US3360945A - Repressurized natural gas addition to main gas stream to maintain well head pressure - Google Patents
Repressurized natural gas addition to main gas stream to maintain well head pressure Download PDFInfo
- Publication number
- US3360945A US3360945A US435164A US43516465A US3360945A US 3360945 A US3360945 A US 3360945A US 435164 A US435164 A US 435164A US 43516465 A US43516465 A US 43516465A US 3360945 A US3360945 A US 3360945A
- Authority
- US
- United States
- Prior art keywords
- gas
- stream
- natural gas
- pressure
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 title description 51
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title description 38
- 239000003345 natural gas Substances 0.000 title description 13
- 238000000034 method Methods 0.000 description 20
- 239000003949 liquefied natural gas Substances 0.000 description 19
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 11
- 239000002737 fuel gas Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- -1 ethane Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
- F25J1/0255—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/32—Compression of the product stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Definitions
- ABSTRACT OF THE DESCLOSURE A process for liquefying natural gas and maintaining wellhead pressure at the source thereof wherein the gas is compressed and split into two streams, the first stream containing a volume that is no greater than one-third of the total gas volume. The first stream is cooled and a portion thereof liquefied by expansion in a pluality of stages of successively lower pressure. A portion of the still gaseous fraction withdrawn from the two higher pressure stages is employed as fuel gas and the remaining still gaseous fraction is compressed and combined with the second stream. The combined stream is compressed and passed to the well-heads to maintain the pressure thereof.
- This invention relates, in general, to the liquefaction of natural gas, and more particularly, to a process combining a pressure maintenance operation with a liquefaction operation, whereby the liquefied natural gas is enriched in ethane and substantial economies, in terms of energy consumption, are effected in both the pressure maintenance and liquefaction stages.
- An LNG product of higher ethane content can be obtained from leaner or dryer gases and the liquefaction plant can be operated more profitably, if it can be combined with a pressure maintenance plant of an oil or condensate field.
- the combination with which to realize these worthwhile objectives forms the substance of the present invention.
- pressure maintenance operations require the handling of rather large volumes of gas.
- a portion of the available gas volume can be diverted to liquefaction. It has been determined from basic considerations that this portion should not exceed from a fourth to a third of the volume of intake gas, or that the volume of injection gas should not be less than two to three times of the volume of gas which is to be liquefied.
- the minimum economical liquefaction volume for an ocean transport route depends on many factors of which one of the most important is the length of the traverse.
- the cost of transport which contributes materially to the cost of the gas delivered can be reduced by employing large tankers. Investigations of likely routes tend to support the view that the minimum daily liquefaction volume should be in the order of 30 to 40 million cubic feet per day. It thus follows that the invention, at least in its most efficient employment, should be utilized in repressuring plants handling from to million cubic feet or more per day.
- the plant should be located close to tide water, as liquefied natural gas cannot be piped any distance without very substantial losses, nor can the volume of flash vapors from the lowest temperature stages (liquid subcooling stages) of the liquefaction plant be delivered back into the injection gas stream, as set forth hereinbelow, over any appreciable distance without impairing the economy of the combined operation.
- natural gas at about 60 p.s.i.g. in line 30 is initially compressed to about l2()014()0 p.s.i.g. in compressor 1.
- Compressed gas in line 32 is then treated for the removal of heavier hydrocarbons and water vapor by a first cooler 2 and a refrigcrated subcooler 3, wherein condensation of these components occurs, and the gas is then passed to separator 4 via line 34.
- Water and heavier hydrocarbons are removed in line 35, and the overhead stream passes out of separator 4 in line 36.
- the stream is divided, a volume of gas in the order of 2 to 3 times the volume to be recovered as LNG being branched off in line 40 to by-pass the liquefaction plant. The remaining portion is passed through line 52 and the cold train of the liquefaction plant.
- Gas in line 52 is first treated to remove acid components at 5, this unit having refiux circuits 54, 56 and 58.
- the overhead in line 60 is then fed to glycol drying stage 6 wherein any remaining water vapor is absorbed by the glycol and removed at 62.
- the overhead, in line 64 is cooled to F. in refrigerated subcooler 7, and any hydrocarbon condensate, lube oil or traces of glycol are removed in separator 8 via line 69.
- the overhead gas is then passed via lines 76, 70 to dessicant dryers 9, the streams being combined again in line 72.
- a portion of the gas is utilized to reheat the fuel gas in line 14 in exchanger 10, and, after performing this function, returns to the main stream via line 13 at 76.
- the remainder of the stream is passed into line 74 and subcooler 11.
- the recombined stream is expanded in three stages, shown schematically at 16, in accordance with the teachings in copending US. patent application Ser. No. 358,789.
- Liquefied natural gas is withdrawn through line 22 and sent to storage or transport.
- the gases emanating from these stages, in streams 17, 18 and 20, are esssentially pure methane and noncondensibles. Because of this, the LNG withdrawn in line 22. is considerably richer in ethane, a typical increase being from 4% in the raw gas to 9% in the LNG.
- the gases in lines 17, 18 and 20, are compressed in recompressor 21, with the exception of fuel gas off-takes 1d, 19, which provide all the requirements for compressor drives and the like.
- Gases in lines 14, 19, after cold recuperation in exchanger 10 are passed in lines 89, 82, exchanger 84 and out through lines 86, 88; this arrangement provides for gas at two different pressures. It is to be noted that this measure saves considerable compression energy, as the fuel gas volume for compressor drives alone with average 18 to 20% of the total volume of gas liquefied depending, of course, on the total amount of gas handled and the injection pressure desired.
- Recompressed gas in line 23 from compressor 21 is joined with compressed field gas not sent to the cold train in line at point 42.
- the combined streams, in line 44 are compressed to the desired injection pressure in compressor 24 passed via line 46 to cooler 25, and then to the respective wellheads of the repressuring system (not shown) via line 50.
- the process of the invention has the following advantages: Firstly, the primary gas compressor 1 and related equipment will handle the entire gas volume for both liquefaction and pressure maintentance, thus cutting down on both capital and operating expenses. Secondly, removal of the flashed-off vapors in lines 17, 18, 20, amounting to about 1.38 times the amount of gas liquefied and consisting essentially of methane and noncondensibles, more than double the ethane content of the LNG. As noted hereinabove, this is most useful for the recuperation of the cold potential in the regasification process described in the aforementioned copending patent application.
- a process for liquefying natural gas and maintaining well-head pressure at the source thereof comprising:
- a process for liquefying natural gas and maintaining well-head pressure at the source thereof comprising:
- step (g) compressing and passing the combined stream of step (f) to the well-heads to maintain the pressure thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US435164A US3360945A (en) | 1965-02-25 | 1965-02-25 | Repressurized natural gas addition to main gas stream to maintain well head pressure |
| DE19661501726 DE1501726A1 (de) | 1965-02-25 | 1966-02-15 | Verfahren zur Verfluessigung von Erdgas |
| NL6602325A NL6602325A (enrdf_load_stackoverflow) | 1965-02-25 | 1966-02-23 | |
| GB8510/66A GB1096635A (en) | 1965-02-25 | 1966-02-25 | Liquefaction of natural hydrocarbon gases |
| FR51224A FR1470138A (fr) | 1965-02-25 | 1966-02-25 | Procédé de liquéfaction du gaz naturel |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US435164A US3360945A (en) | 1965-02-25 | 1965-02-25 | Repressurized natural gas addition to main gas stream to maintain well head pressure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3360945A true US3360945A (en) | 1968-01-02 |
Family
ID=23727268
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US435164A Expired - Lifetime US3360945A (en) | 1965-02-25 | 1965-02-25 | Repressurized natural gas addition to main gas stream to maintain well head pressure |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3360945A (enrdf_load_stackoverflow) |
| DE (1) | DE1501726A1 (enrdf_load_stackoverflow) |
| GB (1) | GB1096635A (enrdf_load_stackoverflow) |
| NL (1) | NL6602325A (enrdf_load_stackoverflow) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3416324A (en) * | 1967-06-12 | 1968-12-17 | Judson S. Swearingen | Liquefaction of a gaseous mixture employing work expanded gaseous mixture as refrigerant |
| US3542673A (en) * | 1967-05-22 | 1970-11-24 | Exxon Research Engineering Co | Recovery of c3-c5 constituents from natural gas by compressing cooling and adiabatic autorefrigerative flashing |
| US4664190A (en) * | 1985-12-18 | 1987-05-12 | Shell Western E&P Inc. | Process for recovering natural gas liquids |
| US5630328A (en) * | 1995-09-22 | 1997-05-20 | Consolidated Natural Gas Service Company, Inc. | Natural gas conditioning facility |
| USRE39244E1 (en) * | 1997-10-04 | 2006-08-22 | Master Corporation | Acid gas disposal |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MY118329A (en) * | 1995-04-18 | 2004-10-30 | Shell Int Research | Cooling a fluid stream |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1150454A (en) * | 1911-02-25 | 1915-08-17 | Alfred E Roberts | Apparatus for recovering hydrocarbon products from gas. |
| US2082189A (en) * | 1934-05-09 | 1937-06-01 | Lee S Twomey | Method of liquefying and storing fuel gases |
| US2198098A (en) * | 1939-02-06 | 1940-04-23 | Tide Water Associated Oil Comp | High pressure gas process |
| US2535148A (en) * | 1946-04-18 | 1950-12-26 | Pritchard & Co J F | Method of storing natural gas |
| US2582148A (en) * | 1947-05-15 | 1952-01-08 | Pritchard & Co J F | Method of recovering desirable liquefiable hydrocarbons |
| US2720265A (en) * | 1954-03-31 | 1955-10-11 | Gulf Research Development Co | Adjusting the retrograde condensation pressure of hydrocarbon compositions |
| US3160489A (en) * | 1961-02-06 | 1964-12-08 | Fluor Corp | Nitrogen removal from natural gas |
| US3182461A (en) * | 1961-09-19 | 1965-05-11 | Hydrocarbon Research Inc | Natural gas liquefaction and separation |
| US3223157A (en) * | 1963-04-09 | 1965-12-14 | Exxon Production Research Co | Oil recovery process |
| US3257813A (en) * | 1960-08-03 | 1966-06-28 | Conch Int Methane Ltd | Liquefaction of gases |
-
1965
- 1965-02-25 US US435164A patent/US3360945A/en not_active Expired - Lifetime
-
1966
- 1966-02-15 DE DE19661501726 patent/DE1501726A1/de active Pending
- 1966-02-23 NL NL6602325A patent/NL6602325A/xx unknown
- 1966-02-25 GB GB8510/66A patent/GB1096635A/en not_active Expired
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1150454A (en) * | 1911-02-25 | 1915-08-17 | Alfred E Roberts | Apparatus for recovering hydrocarbon products from gas. |
| US2082189A (en) * | 1934-05-09 | 1937-06-01 | Lee S Twomey | Method of liquefying and storing fuel gases |
| US2198098A (en) * | 1939-02-06 | 1940-04-23 | Tide Water Associated Oil Comp | High pressure gas process |
| US2535148A (en) * | 1946-04-18 | 1950-12-26 | Pritchard & Co J F | Method of storing natural gas |
| US2582148A (en) * | 1947-05-15 | 1952-01-08 | Pritchard & Co J F | Method of recovering desirable liquefiable hydrocarbons |
| US2720265A (en) * | 1954-03-31 | 1955-10-11 | Gulf Research Development Co | Adjusting the retrograde condensation pressure of hydrocarbon compositions |
| US3257813A (en) * | 1960-08-03 | 1966-06-28 | Conch Int Methane Ltd | Liquefaction of gases |
| US3160489A (en) * | 1961-02-06 | 1964-12-08 | Fluor Corp | Nitrogen removal from natural gas |
| US3182461A (en) * | 1961-09-19 | 1965-05-11 | Hydrocarbon Research Inc | Natural gas liquefaction and separation |
| US3223157A (en) * | 1963-04-09 | 1965-12-14 | Exxon Production Research Co | Oil recovery process |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3542673A (en) * | 1967-05-22 | 1970-11-24 | Exxon Research Engineering Co | Recovery of c3-c5 constituents from natural gas by compressing cooling and adiabatic autorefrigerative flashing |
| US3416324A (en) * | 1967-06-12 | 1968-12-17 | Judson S. Swearingen | Liquefaction of a gaseous mixture employing work expanded gaseous mixture as refrigerant |
| US4664190A (en) * | 1985-12-18 | 1987-05-12 | Shell Western E&P Inc. | Process for recovering natural gas liquids |
| US5630328A (en) * | 1995-09-22 | 1997-05-20 | Consolidated Natural Gas Service Company, Inc. | Natural gas conditioning facility |
| USRE39244E1 (en) * | 1997-10-04 | 2006-08-22 | Master Corporation | Acid gas disposal |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1096635A (en) | 1967-12-29 |
| NL6602325A (enrdf_load_stackoverflow) | 1966-08-26 |
| DE1501726A1 (de) | 1969-10-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3342037A (en) | Liquefaction of natural gas by cascade refrigeration and multiple expansion | |
| KR100338879B1 (ko) | 개선된 천연 가스 액화 방법 | |
| US4430103A (en) | Cryogenic recovery of LPG from natural gas | |
| RU2194930C2 (ru) | Способ сжижения потока природного газа, содержащего по меньшей мере один замораживаемый компонент | |
| US3205669A (en) | Recovery of natural gas liquids, helium concentrate, and pure nitrogen | |
| US2960837A (en) | Liquefying natural gas with low pressure refrigerants | |
| US6223557B1 (en) | Process for removing a volatile component from natural gas | |
| US3721099A (en) | Fractional condensation of natural gas | |
| US6401486B1 (en) | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants | |
| US5755114A (en) | Use of a turboexpander cycle in liquefied natural gas process | |
| US3020723A (en) | Method and apparatus for liquefaction of natural gas | |
| US6192705B1 (en) | Reliquefaction of pressurized boil-off from pressurized liquid natural gas | |
| RU2430316C2 (ru) | Способ для сжижения углеводородного потока и устройство для его осуществления | |
| RU2400683C2 (ru) | Способ и аппаратура для ожижения потока природного газа | |
| US2475957A (en) | Treatment of natural gas | |
| US20100175425A1 (en) | Methods and apparatus for liquefaction of natural gas and products therefrom | |
| US11268757B2 (en) | Methods for providing refrigeration in natural gas liquids recovery plants | |
| HU222696B1 (hu) | Eljárás túlnyomásos, metándús gázáram, különösen földgáz cseppfolyósítására | |
| US7225636B2 (en) | Apparatus and methods for processing hydrocarbons to produce liquified natural gas | |
| GB2332739A (en) | Process for liquefying a gas and separating impurities therefrom | |
| US4195979A (en) | Liquefaction of high pressure gas | |
| US3318103A (en) | Process for liquefaction of c2 and heavier hydrocarbons from natural gas with removal of co2 and h2o impurities | |
| US20190049176A1 (en) | Methods for providing refrigeration in natural gas liquids recovery plants | |
| US3360945A (en) | Repressurized natural gas addition to main gas stream to maintain well head pressure | |
| CN210980538U (zh) | 一种可实现多工艺切换的天然气液态乙烷回收装置 |