US3354502A - Metal rolling system - Google Patents

Metal rolling system Download PDF

Info

Publication number
US3354502A
US3354502A US534469A US53446966A US3354502A US 3354502 A US3354502 A US 3354502A US 534469 A US534469 A US 534469A US 53446966 A US53446966 A US 53446966A US 3354502 A US3354502 A US 3354502A
Authority
US
United States
Prior art keywords
rolls
working
roll
bearings
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US534469A
Inventor
Powell Fred Harding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reynolds Metals Co
Original Assignee
Reynolds Metals Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reynolds Metals Co filed Critical Reynolds Metals Co
Priority to US534469A priority Critical patent/US3354502A/en
Priority to GB1221567A priority patent/GB1117586A/en
Application granted granted Critical
Publication of US3354502A publication Critical patent/US3354502A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/18Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using profiled rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B2013/025Quarto, four-high stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/18Vertical rolling pass lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/07Adaptation of roll neck bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • B21B35/04Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills each stand having its own motor or motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/235Calendar

Definitions

  • a rolling mill comprising parallel working rolls having cooperating working faces, each working roll having at one end a first neck portion of relatively great diameter relatively remote from the working face of the roll and at the opposite end a second neck portion of relatively small diameter close to the working face of the roll, the first mentioned ends of the respective working rolls extending in opposite directions from the working faces of the rolls, the rolls being driven through the first men tioned ends thereof, and bearings for the rolls in which the first and second neck portions are journaled.
  • the axes of the working rolls may be substantially in a common horizontal plane.
  • Means may be provided for feeding particles to the nip of the working rolls to compress and consolidate the particles into a strip.
  • Backing up rolls may be provided behind the working rolls to minimize deformation thereof.
  • the bearings for the first neck portions of the working rolls and the bearings for the second neck portions thereof overlap along the pass line of the rolling mill.
  • the bearings for the first neck portions of the working rolls are disposed more remote fromthe pass line of the rolling mill than the extremities of the second mentioned ends of the working rolls.
  • This invention relates to a rolling mill and particularly to a rolling mill comprising parallel rolls having cooperating working faces and adapted to do work requiring driving the rolls with relatively high torque.
  • An example of a mill to which the invention is applicable is a mill for rolling particulate material into strip form and especially such a mill for rolling particulate material into relatively thin strip.
  • the invention will be described as embodied in a mill for rolling metal particles into solid strip in one pass through the mill, although the invention may be used in other appli cations.
  • the metal of the particles such as aluminum, copper, lead, zinc, magnesium, nickel, silver and alloys thereof, is not critical for purposes of the invention.
  • Mills designed for exerting high pressure on the work may be and normally are backed mills, i.e., backing up rolls are provided pressing the working rolls against the Work and minimizing deformation of the Working rolls. There may be one or a cluster of backing up rolls behind each working roll. Perhaps the most common type of backed mill is the 4-high mill with one relatively large backing up roll behind each working roll. The necessity of providing space for the bearings of the backing up rolls in a conventional 4-high mill imposes a further limitation on the diameter of the journaled neck portions of the working rolls.
  • the rolling mill of the present invention departs from conventional concepts in order to enable unprecedentedly high torque to be imparted to rolls having Working faces of given diameter.
  • Novel design of the roll necks provides for bearings for the working rolls being offset axially of the rolls and thus minimizes the reduction necessarily imparted to the journaled neck portions of the working rolls.
  • the neck of each working roll at the driven end of the roll has relatively great diameter while the diameter of the neck at the opposite or undriven end is relatively reduced.
  • the working rolls are of the same nonsymrnetrical shape but are reversed relatively to each other, one being driven from one side of the mill and the other from the opposite side of the mill.
  • the bearing for the smaller diameter neck portion at the undriven end of each roll is of smaller outside size than the bearing for the larger diameter neck portion at the driven end of the roll.
  • the bearings at each side of the mill are axially offset, the smaller size bearing at each side being opposite a portion of the roll neck of relatively great diameter of the other roll through which such other roll is driven.
  • the larger size hearing at each side of the mill may be disposed outwardly beyond the end of the cooperating working roll.
  • hopper When the mill is to be employed for compressing and consolidating particulate material means such as hopper may be provided for feeding particles to the nip of the rolls. That operation is facilitated by orienting the mill with the axes of the working rolls in a common plane extending more nearly horizontally than vertically. This enables the particles to be fed to the nip of the rolls by gravity or at least with the assistance of gravity. Also, the more nearly such common plane approaches the hori zontal the less there is of imbalance of gravitational forces on the roll necks which would impose a problem due to the offset relationship of the bearings if the mill were mounted upright in conventional manner.
  • FIGURE 1 is a diagrammatic plan view of a rolling mill embodying the invention, the hopper for feeding particles to the mill being omitted to enable a clear showing shown in vertical cross section parallel to the pass line of the mill.
  • a rolling mill comprising parallel working rolls 2 whose axes are in a common generally horizontalplane having cooperating working faces 3, each of the rolls 2 having at one end A a first neck portion 4 of relatively great diameter relatively remote from the working face 3 of the roll and at the opposite end B a second neck portion of relatively small diameter relatively close to the working face 3 of the roll, the ends A of the respective rolls 2 extending in opposite directions from the Working faces 3 of the rolls, the rolls being driven through the ends A thereof by any suitable driving means, not shown, as well known to those skilled in the art, and bearings for the rolls in which the neck portions 4 and 5 are journaled.
  • the neck portions 4 are iournaled in relatively large bearings 6 and the neck portions 5 are journaled in relatively small bearings 7.
  • Means in the form of a hopper 8. are provided for feed.- ing particles to the nip N of the rolls 2 to compress and metallurgically bond the particles together into a solid strip.
  • the particles being fed are designated 9 and the strip produced is designated 10.
  • the particles are fed downwardly, preferably by gravity, in a free flowing condition.
  • the particles are preferably preheated to a temperature suitable for hot rolling the metal, and means (not shown) are provided for cooling the working faces of the rolls during the rolling operation.
  • Backing up rolls 11 are provided behind the working rolls 2 to press the working rolls against the particles 9 and minimize deformation of the working rolls.
  • the mill shown is a 4-high mill but with the pass line vertical rather than horizontal.
  • the strip 10 formed by compressing and consolidating the particles 9 is delivered downwardly as shown in FIGURE 2 and may be guided from vertical to horizontal direction about a guide roll 12.
  • the strip is preferably withdrawn under tension and may be further rolled and coiled'as known to, those skilled in the art.
  • the bearings for the backing up rolls 11 are designated 13 and, as shown in FIGURE 1, are disposed nearer the pass line of the rolling mill than thebearings 6,
  • the bearings 6 and 13 overlap along the pass line of the rolling mill.
  • the bearings 6 and 7 overlap along the pass line of the rolling mill.
  • the bearings 7 are small enough to be disposed alongside the bearings 13 as shown in FIGURE 1.
  • The'bearings 6 are disposed outwardly of both the bearings 7 and the bearings 13 and also outwardly of the ends of the rolls journaled in the bearings 7. All of the bearings may be slidably mounted in frames and biased by springs as known to those skilled in the art, but when the mill is horizontally oriented imbalance of gravitational forces on the roll necks and bearings is avoided.
  • a millconstructed in accordance with the invention may have working rolls having working faces initially 11 /2" in diameter which can be dressed down to 9 /2 before the rolls have to be replaced.
  • the backing up rolls may have working faces 42 /2" in diameter.
  • the width of the working faces of the working and backing up rolls may be 48" and the corresponding dimension of the hopper 8 may be somewhat less, perhaps 46".
  • the width of the strip after trimming should be at least 42".
  • Each roll 2 may be driven by a 1500 horsepower motor providing an available torque of 2,710,000 inch-pounds at 35 rpm. working roll speed when maximum torque is delivered. When' rolling metal particles the strip emerges with a relatively high forward slip (excess of strip speed over working roll face peripheral. speed) as compared with conventional strip rolling.
  • the amount of forward slip varies with many factors, including the amount of roll pressure, but in a representative example may be 35%, more or less, when rolling one-tenth inch thickness strip from 1100 or 5005 aluminum alloy. cast plus 60 mesh, US. Standard F. or other suitable hot rolling temperature.
  • the strip emerges at about feet per minute.
  • a rolling mill comprising parallel rolls having cooperating working faces, each roll having at one end a first neck portion of relatively great diameter relatively remote from the working face of the roll and at the opposite end a second neck portion of relatively small diameter relatively close to the working face of the roll, the first mentioned ends of the respective rolls extending in opposite directions from the working faces of the rolls, the rolls being driven through the first mentioned ends thereof, and bearings for the rolls in which the first and second neck portions are journaled.
  • a rolling mill as claimed in claim 1 in which means are provided for feeding particles to the nip of the parallel rolls to compress and consolidate the particles into a strip.
  • a rolling mill as claimed in claim 2 in which means are provided for feeding particles to the nip of the parallel rolls to compress and consolidate the particles into a strip.
  • a rolling mill as claimed in claim 1 in which backing up rolls are provided behind the parallel rolls to minimize deformation thereof.
  • a rolling mill as claimed in claim 2 in which backing up rolls are provided behind the parallel rolls to minimize deformation thereof.
  • a rolling mill as claimed in claim 3 in which backing up rolls are provided. behind the parallel rolls to minimize deformation thereof.
  • a rolling mill as claimed in claim 4 in which backing up rolls are provided behind the parallel rolls to minimize deformation thereof.
  • a rolling mill as claimed in claim 1 in which the bearings for the first neck portions of the parallel rolls and the bearings for the second neck portions of the parallel rolls overlap along the pass line of the rolling mill.
  • a rolling mill as claimed in claim 9 in which the bearings for the first neck portions of the parallel rolls are disposed more remote from the pass line of the rolling mill than the extremities of the second mentioned ends of the parallelrolls.
  • a 4-high rolling mill for rolling metal particles into solid strip comprising working rolls having cooperating working faces and backing up rolls behind the working rolls, 'means to feed particles into the nip of the work rolls, each working roll having at one end a first neck portion of relatively great diameter relatively remote from the working face of the roll and at the opposite end a second neck portion of relatively small diameter relatively close to the working face of the roll, the first mentioned ends of the respective working rolls extending in opposite directions from the working faces of the rolls, the working rolls being driven through the first mentioned ends thereof, bearings for the working rolls in which the first and second neck portlons are journaled and bearings for the backing uprolls nearer the pass line of the rolling mill than the bearings for the first neck portions of the working rolls.
  • a 4-high rolling mill as claimed in claim 11 in which the axes of the rolls are in a substantially common plane extending more nearly horizontally than vertically.
  • a 4-high rolling mill as claimed in claim 14 in which the axes of the rolls are substantially in a common horizontal plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal Rolling (AREA)

Description

Nov. 28, 1967 F. H. POWELL METAL ROLLING SYSTEM Filed March 15, 1966 FIG.
FRED HARDING POWELL, FIG. 2.
INVENTOR,
HIS ATTORNEYS.
hot-rolled strip is lower than United States Patent C) 3,354,502 METAL ROLLING SYSTEM Fred Harding Powell, Henrico County, Va., assignor to Reynolds Metals Company, Richmond, Va., :1 corporation of Delaware Filed Mar. 15, 1966, Ser. No. 534,469 15 Claims. (Cl. 18-2) ABSTRACT OF THE DISCLOSURE A rolling mill comprising parallel working rolls having cooperating working faces, each working roll having at one end a first neck portion of relatively great diameter relatively remote from the working face of the roll and at the opposite end a second neck portion of relatively small diameter close to the working face of the roll, the first mentioned ends of the respective working rolls extending in opposite directions from the working faces of the rolls, the rolls being driven through the first men tioned ends thereof, and bearings for the rolls in which the first and second neck portions are journaled. The axes of the working rolls may be substantially in a common horizontal plane. Means may be provided for feeding particles to the nip of the working rolls to compress and consolidate the particles into a strip. Backing up rolls may be provided behind the working rolls to minimize deformation thereof. The bearings for the first neck portions of the working rolls and the bearings for the second neck portions thereof overlap along the pass line of the rolling mill. The bearings for the first neck portions of the working rolls are disposed more remote fromthe pass line of the rolling mill than the extremities of the second mentioned ends of the working rolls.
This invention relates to a rolling mill and particularly to a rolling mill comprising parallel rolls having cooperating working faces and adapted to do work requiring driving the rolls with relatively high torque. An example of a mill to which the invention is applicable is a mill for rolling particulate material into strip form and especially such a mill for rolling particulate material into relatively thin strip.
For purposes of explanation and illustration, the invention will be described as embodied in a mill for rolling metal particles into solid strip in one pass through the mill, although the invention may be used in other appli cations. The metal of the particles, such as aluminum, copper, lead, zinc, magnesium, nickel, silver and alloys thereof, is not critical for purposes of the invention.
To compact and compress metal particles into strip having a given thickness, it is generally necessary to limit the diameter of the Working faces of the rolls; for example, to roll particles of about minus to plus 60 mesh (US. Standard Sieve) into a strip of about one-tenth inch thickness, the preferred diameter of the working faces of the rolls is about eight to twelve inches. But to effect the compaction of the particles and the formation thereof into strip of substantial width requires driving the rolls with relatively high torque; for example, a torque of nearly three million inch-pounds on each of two work rolls is required to hot roll common aluminum alloy particles of said mesh range into strip of about one-tenth inch thickness and about forty inches Wide. The torque requirement would be much higher if the particles were rolled cold, and application of tension to the emerging strip is of relatively little help in minimizing the work roll torque requirement. For this as well as other reasons it is better to roll hot even though the tensile strength of There is a limit to the strength in torque of steel availthat of cold-rolled strip,
Patented Nov. 28, 1967 able for making rolling mill rolls. In conventional mills each roll has a roll neck of substantially reduced diameter compared to the diameter of the working face of the roll, so that the bearings in which the roll necks are journaled can be mounted in side-by-side relationship. This imposes a limit on the torque whicl .a roll can withstand since the torque must be transmitted through the thinnest portion of the roll neck. Conventional mills heretofore available have not had the requisite strength for the purposes of the present invention.
Mills designed for exerting high pressure on the work may be and normally are backed mills, i.e., backing up rolls are provided pressing the working rolls against the Work and minimizing deformation of the Working rolls. There may be one or a cluster of backing up rolls behind each working roll. Perhaps the most common type of backed mill is the 4-high mill with one relatively large backing up roll behind each working roll. The necessity of providing space for the bearings of the backing up rolls in a conventional 4-high mill imposes a further limitation on the diameter of the journaled neck portions of the working rolls.
The rolling mill of the present invention departs from conventional concepts in order to enable unprecedentedly high torque to be imparted to rolls having Working faces of given diameter. Novel design of the roll necks provides for bearings for the working rolls being offset axially of the rolls and thus minimizes the reduction necessarily imparted to the journaled neck portions of the working rolls. Also, the neck of each working roll at the driven end of the roll has relatively great diameter while the diameter of the neck at the opposite or undriven end is relatively reduced. The working rolls are of the same nonsymrnetrical shape but are reversed relatively to each other, one being driven from one side of the mill and the other from the opposite side of the mill. The bearing for the smaller diameter neck portion at the undriven end of each roll is of smaller outside size than the bearing for the larger diameter neck portion at the driven end of the roll. The bearings at each side of the mill are axially offset, the smaller size bearing at each side being opposite a portion of the roll neck of relatively great diameter of the other roll through which such other roll is driven. The larger size hearing at each side of the mill may be disposed outwardly beyond the end of the cooperating working roll.
When the mill is to be employed for compressing and consolidating particulate material means such as hopper may be provided for feeding particles to the nip of the rolls. That operation is facilitated by orienting the mill with the axes of the working rolls in a common plane extending more nearly horizontally than vertically. This enables the particles to be fed to the nip of the rolls by gravity or at least with the assistance of gravity. Also, the more nearly such common plane approaches the hori zontal the less there is of imbalance of gravitational forces on the roll necks which would impose a problem due to the offset relationship of the bearings if the mill were mounted upright in conventional manner.
Other details, objects and advantages of the invention will become apparent as the following description of a present preferred embodiment thereof proceeds.
In the accompanying drawings there is shown a present preferred embodiment of the invention in which FIGURE 1 is a diagrammatic plan view of a rolling mill embodying the invention, the hopper for feeding particles to the mill being omitted to enable a clear showing shown in vertical cross section parallel to the pass line of the mill. l i
Referring now more particularly to the drawings, there is shown a rolling mill comprising parallel working rolls 2 whose axes are in a common generally horizontalplane having cooperating working faces 3, each of the rolls 2 having at one end A a first neck portion 4 of relatively great diameter relatively remote from the working face 3 of the roll and at the opposite end B a second neck portion of relatively small diameter relatively close to the working face 3 of the roll, the ends A of the respective rolls 2 extending in opposite directions from the Working faces 3 of the rolls, the rolls being driven through the ends A thereof by any suitable driving means, not shown, as well known to those skilled in the art, and bearings for the rolls in which the neck portions 4 and 5 are journaled. The neck portions 4 are iournaled in relatively large bearings 6 and the neck portions 5 are journaled in relatively small bearings 7.
Means in the form of a hopper 8. are provided for feed.- ing particles to the nip N of the rolls 2 to compress and metallurgically bond the particles together into a solid strip. The particles being fed are designated 9 and the strip produced is designated 10. The particles are fed downwardly, preferably by gravity, in a free flowing condition. The particles are preferably preheated to a temperature suitable for hot rolling the metal, and means (not shown) are provided for cooling the working faces of the rolls during the rolling operation.
Backing up rolls 11 are provided behind the working rolls 2 to press the working rolls against the particles 9 and minimize deformation of the working rolls. The mill shown is a 4-high mill but with the pass line vertical rather than horizontal. The strip 10 formed by compressing and consolidating the particles 9 is delivered downwardly as shown in FIGURE 2 and may be guided from vertical to horizontal direction about a guide roll 12. The strip is preferably withdrawn under tension and may be further rolled and coiled'as known to, those skilled in the art.
The bearings for the backing up rolls 11 are designated 13 and, as shown in FIGURE 1, are disposed nearer the pass line of the rolling mill than thebearings 6, The bearings 6 and 13 overlap along the pass line of the rolling mill. Likewise the bearings 6 and 7 overlap along the pass line of the rolling mill. The bearings 7 are small enough to be disposed alongside the bearings 13 as shown in FIGURE 1. The'bearings 6 are disposed outwardly of both the bearings 7 and the bearings 13 and also outwardly of the ends of the rolls journaled in the bearings 7. All of the bearings may be slidably mounted in frames and biased by springs as known to those skilled in the art, but when the mill is horizontally oriented imbalance of gravitational forces on the roll necks and bearings is avoided.
For example, a millconstructed in accordance with the invention may have working rolls having working faces initially 11 /2" in diameter which can be dressed down to 9 /2 before the rolls have to be replaced. The backing up rolls may have working faces 42 /2" in diameter. The width of the working faces of the working and backing up rolls may be 48" and the corresponding dimension of the hopper 8 may be somewhat less, perhaps 46". The width of the strip after trimming should be at least 42". Each roll 2 may be driven by a 1500 horsepower motor providing an available torque of 2,710,000 inch-pounds at 35 rpm. working roll speed when maximum torque is delivered. When' rolling metal particles the strip emerges with a relatively high forward slip (excess of strip speed over working roll face peripheral. speed) as compared with conventional strip rolling. The amount of forward slip varies with many factors, including the amount of roll pressure, but in a representative example may be 35%, more or less, when rolling one-tenth inch thickness strip from 1100 or 5005 aluminum alloy. cast plus 60 mesh, US. Standard F. or other suitable hot rolling temperature. Thus, in said example, when rolling at the intermediate roll speed of 35 1'.-p.m. and a forward slip of 33% with 11 /2" diameter work rolls, the strip emerges at about feet per minute.
While a present preferred embodiment of the invention particles of minus 10 to Sieve, preheated to 900 has been shown and described, it is to be understood that,
the invention is not limited thereto but may be otherwise variously embodied within the scope of the following claims.
What is claimed is:
1. A rolling mill comprising parallel rolls having cooperating working faces, each roll having at one end a first neck portion of relatively great diameter relatively remote from the working face of the roll and at the opposite end a second neck portion of relatively small diameter relatively close to the working face of the roll, the first mentioned ends of the respective rolls extending in opposite directions from the working faces of the rolls, the rolls being driven through the first mentioned ends thereof, and bearings for the rolls in which the first and second neck portions are journaled.
2 A rolling millas claimed in claim 1 in which the axes of the parallel rolls are substantially in a common horizontal plane.
3. A rolling mill as claimed in claim 1 in which means are provided for feeding particles to the nip of the parallel rolls to compress and consolidate the particles into a strip.
4. A rolling mill as claimed in claim 2 in which means are provided for feeding particles to the nip of the parallel rolls to compress and consolidate the particles into a strip.
5. A rolling mill as claimed in claim 1 in which backing up rolls are provided behind the parallel rolls to minimize deformation thereof.
6. A rolling mill as claimed in claim 2 in which backing up rolls are provided behind the parallel rolls to minimize deformation thereof.
7. A rolling mill as claimed in claim 3 in which backing up rolls are provided. behind the parallel rolls to minimize deformation thereof.
8. A rolling mill as claimed in claim 4 in which backing up rolls are provided behind the parallel rolls to minimize deformation thereof.
9. A rolling mill as claimed in claim 1 in which the bearings for the first neck portions of the parallel rolls and the bearings for the second neck portions of the parallel rolls overlap along the pass line of the rolling mill.
10. A rolling mill as claimed in claim 9 in which the bearings for the first neck portions of the parallel rolls are disposed more remote from the pass line of the rolling mill than the extremities of the second mentioned ends of the parallelrolls.
11. A 4-high rolling mill for rolling metal particles into solid strip comprising working rolls having cooperating working faces and backing up rolls behind the working rolls, 'means to feed particles into the nip of the work rolls, each working roll having at one end a first neck portion of relatively great diameter relatively remote from the working face of the roll and at the opposite end a second neck portion of relatively small diameter relatively close to the working face of the roll, the first mentioned ends of the respective working rolls extending in opposite directions from the working faces of the rolls, the working rolls being driven through the first mentioned ends thereof, bearings for the working rolls in which the first and second neck portlons are journaled and bearings for the backing uprolls nearer the pass line of the rolling mill than the bearings for the first neck portions of the working rolls.
12. A 4-high rolling mill as claimed in claim 11 in which the axes of the rolls are in a substantially common plane extending more nearly horizontally than vertically.
13. A 4-high rolling mill as claimed in claim 11 in which the bearings for the first neck portions of the working rolls and the bearings for the backing up rolls overlap along the pass line of the rolling mill.
14. A 4-high rolling mill as claimed in claim 13 in which the bearings for the first neck portions of the working rolls and the bearings for the second neck portions of the working rolls overlap along the pass line of the rolling mill.
15. A 4-high rolling mill as claimed in claim 14 in which the axes of the rolls are substantially in a common horizontal plane.
References Cited UNITED STATES PATENTS 460,882 10/ 1891 Nevegold. 1,206,746 11/ 1916 Worth 72-249 1,571,545 2/ 1926 Gibbons. 1,621,284 3/ 1927 Slick. 1,772,248 8/ 1930 Gibbons 72249 X 2,167,544 7/1939 De Bats et a1. 3,298,060 1/1967 Michalak 189 WILLIAM J. STEPHENSON, Primary Examiner.

Claims (1)

1. A ROLLING MILL COMPRISING PARALLEL ROLLS HAVING COOPERATING WORKING FACES, EACH ROLL HAAVING AT ONE END A FIRST NECK PORTION OF RELATIVELY GREAT DIAMETER RELATIVELY REMOTE FROM THE WORKING FACE OF THE ROLL AND AT THE OPPOSITE END A SECOND NECK PORTION OF RELATIVELY SMALL DIAMETER RELATIVELY CLOSE TO THE WORKING FACE OF THE ROLL, THE FIRST MENTIONED ENDS OF THE RESPECTIVE ROLLS EXTENDING IN OPPOSITE DIRECTIONS FROM THE WORKING FACES OF THE ROLLS, THE ROLLS BEING DRIVEN THROUGH THE FIRST MENTIONED ENDS THEREOF, AND BEARINGS FOR THE ROLLS IN WHICH THE FIRST AND SECOND NECK PORTIONS ARE JOURNALED.
US534469A 1966-03-15 1966-03-15 Metal rolling system Expired - Lifetime US3354502A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US534469A US3354502A (en) 1966-03-15 1966-03-15 Metal rolling system
GB1221567A GB1117586A (en) 1966-03-15 1967-03-15 Improvements in or relating to rolling mills

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US534469A US3354502A (en) 1966-03-15 1966-03-15 Metal rolling system
DER0047069 1967-10-06

Publications (1)

Publication Number Publication Date
US3354502A true US3354502A (en) 1967-11-28

Family

ID=25992097

Family Applications (1)

Application Number Title Priority Date Filing Date
US534469A Expired - Lifetime US3354502A (en) 1966-03-15 1966-03-15 Metal rolling system

Country Status (1)

Country Link
US (1) US3354502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2368310A1 (en) * 1976-10-21 1978-05-19 Escher Wyss Sa ROLLING MILL
US5913470A (en) * 1997-01-13 1999-06-22 Scribner; Albert Willis Roll feeder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460882A (en) * 1891-10-06 neyeg-old
US1206746A (en) * 1915-09-28 1916-11-28 William P Worth Rolling-mill.
US1571545A (en) * 1924-07-14 1926-02-02 Charles J Gibbons Rolling mill
US1621284A (en) * 1922-10-26 1927-03-15 Edwin E Slick Rolling mill
US1772248A (en) * 1927-08-03 1930-08-05 Charles J Gibbons Rolling mill
US2167544A (en) * 1937-09-09 1939-07-25 Metal Carbides Corp Method of making hard metal articles
US3298060A (en) * 1963-06-07 1967-01-17 Martin H Michalak Methods and apparatus for compacting powdered metal to form strips

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460882A (en) * 1891-10-06 neyeg-old
US1206746A (en) * 1915-09-28 1916-11-28 William P Worth Rolling-mill.
US1621284A (en) * 1922-10-26 1927-03-15 Edwin E Slick Rolling mill
US1571545A (en) * 1924-07-14 1926-02-02 Charles J Gibbons Rolling mill
US1772248A (en) * 1927-08-03 1930-08-05 Charles J Gibbons Rolling mill
US2167544A (en) * 1937-09-09 1939-07-25 Metal Carbides Corp Method of making hard metal articles
US3298060A (en) * 1963-06-07 1967-01-17 Martin H Michalak Methods and apparatus for compacting powdered metal to form strips

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2368310A1 (en) * 1976-10-21 1978-05-19 Escher Wyss Sa ROLLING MILL
US5913470A (en) * 1997-01-13 1999-06-22 Scribner; Albert Willis Roll feeder

Similar Documents

Publication Publication Date Title
US3818743A (en) Rolling mills
US4354880A (en) Method of forge-conditioning non-ferrous metals prior to rolling
LT3832B (en) Method for obtaining of steel tape by hot rolling, tape device for pouring out
US3580032A (en) Apparatus for reducing the width of metallic slabs
US3394574A (en) Treatment of strip metal
US3210981A (en) Construction and control of planetary mills
US5706690A (en) Twin stand cold reversing mill
US3354502A (en) Metal rolling system
US4352697A (en) Method of hot-forming metals prone to crack during rolling
US1199080A (en) Extrusion of metal bodies.
US4050280A (en) Rod rolling
US4781050A (en) Process and apparatus for producing high reduction in soft metal materials
US2118284A (en) Apparatus for producing sheet material
US3165948A (en) Method of rolling h-sectioned steel members and mill train for the same
US3657913A (en) Crown control
USRE26665E (en) Metal rolling system
GB1194328A (en) Rolling Mill for Producing Constant Gauge
US3292402A (en) Method and apparatus for rolling flat strip
US3871221A (en) Continuous strip rolling mill
US4610070A (en) Process for manufacturing clad strips
US4382376A (en) Methods of rolling wire rods or bars
US395350A (en) Apparatus for rerolling old rails
US372747A (en) Reversing rolling-mill
US4294306A (en) Withdrawal roll unit for horizontal continuous billet casting machines
US2706422A (en) Metal rolling