US3326029A - Hydraulic press - Google Patents

Hydraulic press Download PDF

Info

Publication number
US3326029A
US3326029A US387752A US38775264A US3326029A US 3326029 A US3326029 A US 3326029A US 387752 A US387752 A US 387752A US 38775264 A US38775264 A US 38775264A US 3326029 A US3326029 A US 3326029A
Authority
US
United States
Prior art keywords
tool
piston
cylinder
cylinder assembly
tool member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US387752A
Inventor
Thomas M Porter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HK Porter Inc
Original Assignee
HK Porter Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HK Porter Inc filed Critical HK Porter Inc
Priority to US387752A priority Critical patent/US3326029A/en
Application granted granted Critical
Publication of US3326029A publication Critical patent/US3326029A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/042Hand tools for crimping
    • H01R43/0427Hand tools for crimping fluid actuated hand crimping tools

Definitions

  • Tools of the aforementioned type are usually hydraulically or pneumatically actuated by compressed gas or liquid received from a centralized pump via flexible hoses. This arrangement enables the tools to be easily carried by operating personnel to remote locations where work is to be performed.
  • inventive concepts of the present invention will be hereinafter described in connection with a hydraulically-operated crimper of the type frequently utilized in crimping deformable wire connectors. It is to be understood, however, that the description of the present invention in connection with this particular type of tool is only for purposes of illustration and is not to be considered in any way as a limitation upon the scope of the inventive concepts disclosed.
  • the weight of a tool produced in this manner must of necessity be increased substantially if the stresses developed during subsequent operation are to be successfully withstood. As previously indicated, Where portable tools are being manufactured, this increase in weight is undesirable.
  • a third alternative procedure followed by some manufacturers is to heat treat the entire forging to a high hard ness level prior to performing the machining operation. Although this obviates the necessity of performing two machining operations, the overall costs of producing the tool are not substantially decreased due to the fact that once heat treated, the metal becomes hard and difficult to machine. Consequently, the manufacturer must utilize special tools and in addition, slow down the speed of the machining operations in order to conserve production equipment.
  • the apparatus contemplated herein comprises either a pneumatic or hydraulic cylinder adapted to receive separable tool supporting frame members in engagement therewith.
  • the cylinder portion is rough machined and then heat treated to a relatively low hardness level, as for example in the range of 250 Brinell, to provide a tensile strength of approximately 120,000 p.s.i.
  • the finish machining can be performed according to conventional techniques on conventional production machines.
  • machining operations such as cylinder boring can be done with ordinary high speed steel or carbide tools at high production rates.
  • the frame members are separately machined and then heat treated to a much higher hardness level of approximately 400 Brinell to provide a tensile strength of approximately 200,000 psi. Further finish machining of these components is not required for the distortion resulting from heat treatment is relatively inconsequential and tolerable.
  • the frame members and cylinder portion are then interconnected by locating pins inserted through aligned apertures in both components to complete the basic tool structu-re.
  • a high tensile strength is attained per unit of cross-sectional area. This in turn permits the Weight of these tool cornponents to be decreased markedly, thereby providing a means of producing a lightweight tool with high strength characteristics.
  • the nishing operations may be performed by normal methods at the price of heavier construction only in the cylinder area.
  • Another object of the present invention is to provide a piston-operated portable tool having components heat treated to varying levels -of hardness prior to their assembly.
  • a further object of the present invention is to provide a piston-operated tool having a cylinder assembly heat treated to a relatively low hardness level in order to facilitate machining, the remaining components of the tool being heat treated to a higher hardness level in order to provide the desired characteristics of high strength and lightweight.
  • FIG. l is a sectional View of a portable piston-operated tool embodying the concepts of the present invention.
  • FIG. 2 is an exploded view in perspective of the tool.
  • a piston-operated portable tool of the type utilized in compressing wire connectors is indicated at 10.
  • the tool is comprised basically of a cylinder assembly 12 with spaced frame members 14 (only one of which is clearly shown in FIG. 1) commonly referred to as cheeks attached thereto by means of locating pins 16.
  • a piston 18 is extensibly mounted within cylinder assembly 12 and provided at its exposed end with a rst tool member 20.
  • Tool member 20 is attached to the piston by means of a transverse pin 22 which may be readily removed when replacement of the tool member is necessitated.
  • a second tool member 23 is positioned in spaced opposed relationship to tool mem-ber 20 between frame members 14.
  • Tool member 23 is backed by an intermediate ller piece 24 held in place by screws 25. Removal of tool member 23 is also possible by simply withdrawing locating pin 26 which extends laterally through both frame members 14.
  • a portion of cylinder assembly 12 has been broken away as at 30 to illustrate the means utilized in extending and retracting piston 18.
  • the piston is internally provided with a cylinder chamber 32 within which vis contained a coiled spring 34.
  • the spring is attached t-o the piston head by means of a screw 36 and is fixed at its other end to the cylinder by means of transversely extending pin 38.
  • the piston is further provided with a shoulder 40 having positioned adjacent thereto various sealing rings 42 and 44.
  • piston 18 is hydraulically actuated by means of pressurized fluid being supplied through feed line 46.
  • the feed line is connected to control valve 48 which may in turn be controlled by manipulation of handle 50.
  • control valve 48 Once the handle is depressed, pressurized liquid is allowed to flow from line 46 into cylinder assembly 12 in order to drive piston 18 forward.
  • coiled spring 34 is extended and placed in tension.
  • control valve 48 is reset and cylinder assembly 12 placed in communication with the return line 52. This removes hydraulic pressure from the cylinder and allows coiled spring ,34 to retract ⁇ piston 18 as hydraulic uid escapes through the return line.
  • the hydraulic feed and return lines 46 and 52 are connected to a conventional hydraulic pump and tank assembly (not shown). Since this remotely positioned apparatus forms no part of the present invention, it has been omitted from the drawings.
  • FIG. 2 is an exploded view of the tool disclosed in FIG. 1 showing the principal components prior to assembly.
  • the cylinder assembly 12 is forged from a single blank and as clearly shown in this view, is provided with a cylindrical portion having an integral web 54 extending radially therefrom. After being rough machined, the cylinder assembly is heat treated to a relatively low hardness level of approximately 250 'BrinelL Thereafter, the
  • cylinder yassembly is finish machined by being centrally bored as at 55 and drilled at 56 to accept the transversely extending pins 16 utilized in attaching the frame members 14 thereto.
  • the cylinder assembly Since the cylinder assembly is not subjected to subsequent heat treatment following the finish machining operation, its tensile strength will remain in the area of 120,000 p.s.i. Consequently, the bulk of the cylinder ⁇ assembly must be of necessity be increased accordingly if operating stresses are to'be successfully withstood. It has been found, however, that the heavier construction required in the cylinder area is not particularly undesirable since it does not produce an unwieldy tool. When considered in connection with the advantages of easier machining without subsequent distortion as a result of heat treating, which would in turn require further machining, the advantages gained through allowing the cylinder assembly to remain at a relatively low hardness level are immediately apparent.
  • the frame members 14 are forged to provide matching right and left hand members.
  • the frame members are usually forged and immediately finish machined by having holes 58 and 60 drilled therethrough to accept locating pins 16 and the screws 25 and pin 26 which hold the filler piece 24 and tool member 23 in place.
  • the frame members are then heat treated to a high hardness level in the area of 400 Brinell to achieve a tensile strength of approximately 200,000 p.s.i.
  • the frame members may undergo some slight distortion during heat treatment, this is not considered particularly troublesome where the cooperating tool members 29 and 23 are to be utilized in performing operations such as crimping where accuracy is not an essential requisite.
  • the aforementioned procedure can be varied slightly to achieve the desired accuracy. More particularly, the accurate positioning of each frame member on the cylinder assembly 12 is controlled by the positioning of holes 58 drilled therethrough to accept the locating pins 16. By the same token, the position of tool member 23 and intermediate filler piece 24 is controlled by the accurate location of holes 60 adjacent the distal ends of each frame member. Since all of these holes are drilled following heat treatment, any distortion occurring prior to the drilling operation will have no detrimental effect on the ultimate location of the various tool components.
  • the completed tool offers several important advantages. More particularly, the frame members which connect tool inember 23 to cylinder assembly 12 are provided with high tensile rstrength without accompanying difficulties in machining. Minimum Weight in this particular area is of vital importance in view of the fact that the frame members extend outwardly from the cylinder and if allowed t-o become bulky, would impart an unwieldy characteristic to the tool.
  • the cylinder assembly 12 is machined without difficulty due to its relatively low hardness.
  • the heavier construction in this area is not considered particularly disadvantageous in view of the fact that it is located close to the control valve 48 which is usually held by the operator in one hand.
  • a high strength tool is provided without sacrificing balance or lightweight through use of the present construction.
  • Portable apparatus for performing operations on a workpiece in response to pressure exerted by a piston comprising a unitized cylinder assembly having a piston extensibly contained therein, at least one frame member forged and heat treated to a relatively high degree of hardness, means for attaching said frame member to said cylinder assembly following the heat treatment thereof, said frame member when so attached forming an extension of said cylinder assembly adjacent the path of said piston, a first tool member removably mounted on the distal end of said frame member, a second tool member reovably mounted on the end of said piston for movement therewith, said first and second tool members designed to cooperate in performing an operation on a workpiece positioned therebetween during extension of said piston.
  • a piston-operated apparatus comprising the combination of a piston extensibly mounted within a cylinder assembly, means for extending and retracting said piston, a first tool member removably mounted on said piston for movement therewith, a second tool member fixed to intermediate frame means extending from said cylinder assembly, said second tool member spaced from said first tool member and adapted to operate in conjunction therewith on a workpiece positioned therebetween, said intermediate frame means separable from said cylinder assembly and heat treated to a relatively high degree of hardness to provide high strength per unit of cross-sectional area.
  • a multi-component construction for piston-operated tools comprising the combination of a forged cylinder heat treated to a relatively low hardness prior to being machined to the desired tolerances, an operating piston extensibly contained within said cylinder, frame means heat treated to a high degree of hardness in order to achieve high strength per unit of cross-sectional area, means for connecting said frame means to said cylinder, a first tool member mounted on said piston for movement therewith, said first tool member opposed by a second tool member iixed to said frame means, and means for extending said piston following the positioning of a workpiece between said first and second tool members to perform an operation thereon.
  • a portable piston-operated tool providing high strength and low weight comprising the combination of: a cylinder assembly forged and heat treated to a relatively low hardness level of approximately 250 Brinell in order to facilitate subsequent machining; an operating piston reciprocally mounted within said cylinder assembly, said piston having removably attached thereto a first tool member; frame means separable from said cylinder assembly, said frame means forged and heat treated to a hardness level of approximately 400 Brinell in order to provide high tensile strength per unit of cross-sectional area; means for connecting said frame means to said cylinder assembly following heat treatment of both components; a second tool member removably attached to the distal end of said frame means at a position opposed t0 said rst tool member, and means for extending said piston to perform an operation on a workpiece positioned between said iirst and second tool members.
  • the method of fabricating the basic frame structure of a lightweight piston-operated tool comprising the steps of z forging and heat treating a cylinder assembly to a relatively low hardness level of approximately 250 Brinell; machining said cylinder assembly to the desired tolerances; forging and heat treating frame members t0 a relatively high hardness level of approximately 40() Brinell; and connecting said frame members to said cylinder by means of locating pins extending through both said frame members and said cylinder prior to the assembly of the remaining tool components.

Description

June 20, 1967 T. M. PORTER HYDRAULIC PRESS 2 Sheets-Sheet l Filed Aug. 1964 www d/44710. MMM
June 20, 1967 T. M. PORTER HYDRAULIC PRESS 2 Sheets-Sheet 2 Filed Aug. 1964 United States Patent O 3,326,029 HYDRAULIC PRESS Thomas M. Porter, Concord', Mass., assignor to H. K, Porter, lne., Somerville, Mass., a corporation of Massachusetts Filed Aug. 5, 1964. Ser. No. 387,752 7 Claims. (Cl. 72-362) This invention relates to portable tools and more particularly to improved piston-operated tools for cutting, crimping or performing other similar operations on various types of workpieces.
Tools of the aforementioned type are usually hydraulically or pneumatically actuated by compressed gas or liquid received from a centralized pump via flexible hoses. This arrangement enables the tools to be easily carried by operating personnel to remote locations where work is to be performed. Although generally applicable to the entire classification of portable piston-operated tools, the inventive concepts of the present invention will be hereinafter described in connection with a hydraulically-operated crimper of the type frequently utilized in crimping deformable wire connectors. It is to be understood, however, that the description of the present invention in connection with this particular type of tool is only for purposes of illustration and is not to be considered in any way as a limitation upon the scope of the inventive concepts disclosed.
When crimping wire or cable connectors, workmen must frequently climb utility poles, thereafter assuming awkward positions during actual performance of the crimping operation. Under these conditions, the weight of the crimping tool being utilized is an important factor in determining whether or not an operator can successfully perform the crimping operation. More particularly, a tool that is unnecessarily heavy becomes cumbersome to handle, thereby rendering the task to be performed increasingly difficult. Moreover, a lightweight tool is desirable since it avoids tiring the operator during long continuous periods of use. Finally, although a successful tool design should provide lightweight construction, it must also be strong enough to withstand the stresses created during the cutting or crimping operation without undergoing premature failures.
The design problems involved in producing a pistonoperated tool of minimum weight and maximum strength have not heretofore been overcome to a degree satisfactory tothe industry. The usual practice in fabricating tools of this type is to begin with an integrally fabricated metal blank forged to the approximate dimensions of the finished product. At this stage, because the metal has a relatively low tensile strength due to the fact that it has not yet undergone heat treatment, it is relatively soft and easy to machine. From this point, the manufacturer may adopt one of several methods in completing the fabrication of the tool. @ne such method is to iinish machine the forging without resorting to subsequent heat treatment. However, in view of the metals low tensile strength, the weight of a tool produced in this manner must of necessity be increased substantially if the stresses developed during subsequent operation are to be successfully withstood. As previously indicated, Where portable tools are being manufactured, this increase in weight is undesirable.
In an attempt to minimize the aforementioned problem of excessive tool weight, some manufacturers perform a heat treating operation following the initial machining of the forging. This raises the tensile strength of the tool structure and permits a lighter Weight tool design. However, heat treatment usually produces distortion and oxidized scaled surfaces. Consequently, the tool must be further machined following the heat treating operation in order to achieve the desired tolerances and finished sur- 3,326,029 Patented June 20, 1967 ICC faces. This further machining in turn results in increased manufacturing costs and an overall increase in the price of the tool being produced.
A third alternative procedure followed by some manufacturers is to heat treat the entire forging to a high hard ness level prior to performing the machining operation. Although this obviates the necessity of performing two machining operations, the overall costs of producing the tool are not substantially decreased due to the fact that once heat treated, the metal becomes hard and difficult to machine. Consequently, the manufacturer must utilize special tools and in addition, slow down the speed of the machining operations in order to conserve production equipment.
The present invention obviates the aforementioned difficulties by selectively subdividing the basic tool structure into a plurality of separate forged components, usually of steel, which may be heat treated to varying degrees of hardness at various stages during the manufacturing operation. More particularly, the apparatus contemplated herein comprises either a pneumatic or hydraulic cylinder adapted to receive separable tool supporting frame members in engagement therewith. The cylinder portion is rough machined and then heat treated to a relatively low hardness level, as for example in the range of 250 Brinell, to provide a tensile strength of approximately 120,000 p.s.i. At this hardness level, the finish machining can be performed according to conventional techniques on conventional production machines. Moreover, machining operations such as cylinder boring can be done with ordinary high speed steel or carbide tools at high production rates.
The frame members are separately machined and then heat treated to a much higher hardness level of approximately 400 Brinell to provide a tensile strength of approximately 200,000 psi. Further finish machining of these components is not required for the distortion resulting from heat treatment is relatively inconsequential and tolerable. The frame members and cylinder portion are then interconnected by locating pins inserted through aligned apertures in both components to complete the basic tool structu-re.
By separately heat treating the frame members, a high tensile strength is attained per unit of cross-sectional area. This in turn permits the Weight of these tool cornponents to be decreased markedly, thereby providing a means of producing a lightweight tool with high strength characteristics. In addition, the nishing operations may be performed by normal methods at the price of heavier construction only in the cylinder area.
It is therefore an outstanding object of the present invention to provide an improved piston-operated portable tool selectively subdivided into a plurality of components in order to facilitate manufacture.
Another object of the present invention is to provide a piston-operated portable tool having components heat treated to varying levels -of hardness prior to their assembly.
A further object of the present invention is to provide a piston-operated tool having a cylinder assembly heat treated to a relatively low hardness level in order to facilitate machining, the remaining components of the tool being heat treated to a higher hardness level in order to provide the desired characteristics of high strength and lightweight.
These and other objects of the present invention will become more apparent as the description proceeds with the aid of the accompanying drawings in which:
FIG. l is a sectional View of a portable piston-operated tool embodying the concepts of the present invention;
FIG. 2 is an exploded view in perspective of the tool.
Referring initially to FIG. 1 wherein are best shown general features of the present invention, a piston-operated portable tool of the type utilized in compressing wire connectors is indicated at 10. The tool is comprised basically of a cylinder assembly 12 with spaced frame members 14 (only one of which is clearly shown in FIG. 1) commonly referred to as cheeks attached thereto by means of locating pins 16. A piston 18 is extensibly mounted within cylinder assembly 12 and provided at its exposed end with a rst tool member 20. Tool member 20 is attached to the piston by means of a transverse pin 22 which may be readily removed when replacement of the tool member is necessitated.
A second tool member 23 is positioned in spaced opposed relationship to tool mem-ber 20 between frame members 14. Tool member 23 is backed by an intermediate ller piece 24 held in place by screws 25. Removal of tool member 23 is also possible by simply withdrawing locating pin 26 which extends laterally through both frame members 14.
With this construction, it .is apparent that when the piston 18 is extended either by pneumatic or hydraulic means, a workpiece, herein indicated in the form of a deformable Wire connector 28 will be deformed or crimped by the cooperative action of first and second tool members 20 and 23. Thus it can be seen that during the crimping operation, the forward movement of tool member 20 will be opposed by tool member 23 as the frame lmembers 14 are tensioned and bent slightly.
A portion of cylinder assembly 12 has been broken away as at 30 to illustrate the means utilized in extending and retracting piston 18. As indicated, the piston is internally provided with a cylinder chamber 32 within which vis contained a coiled spring 34. The spring is attached t-o the piston head by means of a screw 36 and is fixed at its other end to the cylinder by means of transversely extending pin 38. The piston is further provided with a shoulder 40 having positioned adjacent thereto various sealing rings 42 and 44.
As illustrated in the drawings, piston 18 is hydraulically actuated by means of pressurized fluid being supplied through feed line 46. The feed line is connected to control valve 48 which may in turn be controlled by manipulation of handle 50. Once the handle is depressed, pressurized liquid is allowed to flow from line 46 into cylinder assembly 12 in order to drive piston 18 forward. As the piston is driven forward, coiled spring 34 is extended and placed in tension. When the operating handle 50 is released, control valve 48 is reset and cylinder assembly 12 placed in communication with the return line 52. This removes hydraulic pressure from the cylinder and allows coiled spring ,34 to retract `piston 18 as hydraulic uid escapes through the return line.
The hydraulic feed and return lines 46 and 52 are connected to a conventional hydraulic pump and tank assembly (not shown). Since this remotely positioned apparatus forms no part of the present invention, it has been omitted from the drawings.
FIG. 2 is an exploded view of the tool disclosed in FIG. 1 showing the principal components prior to assembly. The cylinder assembly 12 is forged from a single blank and as clearly shown in this view, is provided with a cylindrical portion having an integral web 54 extending radially therefrom. After being rough machined, the cylinder assembly is heat treated to a relatively low hardness level of approximately 250 'BrinelL Thereafter, the
cylinder yassembly is finish machined by being centrally bored as at 55 and drilled at 56 to accept the transversely extending pins 16 utilized in attaching the frame members 14 thereto.
Since the cylinder assembly is not subjected to subsequent heat treatment following the finish machining operation, its tensile strength will remain in the area of 120,000 p.s.i. Consequently, the bulk of the cylinder `assembly must be of necessity be increased accordingly if operating stresses are to'be successfully withstood. It has been found, however, that the heavier construction required in the cylinder area is not particularly undesirable since it does not produce an unwieldy tool. When considered in connection with the advantages of easier machining without subsequent distortion as a result of heat treating, which would in turn require further machining, the advantages gained through allowing the cylinder assembly to remain at a relatively low hardness level are immediately apparent.
The frame members 14 are forged to provide matching right and left hand members. In contrast to the cylinder assembly, the frame members are usually forged and immediately finish machined by having holes 58 and 60 drilled therethrough to accept locating pins 16 and the screws 25 and pin 26 which hold the filler piece 24 and tool member 23 in place. Once machined, the frame members are then heat treated to a high hardness level in the area of 400 Brinell to achieve a tensile strength of approximately 200,000 p.s.i. Although the frame members may undergo some slight distortion during heat treatment, this is not considered particularly troublesome where the cooperating tool members 29 and 23 are to be utilized in performing operations such as crimping where accuracy is not an essential requisite.
However, where accurate alignment of cooperating tool members similar to those indicated by the ` reference numerals 20 and 23 is essential, -as for example where the tool is to be utilized in performing a piercing operation, then the aforementioned procedure can be varied slightly to achieve the desired accuracy. More particularly, the accurate positioning of each frame member on the cylinder assembly 12 is controlled by the positioning of holes 58 drilled therethrough to accept the locating pins 16. By the same token, the position of tool member 23 and intermediate filler piece 24 is controlled by the accurate location of holes 60 adjacent the distal ends of each frame member. Since all of these holes are drilled following heat treatment, any distortion occurring prior to the drilling operation will have no detrimental effect on the ultimate location of the various tool components. This is to be contrasted, however, to the cylinder assembly where the slightest distortion following the boring operation would undoubtedly impair piston operation within the cylinder. Once all heat treatment and machining has been completed, the tool components are simply assembled in a conventional manner by use of the various connecting pins, bolts and nuts shown in FIG. 2.
In view of the above, it can be seen that the completed tool offers several important advantages. More particularly, the frame members which connect tool inember 23 to cylinder assembly 12 are provided with high tensile rstrength without accompanying difficulties in machining. Minimum Weight in this particular area is of vital importance in view of the fact that the frame members extend outwardly from the cylinder and if allowed t-o become bulky, would impart an unwieldy characteristic to the tool.
The cylinder assembly 12 is machined without difficulty due to its relatively low hardness. The heavier construction in this area is not considered particularly disadvantageous in view of the fact that it is located close to the control valve 48 which is usually held by the operator in one hand. Thus, it can be seen that a high strength tool is provided without sacrificing balance or lightweight through use of the present construction.
It is my intention to cover all changes and modifications of the present invention which do not depart from the spirit and scope of the inventive concepts contained herein.
I claim:
1.*A piston-operated tool of the type described comprising the combination of: a first tool member adapted to be forced against one side of a workpiece, a piston reciprocally disposed within a cylinder and operatively connected to said first tool member, means for extending and retracting said piston to operate said first tool member, means for supporting said workpiece during extension of said piston including a second tool member positioned to engage the other side of said workpiece, said second tool member supported in a fixed position relative to said cylinder by interconnecting frame means extending from said cylinder to said second tool, said frame means separable from said cylinder and heat treated to a high degree of hardness in order to provide greater strength per unit of cross-sectional area.
2. Portable apparatus for performing operations on a workpiece in response to pressure exerted by a piston, said apparatus comprising a unitized cylinder assembly having a piston extensibly contained therein, at least one frame member forged and heat treated to a relatively high degree of hardness, means for attaching said frame member to said cylinder assembly following the heat treatment thereof, said frame member when so attached forming an extension of said cylinder assembly adjacent the path of said piston, a first tool member removably mounted on the distal end of said frame member, a second tool member reovably mounted on the end of said piston for movement therewith, said first and second tool members designed to cooperate in performing an operation on a workpiece positioned therebetween during extension of said piston.
3. A piston-operated apparatus comprising the combination of a piston extensibly mounted within a cylinder assembly, means for extending and retracting said piston, a first tool member removably mounted on said piston for movement therewith, a second tool member fixed to intermediate frame means extending from said cylinder assembly, said second tool member spaced from said first tool member and adapted to operate in conjunction therewith on a workpiece positioned therebetween, said intermediate frame means separable from said cylinder assembly and heat treated to a relatively high degree of hardness to provide high strength per unit of cross-sectional area.
4. The apparatus as set forth in claim 2 wherein said frame member is comprised 0f a forging heat treated to a hardness of approximately 400 Brinell with a tensile strenUth of approximately 200,000 p.s.i., said heat treatment occurring prior to the attachment of said frame member to said cylinder assembly.
5. A multi-component construction for piston-operated tools comprising the combination of a forged cylinder heat treated to a relatively low hardness prior to being machined to the desired tolerances, an operating piston extensibly contained within said cylinder, frame means heat treated to a high degree of hardness in order to achieve high strength per unit of cross-sectional area, means for connecting said frame means to said cylinder, a first tool member mounted on said piston for movement therewith, said first tool member opposed by a second tool member iixed to said frame means, and means for extending said piston following the positioning of a workpiece between said first and second tool members to perform an operation thereon.
6. A portable piston-operated tool providing high strength and low weight comprising the combination of: a cylinder assembly forged and heat treated to a relatively low hardness level of approximately 250 Brinell in order to facilitate subsequent machining; an operating piston reciprocally mounted within said cylinder assembly, said piston having removably attached thereto a first tool member; frame means separable from said cylinder assembly, said frame means forged and heat treated to a hardness level of approximately 400 Brinell in order to provide high tensile strength per unit of cross-sectional area; means for connecting said frame means to said cylinder assembly following heat treatment of both components; a second tool member removably attached to the distal end of said frame means at a position opposed t0 said rst tool member, and means for extending said piston to perform an operation on a workpiece positioned between said iirst and second tool members.
7. The method of fabricating the basic frame structure of a lightweight piston-operated tool comprising the steps of z forging and heat treating a cylinder assembly to a relatively low hardness level of approximately 250 Brinell; machining said cylinder assembly to the desired tolerances; forging and heat treating frame members t0 a relatively high hardness level of approximately 40() Brinell; and connecting said frame members to said cylinder by means of locating pins extending through both said frame members and said cylinder prior to the assembly of the remaining tool components.
References Cited UNITED STATES PATENTS 12/ 1938 Macconochie 72-445 5/ 1945 Sines 72-445

Claims (1)

1. A PISTON-OPERATED TOOL OF THE TYPE DESCRIBED COMPRISING THE COMBINATION OF: A FIRST TOOL MEMBER ADAPTED TO BE FORCED AGAINST ONE SIDE OF A WORKPIECE, A PISTON RECIPROCALLY DISPOSED WITHIN A CYLINDER AND OPERATIVELY CONNECTED TO SAID FIRST TOOL MEMBER, MEANS FOR EXTENDING AND RETRACTING SAID PISTON TO OPERATE SAID FIRST TOOL MEMBER, MEANS FOR SUPPORTING SAID WORKPIECE DURING EXTENSION OF SAID PISTON INCLUDING A SECOND TOOL MEMBER POSITIONED TO ENGAGE THE OTHER SIDE OF SAID WORKPIECE, SAID SEC-
US387752A 1964-08-05 1964-08-05 Hydraulic press Expired - Lifetime US3326029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US387752A US3326029A (en) 1964-08-05 1964-08-05 Hydraulic press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US387752A US3326029A (en) 1964-08-05 1964-08-05 Hydraulic press

Publications (1)

Publication Number Publication Date
US3326029A true US3326029A (en) 1967-06-20

Family

ID=23531245

Family Applications (1)

Application Number Title Priority Date Filing Date
US387752A Expired - Lifetime US3326029A (en) 1964-08-05 1964-08-05 Hydraulic press

Country Status (1)

Country Link
US (1) US3326029A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835690A (en) * 1968-11-02 1974-09-17 Zueblin Ag Device for connecting metallic sleeves to finned reinforcing bars
US3919877A (en) * 1973-11-06 1975-11-18 Thomas & Betts Corp Tool
US3937050A (en) * 1973-11-06 1976-02-10 Imperial Chemical Industries Limited Apparatus for constricting or closing conduits
US4292833A (en) * 1979-06-22 1981-10-06 Lapp Ellsworth W Crimping tool
US4337635A (en) * 1980-07-03 1982-07-06 Teledyne Penn-Union Compression tool
US4589272A (en) * 1985-03-25 1986-05-20 Hutson Roy C Apparatus for connecting a hydraulically actuated tool to a control valve
US4604890A (en) * 1982-02-08 1986-08-12 Teledyne Penn-Union Compression tool
US4723434A (en) * 1984-10-29 1988-02-09 Square D Company Centering device for hydraulic compression tools
US6619101B1 (en) * 2002-04-19 2003-09-16 Fci Americas Technology, Inc. Crimping tool head with reinforcing beams for optimizing weight
US20090313820A1 (en) * 2008-06-02 2009-12-24 Fci Americas Technology, Inc. Crimping Tool Connector Locator
US20160329674A1 (en) * 2015-05-06 2016-11-10 Milwaukee Electric Tool Corporation Hydraulic Tool
JP2020059076A (en) * 2018-10-05 2020-04-16 マクセルイズミ株式会社 Machining tool
CN112743010A (en) * 2019-10-31 2021-05-04 麦克赛尔泉株式会社 Machining tool
USD993014S1 (en) * 2021-03-16 2023-07-25 Ridge Tool Company Crimping tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139639A (en) * 1937-03-04 1938-12-06 Chambersburg Eng Co Portable hydraulic riveter
US2375445A (en) * 1943-12-08 1945-05-08 Cons Vultee Aircraft Corp Precision squeezer yoke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139639A (en) * 1937-03-04 1938-12-06 Chambersburg Eng Co Portable hydraulic riveter
US2375445A (en) * 1943-12-08 1945-05-08 Cons Vultee Aircraft Corp Precision squeezer yoke

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835690A (en) * 1968-11-02 1974-09-17 Zueblin Ag Device for connecting metallic sleeves to finned reinforcing bars
US3919877A (en) * 1973-11-06 1975-11-18 Thomas & Betts Corp Tool
US3937050A (en) * 1973-11-06 1976-02-10 Imperial Chemical Industries Limited Apparatus for constricting or closing conduits
US4292833A (en) * 1979-06-22 1981-10-06 Lapp Ellsworth W Crimping tool
US4337635A (en) * 1980-07-03 1982-07-06 Teledyne Penn-Union Compression tool
US4604890A (en) * 1982-02-08 1986-08-12 Teledyne Penn-Union Compression tool
US4723434A (en) * 1984-10-29 1988-02-09 Square D Company Centering device for hydraulic compression tools
US4589272A (en) * 1985-03-25 1986-05-20 Hutson Roy C Apparatus for connecting a hydraulically actuated tool to a control valve
US6619101B1 (en) * 2002-04-19 2003-09-16 Fci Americas Technology, Inc. Crimping tool head with reinforcing beams for optimizing weight
WO2003089164A1 (en) * 2002-04-19 2003-10-30 Fci Americas Technology, Inc. Crimping tool head with reinforcing beams for optimizing weight
US20090313820A1 (en) * 2008-06-02 2009-12-24 Fci Americas Technology, Inc. Crimping Tool Connector Locator
US8839653B2 (en) * 2008-06-02 2014-09-23 Hubbell Incorporated Crimping tool connector locator
US20160329674A1 (en) * 2015-05-06 2016-11-10 Milwaukee Electric Tool Corporation Hydraulic Tool
US10312653B2 (en) * 2015-05-06 2019-06-04 Milwaukee Electric Tool Corporation Hydraulic tool
DE102016108420B4 (en) * 2015-05-06 2021-02-25 Milwaukee Electric Tool Corporation Hydraulic tool
JP2020059076A (en) * 2018-10-05 2020-04-16 マクセルイズミ株式会社 Machining tool
CN112743010A (en) * 2019-10-31 2021-05-04 麦克赛尔泉株式会社 Machining tool
USD993014S1 (en) * 2021-03-16 2023-07-25 Ridge Tool Company Crimping tool

Similar Documents

Publication Publication Date Title
US3326029A (en) Hydraulic press
US7721405B2 (en) Joining method for operating a fastening tool
CA2023675C (en) Apparatus and method for forming a tubular frame member
US4226110A (en) Hydraulic compression tool
US4942757A (en) Hydraulic press with infinite head rotation
US4436464A (en) Clamping apparatus for a cutter
KR20120111160A (en) Bush pressure apparatus
JPH05337577A (en) Production and apparatus for diameter reduction and enlargement of material
US4891877A (en) Portable tool for compressing a fitting on a hose
US3393549A (en) Tube machine
EP1584417B1 (en) Driver blade for fastening tool
US3396570A (en) Non-generating tooth forming apparatus
JPS62144839A (en) Cold machining tool
RU2036062C1 (en) Method of cold welding and apparatus for performing the same
US2433152A (en) Rotary swaging machine
US2365538A (en) Riveting tool
US1144297A (en) Riveting-machine.
US6626022B1 (en) Double acting metal forming machine, especially a forging machine
US2704001A (en) Connector crimping hand tool
EP0208191B1 (en) Crankshaft chucking device
US3606789A (en) Apparatus for manufacturing a pump spindle
DE20216310U1 (en) Press-in
US3740811A (en) Method for manufacturing pump spindle
US2985956A (en) Method for straightening and for relieving stresses in workpieces
US3672200A (en) Machine tool