US3310657A - Electric immersion heater assembly - Google Patents

Electric immersion heater assembly Download PDF

Info

Publication number
US3310657A
US3310657A US3310657DA US3310657A US 3310657 A US3310657 A US 3310657A US 3310657D A US3310657D A US 3310657DA US 3310657 A US3310657 A US 3310657A
Authority
US
United States
Prior art keywords
tube
slug
heating element
heater assembly
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US3310657A publication Critical patent/US3310657A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/80Portable immersion heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system
    • Y10T137/6606With electric heating element

Definitions

  • My invention is particularly adapted for use in heating material which has very critical temperature limitations, and one such use is in the heating of liquid oxygen which is contained in the usual cylindrical steel containers. Liquid oxygen must be heated to gas form before it can be used for certain applications and it has a critical temperature characteristic in that if it is heated beyond a certain temperature it may explode. Through use of my invention, the amount of heat transferred to the liquid oxygen is precisely controlled, and the danger of explosion is therefore minimized.
  • FIGURE 1 is a small scale side elevational view of a cylinder for containing liquid oxygen
  • FIGURE 2 is an enlarged fragmentary longitudinal sectional view through the heater assembly of my invention, showing only a part of the oxygen cylinder,
  • FIGURE 3 is an enlarged end elevational view of the heater, showing wiring connections, and
  • FIGURE 4 is an enlarged transverse sectional view corresponding generally to the line 44 ofFIGURE 2.
  • the usual liquid oxygen carrying cylinder is shown in FIGURE 1, and comprises an outer container and an inner container 11, the latter being spaced from the former to provide a space 12 which may be either an insulating air space or may be filled with mineral wool.
  • Flange 14 at the bottom maintains the cylinders in upright relation.
  • An internally threaded sleeve 15 is fixed within the opening of the outer container 10, and the inner container 11 has a tubular portion 16 sealed to the sleeve 15.
  • a suitable outlet for the gas resulting from the heating of the liquid oxygen is also provided, but is not shown since it may be of standard valve-controlled construction.
  • a heating element assembly 17 is carried by the sleeve 15 and a greater part of this assembly extends downwardly within the inner container, as seen in FIGURE 1, so as to be in direct contact with the liquid oxygen.
  • the heating element assembly 17 is best shown in FIGURE 2, and comprises an elongated metal tube 18 which may be formed of any suitable metal, such as brass.
  • a screw plug 19 which may also be of brass, fits around the outer end of the tube 18 and has a liquid tight connection therewith, such as by a silver weld 20.
  • the tube 18 stops short of extending completely through the receiving opening 21 in the screw plug 19 to form a shoulder against which a dielectric terminal block 22 seats.
  • the block is formed of ceramic material and is round to closely but slidably fit within the plug opening 21.
  • the terminal block 22 has an outer portion 22a of slightly reduced diameter to form a shoulder 23 with its inner portion 22b.
  • the block portion 22a is formed with a longitudinally extending groove 24 (see FIGURE 3) which receives a tongue 25.
  • the tongue 25 extends from the defining margin of an opening 26 in a thin metal washer over the block portion 22a, and self-tapping screws 28 (FIGURE 3) have their heads bearing against the outer surface of the washer 27 and their shanks passing through 3,310,657 Patented Mar. 21, 1967 recesses in the outer peripheral margin of the washer and threaded into corresponding holes in the screw plug 19.
  • the washer 27 holds the ceramic terminal block in place and the interfitting groove 24 and tongue 25 hold the block against rotation.
  • the washer may serve as a name plate.
  • the terminal block 22 supports three electrical terminals in the form of screws 30, 31 and 32. Only the screw 30 is visible in its entirety in FIGURE 2 and since all screws are alike, a description of screw 30 will suffice.
  • Each terminal screw is formed with an eccentric head 33 closely fitting within an eccentric opening 34 in the block 22 to prevent rotation of the screw.
  • the shank of each screw passes through an opening in the block and a pair of nuts 35 are threaded on the shank exteriorly of the block, the inner nut holding the screw tightly on the block and the outer screw clamping a conductor wire between it and the inner screw.
  • the terminal block 22 is also provided with an opening 36 which has a slightly enlarged inner end to closely receive the outer end of a guide tube 37.
  • the guide tube is formed of any suitable material and in the present embodiment is formed of brass.
  • the inner surface of the tube is preferably the same diameter as the main part of the opening 36 so as not to form a shoulder.
  • the metal tube 18. is of a length to suit requirements and, :as shown in FIGURE 1, is of a length to extend just short of the bottom of inner container 11.
  • An elongated body 40 is disposed within the inner end of the tube 18 to form a heat sink which is in thermal transfer relation with the tube 18.
  • the body may be formed of any suitable material and at present is formed as a brass slug, round in cross-section, and having an external diameter closely fitting within the lower end of the tube 18.
  • the brass slug may be inserted through the initially open lower end of the tube 18 a distance limited by engagement with an inwardly rolled shoulder 41 formed on the tube. With the slug in the position shown in FIGURE 2, the lower extremity of the tube 18 is rolled inwardly over the end of the slug, as shown at 42, and sealed to the slug, as by a silver weld 43.
  • the slug 40 is formed with a pair of longitudinally extending openings 44, 45.
  • the cartridge type is closely received within the open- 47 is closely but slidably received, the device presently used being a heat fuse assembly having a ceramic outer shell.
  • the fuse thus provides a non-cycling device which must be replaced once it opens.
  • a pair of insulated conductor wire-s 48, 49 extend from the heating element 46, through the tube 18, and through openings in the terminal block 22, the wire 48 being connected-to the terminal screw 30 and the wire 49 being connected to the terminal screw 31 which also has a line wire L1 connected thereto.
  • a pair of insulated conductor wires 50, 51 extend from the fuse assembly 47, the wire 50 being connected to the terminal screw 30 and the wire 51 being connected to the terminal screw 32 which also has a line wire L2 connected thereto.
  • the fuse assembly 47 In the event the fuse assembly 47 opens, it maybe removed by disoonnecting the wires 50, 51 from the terminal screws 30, 32, and by pulling on the wires 50, 51 to draw the fuse through the guide tube 37 and through the opening 36 in the ceramic block 22. A new fuse may be inserted to position by a reversal of the justAdescribed removal operations. To facilitate replacement the inner 3 end of the ceramic outer shell of the fuse 47 may be slightly tapered, as shown in FIGURE 2.
  • both the heating element 46 and the fuse assembly 47 are in heat transfer relation with the slug 40.
  • an insulating air space is provided at a desired location between the slug 40 and the tube 18.
  • the round slug 40 is formed with a peripheral undercut 55 which extends substantially the length of the active heating portion of the heating element 46 so that there is a better transference of heat to the fuse assembly 47.
  • the use of the brass slug 40 with an undercut 55 in the heated section makes it possible for a quicker response to heat being transferred to the fuse assembly 47.
  • the space formed by the undercut acts as an air insulator which prevents the outside surface of the tube 18 from getting hotter than desired.
  • the heater assembly is an integral unit and a user need only insert the tube 18 into the container 11 and screw the plug 19 into the sleeve 15 to properly assemble the heater with the liquid oxygen container.
  • a heater assembly comprising an elongated metal tube adapted to be inserted into a container to heat the contents thereof, an elongated metal slug within said tube, said slug having side by-side longitudinally extending recesses, an electric heating element within one of said recesses and a temperature responsive device within the other recess, said element and device having terminals for the purpose of placing them in electric circuit with a source of electrical energy, said slug being coextensive with at least the active heating portion of the heating element and the active thermal responsive portion of said temperature responsive device, said slug having an outer surface in closely fitting engagement with the inner surface of said tube, and means on at least one of the inner surface of the tube and the outer surface of said slug for providing limited heat transfer engagement between the slug and tube in that area of the slug which is transversely aligned with transversely aligned active portions of said heating element and temperature responsive device to insure that heat transferred from said heating element through said slug to said tube is not materially inexcess
  • a heater assembly comprising an elongated outer tube adapted to be inserted into a container to heat the content-s thereof, said tube having a closed inner end and an open outer end, an elongated metal slug within said tube and extending inwardly of said tube from the closed end thereof, said slug having side by side longitudinally extending recesses, an elongated electric heating element within one of said recesses and an elongated temperature responsive device closely but slidably fitting Within the other recess, said element and device having terminals for the purpose of placing them in electric circuit with a source of electrical energy, an inner tube extending from said slug to the outer end of said outer tube and having an inner diameter substantially equal to and forming a continuation of the slug recess into which said temperature responsive device fits, the terminals for said responsive device extending through the inner tube for connection in said circuit, said responsive device being movable through said outer open end of said outer tube to and from predetermined posit-ion within said slug recess by respectively

Description

March 21, 1967 R. SANTQRO, JR 3,310,657
ELECTRIC IMMERSION HEATER ASSEMBLY Filed June 1, 1964 I NVENTOR.
A TTOFMf/ I RALPH SAN TORQJR.
United States Patent 3,310,657 ELECTRIC IMMERSION HEATER ASSEMBLY Ralph Santoro, Jr., Pittsburgh, Pa., assignor t0 Edwin L. Wiegand Company, Pittsburgh, Pa. Filed June 1, 1964, Ser. No. 371,307 3 Claims. (Cl. 219-523) My invention relates to an electric heater assembly and the principal object of my invention is to provide new and improved assemblies of this character.
My invention is particularly adapted for use in heating material which has very critical temperature limitations, and one such use is in the heating of liquid oxygen which is contained in the usual cylindrical steel containers. Liquid oxygen must be heated to gas form before it can be used for certain applications and it has a critical temperature characteristic in that if it is heated beyond a certain temperature it may explode. Through use of my invention, the amount of heat transferred to the liquid oxygen is precisely controlled, and the danger of explosion is therefore minimized.
In the drawing accompanying this specification and forming a part of this application, there is shown, for purpose of illustration, an embodiment which my invention may assume, and in this drawing:
FIGURE 1 is a small scale side elevational view of a cylinder for containing liquid oxygen,
FIGURE 2 is an enlarged fragmentary longitudinal sectional view through the heater assembly of my invention, showing only a part of the oxygen cylinder,
FIGURE 3 is an enlarged end elevational view of the heater, showing wiring connections, and
FIGURE 4 is an enlarged transverse sectional view corresponding generally to the line 44 ofFIGURE 2.
The usual liquid oxygen carrying cylinder is shown in FIGURE 1, and comprises an outer container and an inner container 11, the latter being spaced from the former to provide a space 12 which may be either an insulating air space or may be filled with mineral wool. Flange 14 at the bottom maintains the cylinders in upright relation. An internally threaded sleeve 15 is fixed within the opening of the outer container 10, and the inner container 11 has a tubular portion 16 sealed to the sleeve 15. A suitable outlet for the gas resulting from the heating of the liquid oxygen is also provided, but is not shown since it may be of standard valve-controlled construction.
A heating element assembly 17 is carried by the sleeve 15 and a greater part of this assembly extends downwardly within the inner container, as seen in FIGURE 1, so as to be in direct contact with the liquid oxygen. The heating element assembly 17 is best shown in FIGURE 2, and comprises an elongated metal tube 18 which may be formed of any suitable metal, such as brass.
A screw plug 19, which may also be of brass, fits around the outer end of the tube 18 and has a liquid tight connection therewith, such as by a silver weld 20. The tube 18 stops short of extending completely through the receiving opening 21 in the screw plug 19 to form a shoulder against which a dielectric terminal block 22 seats. Preferably, the block is formed of ceramic material and is round to closely but slidably fit within the plug opening 21.
The terminal block 22 has an outer portion 22a of slightly reduced diameter to form a shoulder 23 with its inner portion 22b. The block portion 22a is formed with a longitudinally extending groove 24 (see FIGURE 3) which receives a tongue 25. The tongue 25 extends from the defining margin of an opening 26 in a thin metal washer over the block portion 22a, and self-tapping screws 28 (FIGURE 3) have their heads bearing against the outer surface of the washer 27 and their shanks passing through 3,310,657 Patented Mar. 21, 1967 recesses in the outer peripheral margin of the washer and threaded into corresponding holes in the screw plug 19. Thus, the washer 27 holds the ceramic terminal block in place and the interfitting groove 24 and tongue 25 hold the block against rotation. If desired, the washer may serve as a name plate.
In the present case the terminal block 22 supports three electrical terminals in the form of screws 30, 31 and 32. Only the screw 30 is visible in its entirety in FIGURE 2 and since all screws are alike, a description of screw 30 will suffice. Each terminal screw is formed with an eccentric head 33 closely fitting within an eccentric opening 34 in the block 22 to prevent rotation of the screw. The shank of each screw passes through an opening in the block and a pair of nuts 35 are threaded on the shank exteriorly of the block, the inner nut holding the screw tightly on the block and the outer screw clamping a conductor wire between it and the inner screw.
The terminal block 22 is also provided with an opening 36 which has a slightly enlarged inner end to closely receive the outer end of a guide tube 37. The guide tube is formed of any suitable material and in the present embodiment is formed of brass. The inner surface of the tube is preferably the same diameter as the main part of the opening 36 so as not to form a shoulder.
The metal tube 18. is of a length to suit requirements and, :as shown in FIGURE 1, is of a length to extend just short of the bottom of inner container 11. An elongated body 40 is disposed within the inner end of the tube 18 to form a heat sink which is in thermal transfer relation with the tube 18. The body may be formed of any suitable material and at present is formed as a brass slug, round in cross-section, and having an external diameter closely fitting within the lower end of the tube 18.
The brass slug may be inserted through the initially open lower end of the tube 18 a distance limited by engagement with an inwardly rolled shoulder 41 formed on the tube. With the slug in the position shown in FIGURE 2, the lower extremity of the tube 18 is rolled inwardly over the end of the slug, as shown at 42, and sealed to the slug, as by a silver weld 43.
The slug 40 is formed with a pair of longitudinally extending openings 44, 45. An electric heating element 46,
0f the cartridge type, is closely received within the open- 47 is closely but slidably received, the device presently used being a heat fuse assembly having a ceramic outer shell. The fuse thus provides a non-cycling device which must be replaced once it opens.
A pair of insulated conductor wire-s 48, 49 extend from the heating element 46, through the tube 18, and through openings in the terminal block 22, the wire 48 being connected-to the terminal screw 30 and the wire 49 being connected to the terminal screw 31 which also has a line wire L1 connected thereto. A pair of insulated conductor wires 50, 51 extend from the fuse assembly 47, the wire 50 being connected to the terminal screw 30 and the wire 51 being connected to the terminal screw 32 which also has a line wire L2 connected thereto.
In the event the fuse assembly 47 opens, it maybe removed by disoonnecting the wires 50, 51 from the terminal screws 30, 32, and by pulling on the wires 50, 51 to draw the fuse through the guide tube 37 and through the opening 36 in the ceramic block 22. A new fuse may be inserted to position by a reversal of the justAdescribed removal operations. To facilitate replacement the inner 3 end of the ceramic outer shell of the fuse 47 may be slightly tapered, as shown in FIGURE 2.
As seen in FIGURE 2, both the heating element 46 and the fuse assembly 47 are in heat transfer relation with the slug 40. To insure that heat transferred from the heating element 46 to the tube or shell 18 is not materially in excess of that transferred to the fuse assembly 47, an insulating air space is provided at a desired location between the slug 40 and the tube 18. In the present embodiment, the round slug 40 is formed with a peripheral undercut 55 which extends substantially the length of the active heating portion of the heating element 46 so that there is a better transference of heat to the fuse assembly 47. The use of the brass slug 40 with an undercut 55 in the heated section makes it possible for a quicker response to heat being transferred to the fuse assembly 47. The space formed by the undercut acts as an air insulator which prevents the outside surface of the tube 18 from getting hotter than desired.
By varying the depth of type of undercut, and/or by use of fuse assemblies having different temperature settings, a wide variety of temperatures on the exterior surface of the tube or shell 18 may be controlled with a close degree of tolerance. As seen in FIGURE 2, the heater assembly is an integral unit and a user need only insert the tube 18 into the container 11 and screw the plug 19 into the sleeve 15 to properly assemble the heater with the liquid oxygen container.
In view of the foregoing it will be apparent to those skilled in the art that I have accomplished at least the principal object of my invention and it will also be apparent to those skilled in the art that the embodiment herein described may be variously changed and modified, without departing from the spirit of the invention, and that the invention is capable of uses and has advantages not herein specifically described; hence it will be appreciated that the herein disclosed embodiment is illustrative only, and that my invention is not limited thereto.
I claim:
1. A heater assembly, comprising an elongated metal tube adapted to be inserted into a container to heat the contents thereof, an elongated metal slug within said tube, said slug having side by-side longitudinally extending recesses, an electric heating element within one of said recesses and a temperature responsive device within the other recess, said element and device having terminals for the purpose of placing them in electric circuit with a source of electrical energy, said slug being coextensive with at least the active heating portion of the heating element and the active thermal responsive portion of said temperature responsive device, said slug having an outer surface in closely fitting engagement with the inner surface of said tube, and means on at least one of the inner surface of the tube and the outer surface of said slug for providing limited heat transfer engagement between the slug and tube in that area of the slug which is transversely aligned with transversely aligned active portions of said heating element and temperature responsive device to insure that heat transferred from said heating element through said slug to said tube is not materially inexcess of the heat transferred from said heating element through said slug to said temperature device.
2. The construction of claim 1 wherein the meansfor providing limited heat transfer engagement comprises an undercut in the outer surface of said slug to form an elongated air space between the undercut surface and the inner surface of said tube.
3. A heater assembly, comprising an elongated outer tube adapted to be inserted into a container to heat the content-s thereof, said tube having a closed inner end and an open outer end, an elongated metal slug within said tube and extending inwardly of said tube from the closed end thereof, said slug having side by side longitudinally extending recesses, an elongated electric heating element within one of said recesses and an elongated temperature responsive device closely but slidably fitting Within the other recess, said element and device having terminals for the purpose of placing them in electric circuit with a source of electrical energy, an inner tube extending from said slug to the outer end of said outer tube and having an inner diameter substantially equal to and forming a continuation of the slug recess into which said temperature responsive device fits, the terminals for said responsive device extending through the inner tube for connection in said circuit, said responsive device being movable through said outer open end of said outer tube to and from predetermined posit-ion within said slug recess by respectively pushing and pulling on said responsive device terminals to move said device longitudinally of its slug recess and said inner tube.
References Cited by the Examiner UNITED STATES PATENTS 2,389,925 11/1945 Morgan et a1 219-366 X 2,401,651 6/1946 Mathis et al. 137--341 X 2,576,558 11/1951 Bede 219-322 X 2,582,481 1/1952 Dvorak et al. 219-241 FOREIGN PATENTS 417,638 10/:1934 Great Britain. 857,365 12/1960 Great Britain. A'd. 192,011 10/1937 Switzerland.
References Cited by the Applicant UNITED STATES PATENTS 2,213,722 9/ 1940 Smith. 2,703,834 3/ 1955 Charbonneau. 2,873,347 2/1959 Boggs.
ANTHONY BARTIS, Primary Examiner.

Claims (1)

1. A HEATER ASSEMBLY, COMPRISING AN ELONGATED METAL TUBE ADAPTED TO BE INSERTED INTO A CONTAINER TO HEAT THE CONTENTS THEREOF, AN ELONGATED METAL SLUG WITHIN SAID TUBE, SAID SLUG HAVING SIDE-BY-SIDE LONGITUDINALLY EXTENDINGY RECESSES, AN ELECTRIC HEATING ELEMENT WITHIN ONE OF SAID RECESSES AND A TEMPERATURE RESPONSIVE DEVICE WITHIN THE OTHER RECESS, SAID ELEMENT AND DEVICE HAVING TERMINALS FOR THE PURPOSE OF PLACING THEM IN ELECTRIC CIRCUIT WITH A SOURCE OF ELECTRICAL ENERGY, SAID SLUG BEING COEXTENSIVE WITH AT LEAST THE ACTIVE HEATING PORTION OF THE HEATING ELEMENT AND THE ACTIVE THERMAL RESPONSIVE PORTION OF SAID TEMPERATURE RESPONSIVE DEVICE, SAID SLUG HAVING AN OUTER SURFACE IN CLOSELY FITTING ENGAGEMENT WITH THE INNER SURFACE OF SAID TUBE, AND MEANS ON AT LEAST ONE OF THE INNER SURFACE OF THE TUBE AND THE OUTER SURFACE OF SAID SLUG FOR
US3310657D Electric immersion heater assembly Expired - Lifetime US3310657A (en)

Publications (1)

Publication Number Publication Date
US3310657A true US3310657A (en) 1967-03-21

Family

ID=3459062

Family Applications (1)

Application Number Title Priority Date Filing Date
US3310657D Expired - Lifetime US3310657A (en) Electric immersion heater assembly

Country Status (1)

Country Link
US (1) US3310657A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340382A (en) * 1965-05-03 1967-09-05 Arc O Vec Inc Multi-cell electrical heater
US3831004A (en) * 1973-07-27 1974-08-20 Fast Heat Element Mfg Co Electric heater
US4263499A (en) * 1979-03-26 1981-04-21 Romance Joseph S Immersion heater with thermal cutoff
US4319127A (en) * 1980-07-16 1982-03-09 Emerson Electric Co. Electric heating elements
US4349727A (en) * 1973-07-25 1982-09-14 Southport Enterprises, Inc. Heater unit
US4506140A (en) * 1982-11-15 1985-03-19 Armstrong Richard M Electric immersion heater assembly having an isolated terminal box
US6282372B1 (en) 2000-04-11 2001-08-28 Rheem Manufacturing Company Multi-position point of use electric water heater

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB417638A (en) * 1934-03-12 1934-10-09 Theodor Stiebel Improvements in and relating to electric immersion heaters
CH192011A (en) * 1935-12-05 1937-07-15 Runte Egon Instantaneous water heater.
US2213722A (en) * 1937-12-30 1940-09-03 John E Smith Electrical heating unit
US2389925A (en) * 1942-12-22 1945-11-27 Cities Service Oil Co Electric heating apparatus and method for heating crankcase oils
US2401651A (en) * 1942-12-28 1946-06-04 John A Mathis Apparatus for evaporating liquid oxygen
US2576558A (en) * 1948-11-24 1951-11-27 James A Bede Paint heater
US2582481A (en) * 1950-12-16 1952-01-15 Western Electric Co Temperature-controlled soldering iron
US2703834A (en) * 1951-11-13 1955-03-08 Cutler Hammer Inc Tubular electric heater
US2873347A (en) * 1955-05-02 1959-02-10 Wiegand Co Edwin L Thermal responsive device
GB857365A (en) * 1958-02-07 1960-12-29 Contactor Proprietary Ltd Improvements in and relating to means for electrically heating water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB417638A (en) * 1934-03-12 1934-10-09 Theodor Stiebel Improvements in and relating to electric immersion heaters
CH192011A (en) * 1935-12-05 1937-07-15 Runte Egon Instantaneous water heater.
US2213722A (en) * 1937-12-30 1940-09-03 John E Smith Electrical heating unit
US2389925A (en) * 1942-12-22 1945-11-27 Cities Service Oil Co Electric heating apparatus and method for heating crankcase oils
US2401651A (en) * 1942-12-28 1946-06-04 John A Mathis Apparatus for evaporating liquid oxygen
US2576558A (en) * 1948-11-24 1951-11-27 James A Bede Paint heater
US2582481A (en) * 1950-12-16 1952-01-15 Western Electric Co Temperature-controlled soldering iron
US2703834A (en) * 1951-11-13 1955-03-08 Cutler Hammer Inc Tubular electric heater
US2873347A (en) * 1955-05-02 1959-02-10 Wiegand Co Edwin L Thermal responsive device
GB857365A (en) * 1958-02-07 1960-12-29 Contactor Proprietary Ltd Improvements in and relating to means for electrically heating water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340382A (en) * 1965-05-03 1967-09-05 Arc O Vec Inc Multi-cell electrical heater
US4349727A (en) * 1973-07-25 1982-09-14 Southport Enterprises, Inc. Heater unit
US3831004A (en) * 1973-07-27 1974-08-20 Fast Heat Element Mfg Co Electric heater
US4263499A (en) * 1979-03-26 1981-04-21 Romance Joseph S Immersion heater with thermal cutoff
US4319127A (en) * 1980-07-16 1982-03-09 Emerson Electric Co. Electric heating elements
US4506140A (en) * 1982-11-15 1985-03-19 Armstrong Richard M Electric immersion heater assembly having an isolated terminal box
US6282372B1 (en) 2000-04-11 2001-08-28 Rheem Manufacturing Company Multi-position point of use electric water heater

Similar Documents

Publication Publication Date Title
US3890485A (en) Electric heaters
US3310657A (en) Electric immersion heater assembly
US2432169A (en) Electric immersion heater
US3429972A (en) Very high temperature electric melting furnace
US3654427A (en) Electric heated soldering tool
US4704516A (en) Pointed heat-generating device for molds of injection molding machines
ES289638Y (en) ELECTRODE STRUCTURE FOR METAL BATH IN MELTING
ZA854412B (en) Electric connecting device for contacting a molten metallic mass
US2389925A (en) Electric heating apparatus and method for heating crankcase oils
US3336462A (en) Electric soldering iron having a thermally insulated handle
US3410472A (en) Electrically isolated copper soldering iron tip
US3701884A (en) Metal cast cooking unit having a temperature sensitive control sensor
US3229358A (en) Process of manufacturing heating means for de-icing static ports and the like
FR2572873B1 (en) WALL ELECTRODE FOR DIRECT CURRENT ELECTRIC METALLURGICAL OVEN
US4110545A (en) Electrodes for glass furnaces
US2397445A (en) Electric resistance element and method of operating the same
US2543177A (en) Electric temperature device
US3399295A (en) Thermostatically controlled electric immersion heater units
US3129314A (en) Electric heater
US3254320A (en) Electric heaters
US1897004A (en) Electrical connection for nonmetallic resistors
US2274383A (en) Electric water heater
JP2000164324A (en) Water cooled electrode
US2351594A (en) Electric crucible
JP2539686B2 (en) Tubular electric heater