US3345719A - Apparatus for continuous production of crimped filaments - Google Patents

Apparatus for continuous production of crimped filaments Download PDF

Info

Publication number
US3345719A
US3345719A US378488A US37848864A US3345719A US 3345719 A US3345719 A US 3345719A US 378488 A US378488 A US 378488A US 37848864 A US37848864 A US 37848864A US 3345719 A US3345719 A US 3345719A
Authority
US
United States
Prior art keywords
shutter
compression chamber
yarn
filament
throat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US378488A
Other languages
English (en)
Inventor
Schatz Gunther
Gemeinhardt Hermann
Brucher Hans
Jurisch Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glanzstoff AG
Vereinigte Glanzstoff Fabriken AG
Original Assignee
Glanzstoff AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glanzstoff AG filed Critical Glanzstoff AG
Priority to US661073A priority Critical patent/US3398223A/en
Application granted granted Critical
Publication of US3345719A publication Critical patent/US3345719A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes
    • D02G1/125Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes including means for monitoring or controlling yarn processing

Definitions

  • This invention in general, relates to apparatus for producing crimped filaments, such as crimped yarns, crimped tows of endless filaments, and the like. More specifically,
  • apparatus of the invention pertains to stuffing box-type crimping wherein a straight or uncrimped yarn or tow is fed into and initially crimped in a short compression throat, forced into. a compression chamber having a larger cross-section than the cross-section of said compression throat, periodically discharged from said compression chamber into a buffer space and periodically withdrawn from said buffer space by a winding device synchronously operated at alternating winding speeds.
  • the yarn or filament is pressed into the compression chamber in the above described manner. After emergence therefrom, it is deposited without any or with little tension imparted to the yarn or filament.
  • the crimped yarn or filament is put in a fixing or setting oven, wherein the crimping impressed on the yarn or filament is fixed so that the yarn or filament retains its crimped set.
  • a compression chamber structurally adapted to provide low wall friction is not, in itself, the best approach to solving the problem of nonuniformly crimped yarn or filaments.
  • a compression chamber of the aforesaid character and having a shutter or the like operable on "build up of interior pressure in the compression chamber and further including a switch for speed control of the winding spool motor operable by the opening and closing of the shutter does not completely solve the problem. This is because the yarn or filament packed in the compression chamber are thrust irregularly out of the compression chamber exit. The shutter movement necessary for operation of the switching results in a variably high filling of the compression chamber.
  • Still another type of noncompression chamber is one in which the yarn or filament conveyed upwardly and in which, instead of a weight-loaded shutter, a gear wheel is provided at the chamber exit.
  • the gear wheel has sawteeth, the steeply pitched teeth of which are pointed opposite the running direction of the yarn or filament.
  • the wheel is braked with an adjustable torque against the running direction of the yarn or filament.
  • Other problems stem from the reliable regulation of the draw-off and from the space above the compression chamber, closed off by the gear wheel. The drawing off of the crimped yarn or filament took place directly out of the compression chamber, resulting in the previously described disadvantages.
  • a uniform crimping of yarn or filament can be achieved essentially by the combination of two measures.
  • the invention provides for the feed of uncrimped yarn or filament, preferably by opposed feed rolls, into a short compression throat.
  • the compression throat preferably is round in transverse cross-section and has a diameter adapted to the delivery rolls.
  • the crimped yarn or filament enters a compression chamber, at least the upper portion of which is preferably also round in transverse cross-section.
  • This cross-section of the compression chamber is larger than the cross-section of the compression throat, i.e., about 1.2 to 2 times the cross-section of said throat.
  • the enlarged cross-section of the compression chamber is utilized to reduce wall friction between the compression chamber and the crimped yarn or filament to a low value. It has been observed that good results can be achieved within a range in which the ratio of the throat diameter to the diameter of the immediately following, upper portion of the compression chamber is between about 1:1.1 and 1:2, respectively.
  • the length ratio of the length of the compression throat and the compression chamber should be between about 112.5 and 1:7, preferably between 1:35 and 1:5, respectively.
  • the yarn or filament bent in the compression throat in undulating fashion enters the enlarged compression chamber having on its exit end a shutter with means biasing the shutter toward closed position.
  • the shutter preferably is a diagonally extending plate with pivot means, and the shutter bias is preferably a Weight biasing the shutter toward closed position.
  • the shutter bias is the principal component of force resisting discharge of the crimped filament from the compression chamber.
  • a hollow space i.e., an axial passage, in which the crimped yarn or filament is accumulated upon discharge from the compression chamber.
  • the crimped yarn or filament accumulates in the buffer space, closed at its exit end by a second shutter, until the weight of the accumulated crimped yarn or filament in the buffer space opens the second shutter.
  • the second shutter opens, it actuates a microswitch operatively connected in the electrical circuit of multi-speed drive motor driving the takeup spool or winding tube for the crimped yarn or filament.
  • the switch actuated by the second shutter can easily be adjusted so that the buffer space following the compression chamber remains essentially constantly filled to a predetermined degree. The level of filling fluctuates only slightly.
  • the degree of crimping is dependent only on the pressure build-up in the compression chamber and compression throat.
  • the loading of the second shutter is kept at a low value so that retroactive effect into the compression chamber is avoided as far as possible. This keeps the mechanism from operating in a manner Wherein, in effect, the crimped yarn or filament is drawn directly from the compression chamber.
  • the pressure applied by the second shutter on the yarn or filament movement therethrough should be at least about equal to 20% of the weight of the yarn or filament mass lying in the buffer space above the second shutter, and it must be, at most, about 10%, if possible not more than about 2% to 5%, of the bias load on the first shutter for the compression chamber.
  • the second shutter should strike a rib or lug on the wall opposite to the wall on which the second shutter is hinged.
  • This structure aids in preventing slippage of the crimped yarn or filament from the buffer space, even in the case of relatively widely opened shutters.
  • This lug can be formed integrally in the wall of the buffer space, but it can also be a cylindrical rod, which is seated and secured in a groove in said wall.
  • FIG. 1 is a side elevation, partly in cross-section, of a device for continuous crimping and constructed in a manner previously described;
  • FIG. 2 is a schematic view of a crimping operation from feed of uncrimped filament to winding of the crimped filament and utilizing the crimped device of FIG. 1, and
  • FIG. 3 is a schematic view of a circuit diagram for the electrical circuit of the winding tube drive motor and the microswitch operated by shutter movement.
  • uncrimped yarn or filament 10 is gripped by the nip of opposed, oppositely rotating feed rolls 11 and 12 and fed into the crimping device 13 below the feed rolls.
  • the crimping device 13 comprises a hollow member providing axial passage therethrough.
  • the upper portion of the device 13 has a compression throat 14, preferably round in transverse cross-section with its upper, open end closely fitted with relation to the feed rolls 11 and 12 and extending as far as possible toward the nip of the feed rolls.
  • compression throat 14 is a compression chamber 15 also preferably round in transverse cross-section and larger in diameter or cross-sectional area than the diameter or cross-sectional area of the compression throat 14, as previously described.
  • the axial passage 16 through compression device 13 thus provides the compression throat 14 and compression chamber 15.
  • the lower end of the compression device 13 is fixedly mounted in the upper end of the member 17 having an axial passage therethrough and communicating with the lower end of compression chamber 15.
  • the axial passage preferably is rectangular in cross-section, the upper portion 18 of which lies over shutter 19.
  • the shutter 19 comprises a diagonally extending shutter plate 21 lying diagonally across and substantially filling the axial passage in the member 17.
  • a cut out segment 23 along the upper edge of which extends the pin 24.
  • the hub 25 of the shutter 19 is pivotally mounted on the pin 24 whereby the shutter plate 21 is pivotable.
  • An arm 26 extends radially from hub 25 outwardly from the member 17.
  • the arm 26 has an upwardly extending pin 27 on which is removably seated a hollow, cylindrical weight 28.
  • the torque arm provided by arm 26 and weight 28 constitutes a bias means for biasing the shutter plate 21 toward closed position to close off the compression chamber 15 and the extension thereof defined by the upper portion 18 in member 17.
  • the portion 29 of member 17 below the shutter plate 21 defines a hollow, buffer space in which crimped yarn is accumulated after the latter has passed the shutter plate 21.
  • crimps 31 are formed initially in the throat 14 in continuous fashion.
  • Filament crimps 32 which have passed from float 14 into the compression chamber 15, are pushed against shutter plate 21 by pressure of continuous feed of filament to and through compression throat and compression chamber. Wall friction between the filament portion having crimps 32 in the compression chamber 15 is at a low value.
  • the pressure operating against the upper surface of the shutter plate 21 is resisted primarily by the bias of torque arm 26 and weight 28. When this pressure opens the shutter 19 sufiiciently to allow filament to pass out of the compression chamber past the shutter plate, it accumulates in the buffer space 29, which preferably is of rectangular cross-section.
  • the lower part of the buffer space 29 has a second or regulating shutter 33 comprising a shutter plate extending diagonally downwardly across the lower end of the buffer space 29.
  • the upper edge of the shutter 33 is pivotally mounted in the upper edge of the space 35 of wall 36 by the pin 34.
  • the lower, free edge of the shutter plate preferably seats against a rib 37 having a rounded contour.
  • the rib 37 is a cylindrical rod fixedly seated in a semicylindrical, transversely extending groove in the lower edge of wall 22.
  • the regulating shutter 33 has only a light spring bias urging it to closed position, i.e., the light bias of the actuator arm 43 of microswitch 42.
  • the bias urging shutter 33 toward closed position is substantially less than the bias on shutter 19, as has ben previously described.
  • Microswitch 42 is positioned adjacent the second shutter 33.
  • the microswitch is illustrated diagrammatically in the drawings inasmuch as the structure of the microswitch per se does not constitute a part of the invention. Many known microswitches are suitable for the purpose herein described.
  • Microswitch 42 has an actuator arm 43 operatively connected to the switching component of the microswitch.
  • the outer end of the actuator arm 43 may have a roller mounted thereon, which roller bears against the under surface of the shutter 33.
  • the microswitch has at least two switching positions, one of which is closed when shutter '33 is in closed position as shown in FIG. 1.
  • the other switching position is closed when the shutter 33 opens a predetermined amount.
  • the arm 43 of the microswitch may be resiliently biased so that it presses the shutter toward closed position.
  • the resilient bias on the arm 43 means for adjusting the degree of bias so that the bias on the shutter 33 is adjustable.
  • the lower, free edge of the shutter 33 preferably is curved to present the convex surface facing the rib 37.
  • the microswitch 42 is electrically connected by a circuit 47 with the electrical circuit for the motor 48.
  • the motor 48 is a multi-speed electric motor, the speed-controlling circuitry of which is controlled by the microswitch 42. This allows the motor 48 to drive the winding 49 on the rotatably driven winding tube or spool 50' at least two different rates of rotation. The slower rate of rotation occurs when shutter 33 is closed and the faster rate of rotation occurs when shutter 33 moves a predetermined amount away from closed position under the urging of the weight of accumulated yarn or filament in buffer space 29.
  • the over-all crimping operation is illustrated diagrammatically in FIG. 2 wherein uncrimped yarn or filament is drawn off wound spool 51 through a thread brake of known construction and over a roller or bar 53.
  • the yarn or filament passes over or around a heating plate 54 on which yarn or filament 1-0 is heated at the desired tempertaure.
  • the yarn then passes through a feed tube 55 into the nip of the draw rolls 11 and 12.
  • the yarn or filament is forced through and crimped in the device previously described and exits from the lower end of the buffer space 29 under the control of the shutter 33, which is drawn onto the winding 49 at rates depending upon the position of the shutter 33, as previously described, over a series of deflection rollers 56, around the roller 57 of a finishing bath 58 and over a deflection roller 59 onto the winding 49 of the crimped filament.
  • the two-speed control of motor 48 may be achieved by using a variable speed motor, the rate of revolution of which is variable in accord with the frequency of the alternating current supplied thereto.
  • the circuit of FIG. 3 shows a simple type of circuit for controlling the speed of motor 48 through microswitch 42. Current of one frequency is supplied through current main 60 and current of another frequency is supplied through current main 61 to switch contact points '63 and 62, respectively. Movable switch element 64 is moved between these points by the link 65, which in turn is linked to actuator arm 43. The particular current supplied to motor 48 via switch element 64 and current main 66 depends upon which of contact points 62 and 63 is contacted by the movable element 64.
  • the microswitch is oriented so that 'the current frequency which drives the motor 48 at the faster speed is supplied thereto when the shutter 33 is open and the current frequency which drives the motor at the slower speed is supplied thereto when shutter 33 is closed or approximately closed.
  • the current mains 60 and 61 can be connected to a switch-over device such as a relay or relays (not shown), which relay is connected by a separate circuit to microswitch 42 whereby the current for motor 48 passes through the relay switches and not the microswitch 42.
  • the relay switches are opened and closed in response to the opening and closing of the switch element 64 and contact points 62 and 63.
  • the yarn or filament is continuously drawn from the buffer space 29 at one or the other speed.
  • the shutter 33 constantly moves back and forth during the process. With the bias of actuator arm 43 on the shutter 33 in proper balance to achieve the correct mean draw-off speed of the crimped filament or yarn from the buffer space 29, the buffer space remains filled, within narrow limits, to the desired degree and thereby prevents retroaction against the functioning of the crimping operation proper in the compression throat and compression chamber.
  • Nylon 66 yarn linear polycondensate of adipic acid and hexamethylene diamine
  • the yarn is fed by feed rolls 11 and 12 to the crimping device illustrated in the drawings at about 600 meters per minute.
  • the crimped yarn is drawn from the buffer space, under the control of shutter 33 as aforedescribed, at a faster speed of 570 meters per minute and a slower speed of 470 meters per minute.
  • the load on shutter 21 is 300 grams.
  • Apparatus for crimping tow or yarn comprising a pair of juxtapositioned feed rolls adapted to feed said tow or yarn therebetween, a hollow member with an axial passage therein, said axial passage defining an upper short, compression throat adjacent said rolls and a lower, compression chamber having a cross-sectional area which is about 1.2 to 2 times the cross-sectional area of said throat, and having a length about 2.5 to 7 times the length of said throat, a pivotable shutter at the lower end of said compression chamber by which the lower end of said compression chamber is opened and closed, means biasing said shutter toward closed position, a hollow member with an axial passage communicating with the lower end of said compression chamber and defining a bufi'er space below sad compression chamber, and a pivotable second shutter at the lower end of said buffer space adapted to pivot between open and closed position.
  • Apparatus for crimping tow or yarn comprising a pair of juxtapositioned feed rolls adapted to feed said tow or yarn therebetween, a hollow member with an axial passage therein, said axial passage defining an upper short, compression throat adjacent said rolls and a lower, compression chamber having a cross-sectional area which is about 1.2 to 2 times the cross-sectional area of said throat, and having a length about 2.5 to 7 times the length of said throat, a pivotable shutter at the lower end of said compression chamber by which the lower end of said compression chamber is opened and closed, means biasing said shutter toward closed position, a hollow member with an axial passage communicating with the lower end of said compression chamber and defining a bufier space below said compression chamber, a pivotable second shutter at the lower end of said butter space adapted to pivot between open and closed position, an electrical switch and means responsive to movement of said second shutter for actuating said swich.
  • Apparatus for crimping tow or yarn comprising a pair of juxtapositioned feed rolls adapted to feed said tow or yarn therebetween, a hollow member with an axial passage therein, said axial passage defining an upper short, compression throat adjacent said rolls and a lower, compression chamber having a cross-sectional area which is about 1.2 to 2 times the cross-sectional area of said throat, and having a length about 2.5 to 7 times the length of said throat, a pivotable shutter at the lower end of said compression chamber by which the lower end of said compression chamber is opened and closed, means biasing said shutter toward closed position, a hollow member with an axial passage communicating with the lower end of said compression chamber and defining a buffer space below said compression chamber, a pivotable second shutter at the lower end of said buffer space adapted to pivot between open and closed position, second bias means biasing said second shutter toward closed position at a bias load of at least 20% of the weight of the crimped yarn or tow in said bufier space when said apparatus is in operation and about 2% to of the
  • Apparatus for crimping tow or yarn comprising a pair of juxtapositioned feed rolls adapted to feed said tow or yarn therebetween, a hollow member with an axial passage therein, said axial passage defining an upper short, compression throat adjacent said rolls and a lower, compression chamber having a cross-sectional area which is about 1.2 to 2 times the cross-sectional area of said throat, and having a length about 2.5 to 7 times the length of said throat, a pivotable shutter at the lower end of said compression chamber by which the lower end of said compression chamber is opened and closed, means biasing said shutter toward closed position, a hollow member with an axial passage communicating with the lower end of said compression chamber and defining a buffer space below said compression chamber, and a pivotable second shutter at the lower end of said buffer space adapted to pivot between open and close-d position, said compression throat and upper portion of said compression chamber being cylindrical, and the lower portion of said compression chamber and said butter space being rectangular in transverse cross-section.
  • Apparatus for crimping tow or yarn comprising a pair of juxtapositioned feed rolls adapted to feed said tow or yarn therebetween, a hollow member with an axial passage therein, said axial passage defining an upper short, compression throat adjacent said rolls and a lower, compression chamber having a cross-sectional area which is about 1.2 to 2 times the cross-sectional area of said throat, and having a length about 2.5 to 7 times the length of said throat, a pivotable shutter at the lower end of said compression chamber by which the lower end of said compression chamber is opened and closed, means biasing said shutter toward closed position, a hollow member with an axial passage communicating with the lower end of said compression chamber and defining a buffer space below said compression chamber, a pivotable second shutter at the lower end of said buffer space adapted to pivot between open and closed position, a winding spool rotatably driven by a multi-speed electric motor for drawing the crimped yarn or tow from said butter space, and means responsive to movement of said second shutter for alternating the speed of said
  • Apparatus for crimping tow or yarn comprising a pair of juxtapositioned feed rolls adapted to feed said tow or yarn therebetwen, a hollow member with an axial passage therein, said axial passage defining a compression throat adjacent the rolls and a lower compression chamber, a pivotable shutter at the lower end of said compression chamber by which the lower end of said compression chamber is opened and closed, means biasing said shutter toward closed position, a hollow member with an axial passage communicating with the lower end of said compression chamber, a pivotable second shutter at the lower end of said butler space adapted to pivot between open and closed position, a winding spool rotatably driven by a multi-speed electric motor for drawing the crimped yarn or tow from said buffer space, and means responsive to movement of said second shutter for alternating the speed of said motor between a faster speed when said second shutter is open and a slower speed when said shutter is closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)
US378488A 1963-06-24 1964-06-22 Apparatus for continuous production of crimped filaments Expired - Lifetime US3345719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US661073A US3398223A (en) 1963-06-24 1967-08-16 Process for production of crimped filaments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEV0024218 1963-06-24

Publications (1)

Publication Number Publication Date
US3345719A true US3345719A (en) 1967-10-10

Family

ID=7581043

Family Applications (1)

Application Number Title Priority Date Filing Date
US378488A Expired - Lifetime US3345719A (en) 1963-06-24 1964-06-22 Apparatus for continuous production of crimped filaments

Country Status (9)

Country Link
US (1) US3345719A (fi)
AT (1) AT249249B (fi)
BE (1) BE647919A (fi)
DK (1) DK116230B (fi)
FI (1) FI40654B (fi)
GB (1) GB1044768A (fi)
LU (1) LU46372A1 (fi)
NL (1) NL146229B (fi)
NO (1) NO117753B (fi)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430311A (en) * 1966-11-02 1969-03-04 Bancroft & Sons Co J Low tension delivery for stuffer crimper
US3526937A (en) * 1966-04-29 1970-09-08 Barmag Barmer Maschf Crimping apparatus
US3675286A (en) * 1970-11-12 1972-07-11 Bancroft & Sons Co J Synchronizing yarn winding to stuffer crimper output
US3688356A (en) * 1969-03-13 1972-09-05 Tmm Research Ltd Wad or plug control for stuffer-box crimping apparatus
US3832759A (en) * 1970-05-01 1974-09-03 Akzona Inc Process and apparatus for texturizing yarn
US3863311A (en) * 1972-01-31 1975-02-04 Platt International Ltd Package take-up control for stuffer box crimpers
US4067092A (en) * 1976-06-16 1978-01-10 Roberts John S Compression crimping apparatus
US4707896A (en) * 1986-11-05 1987-11-24 E. I. Du Pont De Nemours And Company Crimper discharge regulation
US6385827B1 (en) * 2001-03-15 2002-05-14 Shaw Industries, Inc. Apparatus and method for texturing yarn
US20080301922A1 (en) * 2007-06-11 2008-12-11 American Linc Corporation Textile processing assembly, stuffer box, and method for texturing yarn

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2846729A (en) * 1955-11-04 1958-08-12 American Cyanamid Co Tow crimper
US2865080A (en) * 1953-10-28 1958-12-23 Du Pont Method and apparatus for crimping and relaxing filaments
US3022545A (en) * 1956-09-06 1962-02-27 British Celanese Process for crimping cellulose triacetate fibers
US3200466A (en) * 1963-07-01 1965-08-17 Bancroft & Sons Co J Apparatus for crimping filaments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865080A (en) * 1953-10-28 1958-12-23 Du Pont Method and apparatus for crimping and relaxing filaments
US2846729A (en) * 1955-11-04 1958-08-12 American Cyanamid Co Tow crimper
US3022545A (en) * 1956-09-06 1962-02-27 British Celanese Process for crimping cellulose triacetate fibers
US3200466A (en) * 1963-07-01 1965-08-17 Bancroft & Sons Co J Apparatus for crimping filaments

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526937A (en) * 1966-04-29 1970-09-08 Barmag Barmer Maschf Crimping apparatus
US3430311A (en) * 1966-11-02 1969-03-04 Bancroft & Sons Co J Low tension delivery for stuffer crimper
US3688356A (en) * 1969-03-13 1972-09-05 Tmm Research Ltd Wad or plug control for stuffer-box crimping apparatus
US3832759A (en) * 1970-05-01 1974-09-03 Akzona Inc Process and apparatus for texturizing yarn
US3675286A (en) * 1970-11-12 1972-07-11 Bancroft & Sons Co J Synchronizing yarn winding to stuffer crimper output
US3863311A (en) * 1972-01-31 1975-02-04 Platt International Ltd Package take-up control for stuffer box crimpers
US4067092A (en) * 1976-06-16 1978-01-10 Roberts John S Compression crimping apparatus
US4707896A (en) * 1986-11-05 1987-11-24 E. I. Du Pont De Nemours And Company Crimper discharge regulation
US6385827B1 (en) * 2001-03-15 2002-05-14 Shaw Industries, Inc. Apparatus and method for texturing yarn
US20080301922A1 (en) * 2007-06-11 2008-12-11 American Linc Corporation Textile processing assembly, stuffer box, and method for texturing yarn
US7735204B2 (en) * 2007-06-11 2010-06-15 American Linc Corporation Textile processing assembly, stuffer box, and method for texturing yarn

Also Published As

Publication number Publication date
NO117753B (fi) 1969-09-22
NL6406015A (fi) 1964-12-28
DK116230B (da) 1969-12-22
GB1044768A (en) 1966-10-05
FI40654B (fi) 1968-12-31
AT249249B (de) 1966-09-12
LU46372A1 (fi) 1972-01-01
NL146229B (nl) 1975-06-16
BE647919A (fi) 1964-08-31

Similar Documents

Publication Publication Date Title
US3398223A (en) Process for production of crimped filaments
US3345719A (en) Apparatus for continuous production of crimped filaments
US2760252A (en) Filament crimping apparatus
US3058167A (en) Crimping apparatus
US3105349A (en) Method and apparatus for producing novelty yarn
US5343601A (en) Yarn spinning method with high-speed winding
US3200466A (en) Apparatus for crimping filaments
US4033103A (en) Process and apparatus for producing a variable diameter alternate twist yarn
US3146512A (en) Crimping apparatus
US4040240A (en) Method and apparatus for doubling and twisting a yarn by a two-step changeover system
US4103481A (en) Variable diameter yarn
US3129485A (en) Production of novelty bulked yarn
US3406436A (en) Crimping process
US3253314A (en) Crimping apparatus
US3763669A (en) System for bulking yarn
US3025659A (en) Method of thermally processing non-thermoplastic yarn
US3121935A (en) Apparatus and method for making novelty stuffer crimped yarns
US3707299A (en) Stuffer crimper with driven choke members for pressure control in the crimping zone
US4014085A (en) String up and shutdown process for a yarn texturizing apparatus
US3341913A (en) Drawing and bulking of synthetic polymer yarns
EP0004781A1 (en) Method and apparatus for cone winding of yarn from a constant speed source
US2763563A (en) Apparatus and method for coating multifilament glass yarn
US3648948A (en) Creel for rotatable bobbins
US3372848A (en) Feed roll assembly separable in response to thread depletion
US3300830A (en) Apparatus for uniformly crimping filaments