US3324783A - Air directing grid construction - Google Patents
Air directing grid construction Download PDFInfo
- Publication number
- US3324783A US3324783A US456953A US45695365A US3324783A US 3324783 A US3324783 A US 3324783A US 456953 A US456953 A US 456953A US 45695365 A US45695365 A US 45695365A US 3324783 A US3324783 A US 3324783A
- Authority
- US
- United States
- Prior art keywords
- air
- duct
- grid
- fluid
- case
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F9/00—Use of air currents for screening, e.g. air curtains
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47F—SPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
- A47F3/00—Show cases or show cabinets
- A47F3/04—Show cases or show cabinets air-conditioned, refrigerated
- A47F3/0439—Cases or cabinets of the open type
- A47F3/0443—Cases or cabinets of the open type with forced air circulation
- A47F3/0447—Cases or cabinets of the open type with forced air circulation with air curtains
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0816—Heating by flames
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1011—Packed bed of catalytic structures, e.g. particles, packing elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1247—Higher hydrocarbons
Definitions
- This invention relates to an air-directing grid construction, particularly to such a construction employed in a refrigerated display case.
- One type of refrigerated case commonly used in food stores for the display and self-service sale of foods and other products is constructed with an open top through which access is had to the products contained therein
- the interior of the case and the products therein are cooled by air which is circulated over refrigerating coils or the like and through duct means in a wall of the case and across the open top to duct means in the opposite wall, and thus back to the refrigerating coil for another cycle.
- the greater density of the cold air causes it to move downwardly into the interior of the case to cool the products therein and maintain them at the desired temperature.
- the stream of refrigerating air tends to spread out or diffuse, as it loses the initial velocity of its discharge from the one wall, and becomes affected by the higher temperature of the ambient air. So far as this results in the refrigerating air flowing down into the case, it is not objectionable, since such air is sooner or later returned to the recirculating stream of air.
- the air in the stream flowing across the open top of the case however, particularly at the upper portion or layer thereof, mingles and intermixes with the ambient air. It is thus lost from the recirculating air, being replaced by air necessarily at a higher temperature.
- the air in the upper portion of the stream tends by reason of its velocity to cause turbulence as it impinges on the ambient air, resulting in excessive undesirable intermixing of the warm ambient air with the recirculating refrigerating air, thus additionally raising the temperature of the latter.
- the refrigerating capacity of the case must therefore be sufficient to cool the recirculating air through a greater temperature differential or gradient than if the two factors of replacement of lost cold air by warmer air, and increased contact between the cold air and the warmer ambient air due to turbulence, were not present.
- the relative humidity of the stream of air is also increased by its being warmed and the entrainment of warmer air therein, which results in faster and heavier deposit of frost on the refrigerating coils, with consequent lowered efiiciency thereof.
- This in turn requires more frequent defrosting, interrupting the refrigerating operation and requiring more frequent operation to restore the desired temperature. Additional lowering of refrigeration efliciency is thus brought about.
- the cooling capacity of the case is unnecessarily high, and to the extent that frosting can be avoided, the efficiency of the case is needlessly reduced.
- the present invention provides means which greatly reduces the loss of refrigerating air in passage across the open top of a refrigerated case, and rise in temperature of refrigerating air by contact and intermingling with the ambient air.
- a grid is provided at the outlet through which the refrigerating air is discharged across the top of the case, the grid providing a plurality of passages each receiving a portion of air and discharging it in a direction determined by the orientation of the passages.
- the directionalization of the air reduces the diffusion and consequent loss of refrigerating air and excessive intermingling with ambient air.
- the air is discharged in a number of layers, the uppermost of which may be made to move at the lowest velocity, so as 3,324,783 Eatented June 13, 1%67 ice to further minimize contact and intermingling with the ambient air by reducing turbulence in the flow across the case.
- means are provided for restricting or impeding the flow of the refrigerating air before it reaches the grid so that the volume and velocity of the discharged air is substantially uniform along the entire length of the outlet.
- the impeding or restricting means may take various forms, such as a restriction in the discharge portion of the duct means, or a grille or like perforated eiement at the outlet. In many cases, at least, it is preferable to employ both forms of air-impeding construction. In cases where uniformity of the discharge pressure along the entire length of the outlet is not a major consideration, or in cases where the duct is not of great extent, the air-impeding construciton may be eliminated.
- the topmost layer or stratum of air may be reduced in velocity in various ways, a simple one being the provision of a deflector or vane directing a considerable portion of the air through the lower portion of the grid, so that the pressure and hence the velocity of the air flowing through the upper grid portion are brought below those of the air passing through the lower portion.
- the invention is not restricted in application to refrigerated cases or the like, but may be employed in any construction involving the discharge of air or other fluid under pressure from duct means into or across an open space when it is desired to minimize diffusion and intermingling of the discharged fluid into and with the atmosphere of such space.
- Another object is the provision of a directing construction for air or other fluid discharged under pressure from the outlet of duct means, which effects discharge thereof in layers with the top layer moving at low velocity. Further object'is the provision of a construction for directing air or other fluid discharged under pressure from duct means, which effects discharge thereof in a plurality of layers allowing discharge in controlled proportions through different portions of the outlet.
- Another object is the provision of an open-topped refrigerated case with a grid construction for imparting a predetermined direction to refrigerating air forced in a stream across the open top of the case, to minimize loss and warming of the refrigerating air.
- Another object is the provision of an open-topped refrigerated case in which refrigerating air is forced across the open top, with a construction for imparting a predetermined direction to the air in order to minimize warming of the refrigerating air stream, and which also assures uniform distribution of the air along the entire length of the case.
- Another object is the provision of an open-topped case refrigerated by refrigerating air passed over the top thereof with an air-directing construction which divides the air into a plurality of layers allowing control of relative velocities of the layers and of the proportion of the air moving in each layer.
- FIGURE 1 is a cross-sectional view of an open-topped refrigerated case incorporating the grid construction according to the present invention
- FIGURE 2 is an enlarged fragmentary view of a portion of the grid construction shown in FIG. 1;
- FIGURE 3 is a fragmentary front elevational view of the grid construction as shown in FIG. 2;
- FIGURE 4 is a perspective view of a modification of the grid construction shown in FIG. 1, on a slightly enlarged scale.
- FIG. 1 of the drawings there is shown a refrigerated open-topped case C defined by a pair of end walls IE, only one of which is shown, between which extend parallel front and rear walls F and R, rising vertically from a suitable base B.
- the walls and base are, as in common, of suitable heat-insulating construction.
- a container or well W the bottom of which is spaced above the interior of the base to define a refrigerating chamber divided into front and rear portions by a suitable partition P located between the front and rear walls.
- a fan, blower, or other suitable air-moving means A is mounted adjacent an opening in the partition to move air from the front chamber portion over and past suitable air-cooling means M, such as the evaporating coil of a refrigerating apparatus, located in the rear portion of the chamber.
- suitable air-cooling means M such as the evaporating coil of a refrigerating apparatus
- a plurality of air-moving means A and refrigerating means M may be employed in the case.
- the front wall and rear wall 11 of the well W are spaced from the front and rear walls F and R of the case to define therewith vertical ducts 12 and 13 each in communication with the refrigerating chamber.
- the well W may be formed of any suitable material, such as sheet metal, which may be readily formed to appropriate shapes, and may have suitably supported therein any appropriate support or supports for merchandise, such as that indicated as S.
- the upper portion of the well wall 10 is slotted or otherwise apertured as at 14 .to provide for passage of air into the duct 12. Air is drawn through the apertured portion and downwardly through duct 12 by the fan or other air-moving means A, and passed through the partition aperture and over the refrigerating means M to flow upwardly in the rear duct 13 defined between the well wall 11 and rear wall R of the case.
- the wall 11 is formed with an offset rearwardly, or inwardly of the duct, for a horizontal distance somewhat less .than the thickness or depth of the grid to be employed, and for a vertical distance slightly greater than the height of the grid.
- the vertical portion of the offset serves as a grille 15, being slotted or otherwise perforated as at 16.
- the upper end of the grille 15 is connected by a horizontal portion 17 to a suitable part of the case, as to the rear of a tag molding subassembly or structure T secured to a forwardly extending portion of the case rear wall R, and projecting downwardly to slightly above the level of the upper edge of the grille 15.
- the portion 17 is shown herein as formed with an upturned flange secured by screws or other fastening means to the structure T.
- the tag molding structure or subasssembly has a forward face inclined downwardly and forwardly from the upper portion of the case, provided withknown means to hold identifying or price tags.
- the tag molding structure T in this case in effect provides a forwardly projecting hood at the upper end of the grille, but it will be understood that this is not necessary to the invention.
- the grille 15 preferably extends substantially throughout the length or breadth of the case C, as do .the ducts 12 and 13, and serves to so impede or restrict the flow of air out of the duct 13 as to result in a substantially 4 uniform pressure along the entire length of the grille, so that the air passes therethrough in substantially the same volume and at substantially the same velocity at any point along its length.
- the grille 15 is disclosed herein as integral with the rear wall 11 of the well W, it will be understood that it might be formed as a separate part, and secured in place in any suitable manner.
- air impeding means may be provided in the rear duct 13 providing a restricting slot 18 or similar aperture or orifice, or a longitudinally extending series of such apertures.
- a single, full-length restricting slot 1% is shown as provided by a pair of longitudinally extending angle members 19 of sheet metal or the like secured to the opposite faces of the duct 13.
- other means might be substituted for this purpose, as for example a longitudinally extending channel member arranged with its web spanning the Width of the duct 13 and provided with suitable apertures.
- the restriction of air flow through the duct by this means causes a back pressure which results in an even distribution of the air along the length or breadth of the duct 13, so that the air discharge pressure and volume is not greater at points in alignment with the fan or fans or other air moving means than at other points along the length of the case.
- either the grille 15 alone or the restricting orifice structure alone is sufficient to obtain the desired uniform distribution, while in other instances the use of both of these air impeding means is preferable to obtain the desired result.
- no air impeding means need be employed, and in such case an opening may be provided in the well wall 11, the grille 15 being eliminated.
- the air directing grid proper is indicated generally at 20 and is shown herein as comprising a plurality of walls or partitions 21 in two rectangularly related sets, intersecting to define open-ended cells or passages 22 of square section.
- the passages have a length corresponding to the thickness of .the grid 20, as best evident from FIGS. 1 and 2. It will be understood that the arrangement and cross-sectional configuration of the passages may be changed from those shown and described, if desired.
- the grid may be formed of any suitable material, an appropriate synthetic plastic material providing a light, inexpensive and attractive grid.
- the grid 20 is mounted adjacent the forward face of the grille 15 with one side or face thereof engaging the grille. If .the grille 15 is omitted, the grid 20 is similarly mounted in the opening defined in the rear wall 11.
- the air flowing from the duct 13 enters one end of each passage 22 of the grid, and is discharged from the other or forward end in the direction corresponding to the direction in which the passages extend. In .the present disclosure this direction is horizontal, toward the front of the case C.
- Any suitable means may be employed for mounting the grid 20 in the desired position, those shown comprising a series of Z-shaped clips 23 secured to the wall 11 of the well W and providing a vertical lip projecting slightly above the level of the bottom of the grille 15 and spaced forwardly therefrom.
- the bottom portion of the grid 20 is received between the grille and the lips of the clips, and the upper portion of the grid then swung rearwardly, a slight clearance being provided between the upper horizontal connecting portion 17 of the grille 15 and the top of the grid.
- a series of longitudinally spaced spring detents 24 are mounted in this upper portion 17, and engage in correspondingly located apertures (not shown) formed in the top partition 21 of the grid, thus removably securing the grid in place.
- spring detents 24 are mounted in this upper portion 17, and engage in correspondingly located apertures (not shown) formed in the top partition 21 of the grid, thus removably securing the grid in place.
- other means might be employed for mounting the grid if desired.
- Refrigerating air is discharged through the grid 20 in the direction of the passages 22, which in this instance are arranged horizontally, and by reason of the directionalizing effect of the grid flows in a stream across the top of the case with a minimum of diversion from and diffusion of the stream, particularly in the upward direction.
- the cold refrigerating air tends on convectional principles to move downwardly out of the stream. This is not only unobjectionable, however, but desired, since the flow is into the well so as to maintain the products contained therein at the desired refrigerated temperature, and sooner or later this downwardly flowing air returns to the stream.
- the air flowing across the top of the case enters the front duct 12 through the slots or apertures 14, and then is recirculated by the air moving means A over the refrigerating means M and through the duct 13.
- the air which does not descend into the interior of the case serves to shield the air and products in the well against the warming effects of the air above the open top of the case.
- the inlet to the front or return duct 12 is illustrated as at a lower level than the grid 20. Air issuing horizontally from the grid is drawn downwardly by gravity and by the suction in the duct 12, to flow tluough the apertures 14 into the duct for recirculation. Air in the well W is drawn upwardly by the suction. The action would be similar if the level of the apertures 14 was the same as or higher than that of the giid W.
- the grid 20 has a stratifying effect on the refrigerating air, which issues therefrom in a plurality of superimposed layers.
- the refrigerating air discharged from the grid may be controlled so that the top layer has less velocity than any lower layer, and thus creates less turbulence in encountering the warm air above the case. The result is that there is less contact and intermingling of the refrigerating air and the Warmer overlying air than would be the case with higher velocity air, and less entrainment in the refrigerating air stream of the warmer room air.
- the modified grid construction illustrated in FIG. 4 is substantially identical to that shown in FIG. 1, except that a diverting or turning vane is added in the outlet duct 13 at the discharge opening.
- the grid 20 is provided as in the construction in FIG. 1, being held by the clips 23 and detents 24 in the outlet or discharge opening, which as in FIG. 1 is illustrated as defined by the rear- Wardly offset grille 15, although the grille may be omitted as previously explained.
- the remainder of the construction of the case C of FIG. 4 is substantially the same as that of the case in FIG. 1, except for the turning vane as already mentioned.
- This vane is indicated generally at 30, and comprises a generally horizontal portion 31 which extends transversely of the duct from closely adjacent the grille at a level intermediate the height of the grille or the grid 20, and has depending from its rear edge an integral vertical portion 32 dividing the width of the duct 13 into two parts.
- the vertical vane portion 32 is mounted in any appropriate manner in a position parallel to the opposite walls of the outlet duct and extending from the horizontal portion 31 toward the source of air flow.
- bolts 33 or like fasteners employed at intervals extend through the vertical portion 32 and the inner face of the rear wall R of the case C, spacers 34 being provided between the vane and the rear wall R.
- the horizontal portion 31 of the vane directs through the lower portion of the grid 20 that part of the air passing through the outlet duct 13 which flows between the vertical portion 32 and the front wall of the duct, i.e., the rear wall 11 of the well W.
- the air discharged through the portion of the grid 20 above the horizontal vane portion 31 is that which passes between the vertical portion 32 and the rear wall of the duct, i.e., the inner face of the rear wall R.
- the spacing of the vertical vane portion 32 between the front and rear walls of the duct 13 determines the proportions of the air discharged through the upper and lower portions of the grid.
- the vane 30 concentrates a greater proportion of the refrigerating air through the lower part of the grid 20 than would otherwise flow through such lower part, .to assure that the interior of the case and the contents will be maintained at the desired temperature.
- it is employed only in the case of low temperature refrigerated cases, usually called freezers and used for frozen foods, ice cream, and like products which must be maintained at below-freezing temperatures. It is not intended to imply, however, that the vane is required in all low-temperature refrigerated cases, or that it may not be used in other refrigerated cases or under other conditions, if desired.
- the use of the disclosed grid construction is not limited to refrigerated display cases, as has been pointed out hereinbefore, since it may be employed in connection with the discharge of air or other fluid under pressure from a duct through which it flows, in order to obtain the benefits of the directionalizing and stratifying effects of the grid construction as explained hereinabove in connection with the specific incorporation of the grid construction in a refrigerated open-topped display case.
- a refrigerated display case comprising a bottom, walls extending upwardly from said bottom to define a product-containing space, a refrigerating fluid duct extending in at least two of said walls, an aperture in one of said two walls for discharge of fluid from said duct, an aperture in the other of said two walls for return of fluid to the duct, means for moving fluid through said duct and from said discharge aperture across and through said space through said return aperture, means for effecting substantially uniform pressure and distribution of fluid along said discharge aperture, and means for directing the fluid upon discharge from the duct to minimize diffusion and intermingling thereof with ambient atmosphere, said directing means comprising a grid disposed at the discharge aperture having a plurality of passages therethrough each extending in a predetermined direction and receiving a portion of the fluid passing through the discharge aperture and discharging said portion of fluid in said predetermined direction, and said uniformity-effecting means comprising a plate-like element Within the duct adjacent said grid having perforations communicating With said grid passages.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US456953A US3324783A (en) | 1965-05-19 | 1965-05-19 | Air directing grid construction |
DE19651542624 DE1542624A1 (de) | 1965-05-19 | 1965-11-11 | Verfahren zur kontinuierlichen,katalytischen Spaltung von gasfoermigen und/oder verdampfbaren Kohlenwasserstoffen |
NO162944A NO125993B (enrdf_load_stackoverflow) | 1965-05-19 | 1966-05-09 | |
GB20949/66A GB1135589A (en) | 1965-05-19 | 1966-05-11 | Fluid flow direction |
BE680985D BE680985A (enrdf_load_stackoverflow) | 1965-05-19 | 1966-05-13 | |
FI661305A FI45700C (fi) | 1965-05-19 | 1966-05-17 | Laite ilman suuntaamiseksi kylmäkalusteen kanavarakenteen ulostuloauko sta. |
DE19661501233 DE1501233A1 (de) | 1965-05-19 | 1966-05-17 | Luft- oder Gasfuehrung mit Richtwirkung |
BR179627/66A BR6679627D0 (pt) | 1965-05-19 | 1966-05-18 | Construcao de grade direcionadora de fluido e vitrina refrigerada incluindo a mesma |
CH726566A CH454930A (de) | 1965-05-19 | 1966-05-18 | Vorrichtung zum Leiten eines Fluidums aus dem Auslass eines Kanals |
AT480266A AT279657B (de) | 1965-05-19 | 1966-05-20 | Kühlvitrine od.dgl. |
CH1570966A CH481203A (de) | 1965-05-19 | 1966-10-31 | Verfahren zur kontinuierlichen, katalytischen Spaltung von gasförmigen und/oder verdampfbaren Kohlenwasserstoffen |
NL6615770A NL6615770A (enrdf_load_stackoverflow) | 1965-05-19 | 1966-11-08 | |
BE689562D BE689562A (enrdf_load_stackoverflow) | 1965-05-19 | 1966-11-10 | |
GB50418/66A GB1156156A (en) | 1965-05-19 | 1966-11-10 | Continuous Catalytic Cracking of Gaseous and/or Vaporisable Hydrocarbons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US456953A US3324783A (en) | 1965-05-19 | 1965-05-19 | Air directing grid construction |
Publications (1)
Publication Number | Publication Date |
---|---|
US3324783A true US3324783A (en) | 1967-06-13 |
Family
ID=23814813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US456953A Expired - Lifetime US3324783A (en) | 1965-05-19 | 1965-05-19 | Air directing grid construction |
Country Status (7)
Country | Link |
---|---|
US (1) | US3324783A (enrdf_load_stackoverflow) |
AT (1) | AT279657B (enrdf_load_stackoverflow) |
BR (1) | BR6679627D0 (enrdf_load_stackoverflow) |
CH (1) | CH454930A (enrdf_load_stackoverflow) |
FI (1) | FI45700C (enrdf_load_stackoverflow) |
GB (1) | GB1135589A (enrdf_load_stackoverflow) |
NO (1) | NO125993B (enrdf_load_stackoverflow) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3585814A (en) * | 1967-09-29 | 1971-06-22 | Int Standard Electric Corp | Refrigerated unit |
US3698205A (en) * | 1971-10-07 | 1972-10-17 | Clark Equipment Co | Walk-in cooler refrigerated display case combination |
US4199957A (en) * | 1978-06-20 | 1980-04-29 | Harker Co., Ltd. | Evaporator assembly |
US4302948A (en) * | 1979-09-06 | 1981-12-01 | Tyler Refrigeration Corporation | Refrigerated display case having a unitary outlet grid |
US4370867A (en) * | 1980-05-01 | 1983-02-01 | Tyler Refrigeration Corporation | Open top refrigerated display case with ambient air defrost |
US4592209A (en) * | 1984-05-23 | 1986-06-03 | Costan S.P.A. | Display counter for food products, refrigerated by forced ventilation |
US4882910A (en) * | 1989-02-08 | 1989-11-28 | Meehan Kermit E | Refrigeration system for product display enclosures |
WO1990011711A1 (en) * | 1989-04-04 | 1990-10-18 | A.G. (Patents) Limited | Refrigerated display cabinet |
WO2002045553A1 (en) * | 2000-12-04 | 2002-06-13 | True Manufacturing Co., Inc. | Air curtain horizontal merchandiser |
US20030217560A1 (en) * | 2002-05-22 | 2003-11-27 | Sanden Corporation | Refrigerating open showcase |
US20040187517A1 (en) * | 2002-11-05 | 2004-09-30 | Solomon Gerald W. | HVAC system with environmental contaminant protection |
US6990824B1 (en) * | 2004-07-30 | 2006-01-31 | Qbd Cooling Systems, Inc. | Cooling apparatus |
US20060207281A1 (en) * | 2005-03-15 | 2006-09-21 | Sanden Corporation | Showcase |
US20170336079A1 (en) * | 2016-05-19 | 2017-11-23 | Bsh Home Appliances Corporation | Enclosure panel with ventilation section for domestic home appliance |
US9869480B2 (en) | 2009-01-28 | 2018-01-16 | Bryn Gough Magee | Managing air flow |
WO2021203163A1 (en) | 2020-04-08 | 2021-10-14 | Vitrafy Life Sciences Pty Ltd | Method and apparatus for freezing of consumable products |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2256266A (en) * | 1991-05-02 | 1992-12-02 | Malling Group Limited | Display cabinets |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US493321A (en) * | 1893-03-14 | Ventxlator | ||
US2939374A (en) * | 1957-10-25 | 1960-06-07 | Sulzer Ag | Variable width air curtain protected doorway |
US3113501A (en) * | 1961-09-15 | 1963-12-10 | George K Cargo | Air door |
US3149476A (en) * | 1962-05-31 | 1964-09-22 | Dual Jet Refrigeration Company | Refrigerated display cabinet |
US3163024A (en) * | 1962-12-26 | 1964-12-29 | Dual Jet Refrigeration Company | Refrigerated cabinet structure |
US3229609A (en) * | 1964-01-15 | 1966-01-18 | Nat Ind Equipment Co | Multiple air screen for use with a doorway |
-
1965
- 1965-05-19 US US456953A patent/US3324783A/en not_active Expired - Lifetime
-
1966
- 1966-05-09 NO NO162944A patent/NO125993B/no unknown
- 1966-05-11 GB GB20949/66A patent/GB1135589A/en not_active Expired
- 1966-05-17 FI FI661305A patent/FI45700C/fi active
- 1966-05-18 CH CH726566A patent/CH454930A/de unknown
- 1966-05-18 BR BR179627/66A patent/BR6679627D0/pt unknown
- 1966-05-20 AT AT480266A patent/AT279657B/de not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US493321A (en) * | 1893-03-14 | Ventxlator | ||
US2939374A (en) * | 1957-10-25 | 1960-06-07 | Sulzer Ag | Variable width air curtain protected doorway |
US3113501A (en) * | 1961-09-15 | 1963-12-10 | George K Cargo | Air door |
US3149476A (en) * | 1962-05-31 | 1964-09-22 | Dual Jet Refrigeration Company | Refrigerated display cabinet |
US3163024A (en) * | 1962-12-26 | 1964-12-29 | Dual Jet Refrigeration Company | Refrigerated cabinet structure |
US3229609A (en) * | 1964-01-15 | 1966-01-18 | Nat Ind Equipment Co | Multiple air screen for use with a doorway |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3585814A (en) * | 1967-09-29 | 1971-06-22 | Int Standard Electric Corp | Refrigerated unit |
US3698205A (en) * | 1971-10-07 | 1972-10-17 | Clark Equipment Co | Walk-in cooler refrigerated display case combination |
US4199957A (en) * | 1978-06-20 | 1980-04-29 | Harker Co., Ltd. | Evaporator assembly |
US4302948A (en) * | 1979-09-06 | 1981-12-01 | Tyler Refrigeration Corporation | Refrigerated display case having a unitary outlet grid |
US4370867A (en) * | 1980-05-01 | 1983-02-01 | Tyler Refrigeration Corporation | Open top refrigerated display case with ambient air defrost |
US4592209A (en) * | 1984-05-23 | 1986-06-03 | Costan S.P.A. | Display counter for food products, refrigerated by forced ventilation |
US4882910A (en) * | 1989-02-08 | 1989-11-28 | Meehan Kermit E | Refrigeration system for product display enclosures |
WO1990011711A1 (en) * | 1989-04-04 | 1990-10-18 | A.G. (Patents) Limited | Refrigerated display cabinet |
WO2002045553A1 (en) * | 2000-12-04 | 2002-06-13 | True Manufacturing Co., Inc. | Air curtain horizontal merchandiser |
US6453694B1 (en) * | 2000-12-04 | 2002-09-24 | True Manufacturing Co. Inc. | Air curtain horizontal merchandiser |
US20030217560A1 (en) * | 2002-05-22 | 2003-11-27 | Sanden Corporation | Refrigerating open showcase |
US6931877B2 (en) * | 2002-05-22 | 2005-08-23 | Sanden Corp. | Refrigerating open showcase |
US20040187517A1 (en) * | 2002-11-05 | 2004-09-30 | Solomon Gerald W. | HVAC system with environmental contaminant protection |
US6990824B1 (en) * | 2004-07-30 | 2006-01-31 | Qbd Cooling Systems, Inc. | Cooling apparatus |
US20060021368A1 (en) * | 2004-07-30 | 2006-02-02 | Sikander Jaffer | Cooling apparatus |
US20060207281A1 (en) * | 2005-03-15 | 2006-09-21 | Sanden Corporation | Showcase |
US9869480B2 (en) | 2009-01-28 | 2018-01-16 | Bryn Gough Magee | Managing air flow |
US20170336079A1 (en) * | 2016-05-19 | 2017-11-23 | Bsh Home Appliances Corporation | Enclosure panel with ventilation section for domestic home appliance |
WO2021203163A1 (en) | 2020-04-08 | 2021-10-14 | Vitrafy Life Sciences Pty Ltd | Method and apparatus for freezing of consumable products |
EP4133224A4 (en) * | 2020-04-08 | 2024-04-17 | Vitrafy Life Sciences Limited | METHOD AND APPARATUS FOR FREEZING CONSUMER PRODUCTS |
Also Published As
Publication number | Publication date |
---|---|
FI45700C (fi) | 1972-08-10 |
GB1135589A (en) | 1968-12-04 |
CH454930A (de) | 1968-04-30 |
FI45700B (enrdf_load_stackoverflow) | 1972-05-02 |
AT279657B (de) | 1970-03-10 |
NO125993B (enrdf_load_stackoverflow) | 1972-12-04 |
BR6679627D0 (pt) | 1973-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3324783A (en) | Air directing grid construction | |
US3827254A (en) | Refrigerated display case | |
US3369375A (en) | Refrigerated display case | |
US3289432A (en) | Display case | |
US2725726A (en) | Air flow control for refrigerators | |
US3403525A (en) | Defrost system for air curtain type refrigerated display case | |
US2962875A (en) | Upright refrigerated cabinet with unimpeded front access | |
US9775448B2 (en) | Refrigerated display appliances | |
US3937033A (en) | Air defrost display case | |
US5345778A (en) | Low temperature display merchandiser | |
US3304740A (en) | Open front display case | |
US4592209A (en) | Display counter for food products, refrigerated by forced ventilation | |
US6272876B1 (en) | Display freezer having evaporator unit | |
US4544024A (en) | Insulated cabinet with interchangeable heat transfer unit | |
US2984085A (en) | Walk-in cooler apparatus | |
US3696630A (en) | Humidified and refrigerated showcase | |
US3501925A (en) | Refrigerated equipment | |
CA2161956A1 (en) | Low temperature display merchandiser | |
US2466286A (en) | Refrigerator display case | |
US3063254A (en) | Food merchandiser | |
US3091942A (en) | Food merchandiser | |
US2810267A (en) | Refrigerated display case | |
US3531945A (en) | Constant temperature refrigerated equipment | |
US3233423A (en) | Refrigerated cabinet with circulating air panels | |
US3347145A (en) | Air distribution structure for refrigerated case |