped with the shrinkable film.
  • the process of the present invention provides a substantially improved consolidation of unit packages which can withstand more load than packages produced with other techniques.
  • the method of consolidating a plurality of individually packaged articles which comprises wrapping a heat shrinkable film about an aligned stack of said packaged articles, compressing the resulting wrapped stack to rigidity the same, and heating the resulting Wrapped stack while said stack is under compression to shrink said film about said stack.
  • the method of consolidating a plurality of individually packaged articles which comprises Wrapping a heat shrinkable film about an aligned stack of said packaged articles, compressing the resulting wrapped stack to rigidity the same and simultaneously heating said stack during compression to cause said film to shrink about said stack and retain said stack in its compressed condition.
  • the method of consolidating a plurality of individually packaged articles which comprises stacking the packages in alignment in an open ended tray, wrapping a heat shrinkable film about said tray and said packages, compressing the packages within said tray, and heating the film While the packages are so compressed to thereby shrink said film into conformity with the compressed packages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)

Description

Jan. 9, 1968 JAMES 3,362,128
METHOD OF PACKAGING ARTICLES Filed Feb. 12, 1965 2 Sheets-Sheet l INVENTO R ,8 17 R0 BERT C. JAM ES FIG-3 BY M a 77%, 27) 9* M ATTO R N EYS Jan. 9, 1968 R. c. JAMES 3,362,128
METHOD OF PACKAGING ARTICLES Filed Feb. 12, 1965 2 Sheets-Sheet 2 I 52 FIGB 52 INVENTOR ROBERT 0 JAMES ATTORNEYS I I BY 56 H610 EZMYW United States Patent Ofifice 3,362,128 METHOD OF PACKAGING ARTICLES Robert C. James, Sheboygan, Wis., assignor, by mesne assignments, to Hayssen Manufacturing Company, Sheboygan, Wis., a corporation of Delaware Filed Feb. 12, 1965, Ser. No. 432,307 9 Claims. (Cl. 53--24) ABSTRACT OF THE DISCLOSURE This disclosure involves wrapping a heat shrinkable film about an aligned stack of the packaged articles, compressing the resulting wrapped stack to rigidify the same, but short of the point where crushing of the packages might occur, and heating the resulting wrapped stack while the slack is under compression to shrink the film into conformity with the stack and hold it in its compressed condition.
The present invention relates to a method and apparatus for packaging or consolidating individually packaged articles, particularly food articles. It also relates to an improved package of substantially greater rigidity and load bearing capabilities than presently available.
Many types of products are currently being sold in multi-unit packages, such as individual boxes of breakfast cereals. Heretofore, some means has had to be provided for rigidifying such a package, since the outer wrapper itself could not be drawn about the assembled units sufficiently tightly so that a rigid package would result.
The method and apparatus of the present invention overcome these difiiculties and provide a consolidated composite package of improved rigidity, and composed of a compressed stack of aligned individual packages which are held in compressed relationship by a heat shrinkable film about the periphery of the packages.
In general, the method of the present invention involves wrapping a heat shrinkable film about an aligned stack of the packaged articles, compressing the resulting wrapped stack to rigidity the same, but short of the point where crushing of the packages might occur, and heating the resulting wrapped stack while the stack is under compression to shrink the film into conformity with the stack and hold it in its compressed condition.
An object of the present invention is to provide an improved method for consolidating a plurality of individually packed articles into a package which is quite rigid and therefore has substantially greater load bearing properties.
Another object of the invention is to provide a method for economically consolidating a number of individual packages into a ridigitied stack.
The present invention makes use of the technique of compression bundling and, to that extent, it is similar to the subject matter of Wilson US. Patent No. 2,962,848, owned by the assignee of the present application. In the aforementioned patent, there is described a method and apparatus for compression bundling which was designed to eliminate the need for providing heavy corrugated or fiberboard cartons of shipping cases for small product packages. Generally, the method involved conveying a group of individual packages and compacting the same into tight rows to thereby form a tight block, projecting the compacted block of unit packages adjacent a flexible wrapping sheet, draping the wrapping sheet over the block, and folding and securing the wrapping sheet about the block while the block was still being maintained in a compacted condition.
The method and apparatus of the present invention make use of some of the techniques and equipment which are described in the aforementioned Wilson patent, but
3,362,128 Patented Jan. 9, 1968 differ substantially therefrom in the nature of the wrapper used to hold the individual units in compressed condition,
The wrapping materials used in accordance with the present invention are heat shrinkable films, normally composed of a thermoplastic resinous material which has been oriented at least in one direction by stretching during its process of manufacture to render it shrinkable by heat. A cast or extruded film can be stretched to align the molecules into a more orderly pattern, giving the film increased strength and toughness as well as shrinkability. In some cases, the film may be biaxially oriented to provide equal shrink in both the longitudinal and transverse dimensions of the film. The orientation also serves to increase the resistance to cold cracking of the film, so that it retains its flexibility at low temperatures.
One of the particularly preferred materials for use in accordance with the present invention is a biaxially oriented polyvinyl chloride film. This material will shrink a maximum of about 60% at 325 F. With a source of hot air as the heating medium, the film is normally heated to 300 to 310 F. with a dwell time of about 2 to 5 seconds.
While polyvinyl chloride represents the preferred embodiment of the present invention, other heat shrinkable polymers can also be employed, such as oriented polyvinylidene polymers, vinyl-vinylidene copolymers, rubber hydrochloride, polyethylene, polypropylene, and polyester films such as Mylar (polyethylene terephthalate).
The wrapping of the multi-unit package can be accomplished in several different ways. For one, a plurality of stacked individual units may be first wrapped in the heat shrinkable film, and then subjected to compression to rigidity the rows of packages, after which the compressed array can be subjected to heat which causes the overlying film wrapper to shrink and conform to the compressed package units. Alternatively, the compression and heating may be accomplished as part of a substantially simultaneous operation. Other features of apparatus and method will be described in conjunction with the attached sheets of drawings in which:
FIGURE 1 is a fragmentary view in perspective of a conveying mechanism which may be used to compress the articles;
FIGURE 2 is a view in elevation, partly schematic, of a heating means which may be used in conjunction with the conveying means of FIGURE 1;
FIGURE 3 is a plan View of the conveyor and heating mechanism taken substantially along the lines III-III of FIGURE 2;
FIGURE 4 is a view in perspective of a wrapped stack of unit packages prior to compression;
FIGURE 5 is a View in elevation of a compression mechanism which can be employed with the type of stack shown in FIGURE 4;
FIGURE 6 is a view of the compression mechanism in operation in conjunction with a heater which shrinks the wrapper about the stack;
FIGURE 7 is a view in elevation of a modified form of the invention, with the unit packages being supported within a tray prior to compression;
FIGURE 8 is a view similar to FIGURE 7 but illustrating the articles after compression;
FIGURE 9 is an end elevational pleted package; and
FIGURE 10 is a fragmentary enlarged cross-sectional view taken substantially along the line XX of FIG- URE 9.
As shown in the drawings:
In FIGURE 1, there is illustrated a conveyingmechanism including a plurality of bottom rails 11, 12 and 13 for slidably supporting the wrapped packages for movement therealong. The packages in the specific illustration shown in FIGURE 1, and identified at reference view of the com numeral 14, include three rows of unit packages 16, with seven packages in a row. The entire bundle of packages, 21 in all, were wrapped with an overwrap of a heat shrinkable film conforming as tightly as possible to the contour of the package. A compression belt 17 is trained about a pair of rollers 18 and 19 supported on vertical axes, with an intermediate roller 21 engaging the belt '17 intermediate the rollers 18 and 19. Similarly, a compression belt 22 is mounted for movement on the other side of the conveying means, the belt 22 being driven from vertically supported rollers 23 and 24 with an intermediate roller 25 being positioned to engage the inner surface of the belt 22 intermediate the rollers 23 and 24. The spatial arrangement is such that the belts 17 and 22 provide a relatively wide gap at the inlet end, the left side of the showing of FIGURE 1, but the positioning of the rollers 19, 21, 24 and 25 is such that the gap narrows as the belt propels the packages in the forward direction, whereupon the belts 17 and 22 exert a substantial compressive force on both sides of the package 14, causing a significant amount of compression to take place. This compression, of course, is short of the force which would crush or mutilate the packages, but is sufficient to rigidity the units substantially, thereby making the composite package of the individual units considerably more resistant to buckling. The heat shrinkable wrapper film, being relatively limp does not compress to a significant degree in this stage, but, as illustrated in FIGURE 2, it is thereupon subjected to a heat treatment by means of hot air distributors 26 and 27 located above and below the conveyor system, respectively. Each of the heating means includes an inlet conduit 28 which directs a stream of hot air at the heat shrinkable film on the conveyor as best illustrated in FIGURE 2 of the drawings. Normally, only a few seconds dwell time is required for the heat shrinkable film to shrink into conformity with the compressed individual packages. The shrink fit thus provided effectively holds the compressed unit packages in their compressed form. 1
Most heat shrinkable materials are also inherently heat sealable. Thus, it is advisable to provide the initial wrap of the film over the packages with overlapping edges which can be heat sealed together simultaneously with the shrinkage of the film about the compressed packages. Alternatively, of course, the package can be sealed by the use of adhesives, solvents, or the like. With some types of shrinkable films, it is desirable to maintain the compression on the packages until all of the heat has been dissipated from the film, to render the film stable enough to withstand the forces within the package.
The package 31 illustrated in FIGURE 4 includes 20 unit packages, wrapped in a heat shrinkable film 32 provided with overlapping end flaps 33 and 34. As illustrated in FIGURE 5, this aligned stack of unit packages is positioned with one end abutting against a fixed stop 36 on a platform 37, and being compressed by means of a piston 38 disposed on a shaft 39 which is operated by an air cylinder 41 or similar device for moving the piston 38 to compress the package 31, and retract it after sealing.
As shown in FIGURE 6, while the package 31 is being compressed by the piston 38, the package 31 is being simultaneously heated by means of an electrical heating element 42 disposed within a reflector 43 and energized from a suitable source of power by means of conductors 46 and 47. The heat radiated by the electrical heating element 42 is sufficient to shrink the film 34 into close conformity with the package 31 which is still under compression. The end flaps 33 and 34 may simultaneously be heat sealed together or adhesively secured in a subsequent operation.
In the form of the invention illustrated in FIGURES 7 through inclusive, a package 49 is made up consisting of the individual unit packages 51 slidably mounted along an open ended tray 52, the entire package consisting of the unit packages 51 and the tray 52 being wrapped with a heat shrinkable film 53 having end flaps 54 and 56 thereon. The package is then put into a suitable compression mechanism, such as the type illustrated in FIGURES 5 and 6, to compress the packages 51 so that they are flush with the end of the tray 52, as illustrated in FIG- URE 8. Then, or simultaneously therewith, the film 53 is subjected to a shrinking operation by the application of heat, whereupon it shrinks to conform to the tray and package combination, and holds it in compressed relation. At the same time, the end flaps 54 and 56 may be heat sealed together. Then, when the package is opened by the user, individual packages 51 may be removed therefrom while still leaving a receptacle for holding the remaining packages.
Since the articles in the package of the present invention are snugly fitted together, bowing of the package is prevented, thereby increasing the load carrying capacity of the packaged units.
Physical testing of the packages produced according to the present invention showed that they will take a higher maximum load with lower deflection than packages produced by other means. To illustrate, 48 individual packages of gelatin in their regular paper cartons were packaged with a heat shrinkable polyvinyl chloride film of 1 /2 mils in thickness, and the outer wrap was thereupon shrunk by means of hot air, but no compression of the contents was employed. Additional samples were made using the identical number of gelatin packages of the same orientation, and wrapped in a 47 pound glue sealed linerboard material under compression as described in Wilson Patent No. 2,962,848. Still other samples were made using the same orientation of packages, wrapped in the 1 /2 mil heat shrinkable polyvinyl chloride, but having the packages compressed prior to shrinking of the film onto the packages. The compression was accomplished in a compression machine having a movable upper platen travelling at a constant rate of /2 inch per minute, and the packages were compressed until maximum bearing load had been achieved.
The samples which had been packaged with the shrink film alone evidenced an average deflection of 0.165 inch. The packages which were compressed, but which did not employ the heat shrinkable film also evidenced an average defiection of 0.165 inch. The materials produced according to the present invention, and produced by compression of the contents and shrinking of the plastic film evidenced an average deflection of 0.145 inch. Projecting these figures based upon the deflection data, the maximum load for the packages of the present invention would be in the area of about 3500 to 3700 pounds, whereas the maximum load for the other samples averaged about 3230 pounds for the units packaged in the shrink film without compression, and 3025 pounds for those compressed but not wrapped with the shrinkable film.
From the foregoing, it should be understood that the process of the present invention provides a substantially improved consolidation of unit packages which can withstand more load than packages produced with other techniques.
It should also be understood that various modifications can be made to the described embodiments without departing from the scope of the present invention.
1 claim as my invention:
1. The method of consolidating a plurality of individually packaged articles which comprises wrapping a heat shrinkable film about an aligned stack of said packaged articles, compressing the resulting wrapped stack to rigidity the same, and heating the resulting Wrapped stack while said stack is under compression to shrink said film about said stack.
2. The method of claim 1 in which said film is a thermoplastic resinous film.
3. The method of claim 1 in which said film is a biaxially oriented polyvinyl chloride.
4. The method of consolidating a plurality of individually packaged articles which comprises Wrapping a heat shrinkable film about an aligned stack of said packaged articles, compressing the resulting wrapped stack to rigidity the same and simultaneously heating said stack during compression to cause said film to shrink about said stack and retain said stack in its compressed condition.
5. The method of consolidating a plurality of individually packaged articles which comprises stacking the packages in alignment in an open ended tray, wrapping a heat shrinkable film about said tray and said packages, compressing the packages within said tray, and heating the film While the packages are so compressed to thereby shrink said film into conformity with the compressed packages.
6. The method of claim 4 in which said film is composed of an oriented polyvinyl chloride.
7. The method of claim 4 in which said film is com posed of an oriented polyvinylidene chloride.
6 8. The method of claim 4 in which said film is composed of an oriented rubber hydrochloride.
9. The method of claim 4 in which said film is composed of an oriented polyester resin.
References Cited UNITED STATES PATENTS 2,904,943 9/1959 Dreyfus et al. 5330 X 2,908,576 10/1959 Rumsey 20665 2,962,848 12/1960 Wilson 53124 3,001,644 9/1961 Fourness et al. 206-56 3,037,620 6/1962 Douty 20665 3,255,877 6/1965 Krach et al. 206-65 3,171,238 3/1965 Dreyfus 53-30 3,233,387 2/1066 Spolsino 53-184 X ROBERT C. RIORDON, Primary Examiner. R. L. FARRIS, Examiner.
US432307A 1965-02-12 1965-02-12 Method of packaging articles Expired - Lifetime US3362128A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US432307A US3362128A (en) 1965-02-12 1965-02-12 Method of packaging articles
US684086A US3458036A (en) 1965-02-12 1967-10-03 Compressed heat shrunk package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US432307A US3362128A (en) 1965-02-12 1965-02-12 Method of packaging articles

Publications (1)

Publication Number Publication Date
US3362128A true US3362128A (en) 1968-01-09

Family

ID=23715606

Family Applications (1)

Application Number Title Priority Date Filing Date
US432307A Expired - Lifetime US3362128A (en) 1965-02-12 1965-02-12 Method of packaging articles

Country Status (1)

Country Link
US (1) US3362128A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423901A (en) * 1965-07-06 1969-01-28 Diamond Int Corp Shrink capping method and apparatus
US3516217A (en) * 1968-03-07 1970-06-23 Bemis Co Inc Compression packaging
US3546828A (en) * 1967-10-25 1970-12-15 Phillips Petroleum Co Packaging compressible materials
US3581458A (en) * 1968-02-07 1971-06-01 Olov Erland Gustavsson Method of shrinking a sleeve- or cap-shaped wrapping of heat-shrinkable plastic sheet surrounding a transport unit and an apparatus for carrying out the method
US3721804A (en) * 1970-12-16 1973-03-20 Tsi Inc Apparatus for sealing and shrinking plastic film
US3805473A (en) * 1971-03-25 1974-04-23 E Lidgard Packaging methods and structures
US3895476A (en) * 1972-11-06 1975-07-22 Iii Henry Knox Burns Shrink-film packaging method
FR2545414A1 (en) * 1983-05-02 1984-11-09 Nagema Veb K APPARATUS FOR HEAT CONTRACTING SHEETS OF PLASTIC MATERIALS FOR PACKAGING
US4799350A (en) * 1981-07-31 1989-01-24 Isover Saint-Gobain Process for packaging panels of a compressible material and the packages produced by this process
US4852332A (en) * 1987-05-23 1989-08-01 Hubert Becker Process for treating filamentary or thread textile material
US4986419A (en) * 1987-09-24 1991-01-22 Bonneville International Corporation Packaging for point of sale display, shipment and storage of cassette recordings and methods
US5050368A (en) * 1990-01-11 1991-09-24 Tokiwa Kogyo Co., Ltd. Shrink packaging apparatus
US5390783A (en) * 1989-05-17 1995-02-21 A.C.X. Trading, Inc. Non-palletized cargo unit formed of selected uniform size and weight bales of hay to fit multiple cargo spaces
US6381925B2 (en) * 1999-07-27 2002-05-07 Mars, Incorporated Method for forming a compressed grouping of objects
US6880313B1 (en) 2001-12-28 2005-04-19 Gateway Manufacturing, Inc. Method for bundling multiple articles together while obscuring individual identification codes and related assembly
US7621108B1 (en) 2008-07-18 2009-11-24 The Procter & Gamble Company Assembling a packaged bundle using an adjustable multi-shelved product transporter
US20100089007A1 (en) * 2008-10-13 2010-04-15 Shannon Milican Dual layer packaging with expandable inner layer
EP1501732B2 (en) 2002-04-30 2010-07-28 Deutsche Rockwool Mineralwoll GmbH & Co. OHG Device for the production of a packaging unit and device for carrying out said method
US20120240525A1 (en) * 2011-03-25 2012-09-27 Summerford Wayne C Method and System for Applying Tamper Evident Banding
CN103818577A (en) * 2012-11-16 2014-05-28 江苏凯伦建材股份有限公司 Waterproof-roll heat-shrink package device
US20150183539A1 (en) * 2012-08-24 2015-07-02 Khs Gmbh Method and apparatus for packaging groups of articles which are combined to form packaging units

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904943A (en) * 1958-08-20 1959-09-22 Grace W R & Co Method and apparatus for packaging articles in shrinkable plastic film
US2908576A (en) * 1956-12-05 1959-10-13 Grace W R & Co Packaged sausage product and method of making same
US2962848A (en) * 1959-10-23 1960-12-06 Hayssen Mfg Company Art of compression bundling
US3001644A (en) * 1959-10-01 1961-09-26 Kimberly Clark Co Cellulosic product
US3037620A (en) * 1960-02-03 1962-06-05 United States Steel Corp Package of slender articles and method of making it
US3171238A (en) * 1962-12-31 1965-03-02 Grace W R & Co Sealing method
US3233387A (en) * 1963-02-05 1966-02-08 Grace W R & Co Packaging apparatus
US3255877A (en) * 1962-06-07 1966-06-14 Union Carbide Corp Plastic packaging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908576A (en) * 1956-12-05 1959-10-13 Grace W R & Co Packaged sausage product and method of making same
US2904943A (en) * 1958-08-20 1959-09-22 Grace W R & Co Method and apparatus for packaging articles in shrinkable plastic film
US3001644A (en) * 1959-10-01 1961-09-26 Kimberly Clark Co Cellulosic product
US2962848A (en) * 1959-10-23 1960-12-06 Hayssen Mfg Company Art of compression bundling
US3037620A (en) * 1960-02-03 1962-06-05 United States Steel Corp Package of slender articles and method of making it
US3255877A (en) * 1962-06-07 1966-06-14 Union Carbide Corp Plastic packaging
US3171238A (en) * 1962-12-31 1965-03-02 Grace W R & Co Sealing method
US3233387A (en) * 1963-02-05 1966-02-08 Grace W R & Co Packaging apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423901A (en) * 1965-07-06 1969-01-28 Diamond Int Corp Shrink capping method and apparatus
US3546828A (en) * 1967-10-25 1970-12-15 Phillips Petroleum Co Packaging compressible materials
US3581458A (en) * 1968-02-07 1971-06-01 Olov Erland Gustavsson Method of shrinking a sleeve- or cap-shaped wrapping of heat-shrinkable plastic sheet surrounding a transport unit and an apparatus for carrying out the method
US3516217A (en) * 1968-03-07 1970-06-23 Bemis Co Inc Compression packaging
US3721804A (en) * 1970-12-16 1973-03-20 Tsi Inc Apparatus for sealing and shrinking plastic film
US3805473A (en) * 1971-03-25 1974-04-23 E Lidgard Packaging methods and structures
US3895476A (en) * 1972-11-06 1975-07-22 Iii Henry Knox Burns Shrink-film packaging method
US4799350A (en) * 1981-07-31 1989-01-24 Isover Saint-Gobain Process for packaging panels of a compressible material and the packages produced by this process
US4821491A (en) * 1981-07-31 1989-04-18 Isover Saint-Gobain Process for packaging panels of a compressible material and the packages produced by this process
FR2545414A1 (en) * 1983-05-02 1984-11-09 Nagema Veb K APPARATUS FOR HEAT CONTRACTING SHEETS OF PLASTIC MATERIALS FOR PACKAGING
US4852332A (en) * 1987-05-23 1989-08-01 Hubert Becker Process for treating filamentary or thread textile material
US4986419A (en) * 1987-09-24 1991-01-22 Bonneville International Corporation Packaging for point of sale display, shipment and storage of cassette recordings and methods
US5390783A (en) * 1989-05-17 1995-02-21 A.C.X. Trading, Inc. Non-palletized cargo unit formed of selected uniform size and weight bales of hay to fit multiple cargo spaces
US5050368A (en) * 1990-01-11 1991-09-24 Tokiwa Kogyo Co., Ltd. Shrink packaging apparatus
US6381925B2 (en) * 1999-07-27 2002-05-07 Mars, Incorporated Method for forming a compressed grouping of objects
US6408602B1 (en) 1999-07-27 2002-06-25 Mars Incorporated apparatuses for forming a compressed grouping of objects
US6880313B1 (en) 2001-12-28 2005-04-19 Gateway Manufacturing, Inc. Method for bundling multiple articles together while obscuring individual identification codes and related assembly
EP1501732B2 (en) 2002-04-30 2010-07-28 Deutsche Rockwool Mineralwoll GmbH & Co. OHG Device for the production of a packaging unit and device for carrying out said method
US7621108B1 (en) 2008-07-18 2009-11-24 The Procter & Gamble Company Assembling a packaged bundle using an adjustable multi-shelved product transporter
US20100089007A1 (en) * 2008-10-13 2010-04-15 Shannon Milican Dual layer packaging with expandable inner layer
US9102459B2 (en) * 2008-10-13 2015-08-11 Foamtec International Co., Ltd. Dual layer packaging with expandable inner layer
US20120240525A1 (en) * 2011-03-25 2012-09-27 Summerford Wayne C Method and System for Applying Tamper Evident Banding
US20150183539A1 (en) * 2012-08-24 2015-07-02 Khs Gmbh Method and apparatus for packaging groups of articles which are combined to form packaging units
US10246206B2 (en) * 2012-08-24 2019-04-02 Khs Gmbh Method and apparatus for packaging groups of articles which are combined to form packaging units
CN103818577A (en) * 2012-11-16 2014-05-28 江苏凯伦建材股份有限公司 Waterproof-roll heat-shrink package device

Similar Documents

Publication Publication Date Title
US3362128A (en) Method of packaging articles
US3696580A (en) Shrink film packaging method
US3986611A (en) Cling film overwrap for palletized articles
US4793490A (en) Package for compressible bags and process
US3127273A (en) Methqd for continuously wrapping biscuits
KR100276131B1 (en) Method and apparatus for feeding resiliently compressed articles to a form/fill/seal machine
US3662512A (en) Method and apparatus for shrink-film wrapping a pallet load
US4050220A (en) Spiral bundler
US4317322A (en) Rotatable film wrapping apparatus with wrap carrying mechanism
US2980245A (en) Container, package, and manufacture of package
US2579415A (en) Packaging process
US3788463A (en) Bundling method and article produced thereby
US20030019186A1 (en) Continuous apparatus in distribution equipment
US3458036A (en) Compressed heat shrunk package
US9216832B2 (en) Heat shrinkable bubble wrapping machine
US4642969A (en) Method and apparatus for wrapping blocks of cheese
US3589099A (en) Apparatus for packaging articles
US3517479A (en) Wrapping machine
EP1775233B1 (en) Outer package for packaged groups of rolls of products.
US4005777A (en) Double wrap package
US3187477A (en) Method of making a special package
US4018337A (en) Heat shrink packaging
US4641488A (en) Apparatus and method for wrapping packages with heat shrinkable material
US3207300A (en) Labeled package
US3171749A (en) Method of packaging food