US3309363A - Das triazine brightener - Google Patents
Das triazine brightener Download PDFInfo
- Publication number
- US3309363A US3309363A US366635A US36663564A US3309363A US 3309363 A US3309363 A US 3309363A US 366635 A US366635 A US 366635A US 36663564 A US36663564 A US 36663564A US 3309363 A US3309363 A US 3309363A
- Authority
- US
- United States
- Prior art keywords
- solution
- brightener
- resin
- cationic softener
- softener
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 title description 2
- 239000000243 solution Substances 0.000 description 29
- 239000002752 cationic softener Substances 0.000 description 26
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 239000004744 fabric Substances 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 229920000742 Cotton Polymers 0.000 description 14
- 239000004753 textile Substances 0.000 description 10
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 229920003180 amino resin Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- YGCOKJWKWLYHTG-UHFFFAOYSA-N [[4,6-bis[bis(hydroxymethyl)amino]-1,3,5-triazin-2-yl]-(hydroxymethyl)amino]methanol Chemical class OCN(CO)C1=NC(N(CO)CO)=NC(N(CO)CO)=N1 YGCOKJWKWLYHTG-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 2
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 2
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 2
- 229950005308 oxymethurea Drugs 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- KBVDUUXRXJTAJC-UHFFFAOYSA-N 2,5-dibromothiophene Chemical compound BrC1=CC=C(Br)S1 KBVDUUXRXJTAJC-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- -1 Zinc fluoroborate Chemical compound 0.000 description 1
- 241000933336 Ziziphus rignonii Species 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/60—Optical bleaching or brightening
- D06L4/664—Preparations of optical brighteners; Optical brighteners in aerosol form; Physical treatment of optical brighteners
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/60—Optical bleaching or brightening
- D06L4/657—Optical bleaching or brightening combined with other treatments, e.g. finishing, bleaching, softening, dyeing or pigment printing
Definitions
- This invention relates to an improved means of simultaneously brightening and improving cellulose fibers. More particularly, it relates to the provision of a new brightener which can be effectively applied to cellulose fibers such as cotton simultaneously with the application of conventional textile improving resins and cationic softeners. It relates further to the resulting cotton fibers.
- Cotton fabrics are generally finished by treatment with resins which make the fibers crease-resistant and also impart good wash-and-wear properties. These resins may undesirably render the fabrics hard to the touch. It has become the practice to include in the resin-treating composition a material which counteracts this undesirable side effect.
- softeners mostly of the cationic type, are employed. These softeners are generally quaternary ammonium salts which are soluble in the aqueous resin-treating solution.
- the textile resin monomer of the amino-aldehyde (called also amino resin) or epoxy type, together. with an acid-acting accelerator, is dissolved in an aqueous solution.
- an aqueous solution is added to this solution.
- the quaternary ammonium salt to serve as softener.
- a cotton fabric is padded in the solution and cured at elevated temperatures to produce the finished fabric.
- the fabric is creaseresistant and, at the same time, is soft.
- this treatment normally has to be performed as a separate padding step, since most known optical brighteners are not effective in the presence of the cationic softener added to counteract the undesirable effects of the textile resin.
- the brightener of this invention is made by reacting 2 moles of cyanuric chloride in an alkaline solution with one mole of 4,4'-diaminostilliene-2,2-disulfonic acid, followed by treatment with 4 rrioles of l-aminopropanediol- 2,3.
- the alkali used is preferably a hydroxide of an alkali metal such as sodium.
- the solution of the alkali salt of a compound of this invention may be used directly in the resin-softener application or the compound may be isolated as the free acid later dissolved with an alkali hydroxide before application.
- the brightener of the present invention may be applied with conventional textile improving'resins.
- the preferred resin monomer is an amino resin, a type of resin monomer well-known in the art (see I. E. Blais, Amino Resins, New York, Reinhold, 1959, chapter 7), which is used together with an acid-acting accelerator, which can be a salt of a strong acid, like zinc nitrate, Zinc fluoroborate, magnesium chloride,ammonium sulfate, diammonium phosphate, etc.
- the accelerator initiates polymerization at the curing stage.
- Any conventional cationic softener useful with the above-described resins may be used herein.
- they are quaternary ammonium salts such as a tetraalkyl ammonium salt.
- Preferred members of this type are dialkyl dimetnyl quaternary ammonium chlorides in which the alkyl is a fatty residue such as stearyl, coco or tallow radicals.
- Cotton fabrics are treated in accordance with the present invention by conventional means except that the optical brightener and the resin-softener treatment will be accomplished simultaneously.
- the cloth is passed through a padding bath containing approximately 0.1% of the brightener, 10.0% of a resin monomer (50% type), 2.0% of an accelerator (30% type) such as an acidic salt, 2.0% of a cationic softener (5% type) and 0.10% of a wetting agent. It is then nipped in a roller to about -80% pick-up and dried at room temperature. It is finally cured for 12 minutes at 325 F.
- the resulting fabric has good dimensional stability and a good hand and with the' brightener of this invention has outstanding whiteness.
- the brightener bath should contain from 0.01 to 1.0% of brightener based on the Weight of the padding solution.
- concentration 3 of the cationic softener should be from 1 to 10% of a type.
- the solution is cooled to 0 C. and treated rapidly with a solution at 0 C. of 18.5 grams of cyanuric chloride in 150 milliliters of acetone.
- the reaction is exothermic, the temperature rising to about C.
- the mixture is cooled to 0 C. and stirred at this temperature until the reaction is complete.
- a solution of 40 milliliters of anhydrous sodium carbonate is added to bring the pH to about 5.
- the mixture is heated to C. and treated with 36.4 grams of 1-aminopropanediol-2,3.
- the acetone is stripped off and the remaining solution heated at reflux until the reaction is complete.
- the whole is cooled to ambient temperature, acidified with 5 N hydrochloric acid solution and the product filtered, washed with ether and dried. Yield is 51.1 grams of product; A is 345 m absorptivity at this wave length is 46.2.
- EXAMPLE 2 A solution of the compound of Example 1 is made by dissolving 100 mg. of the compound in 100 ml. of water with one drop of 30 Baum caustic soda solution and warming. The solution is cooled to ambient temperature, and there is added to the solution indicated amounts, on weight of the solution (o.w.s.), of the following:
- Cationic softener 2% of a 5% solution of distearyl dimethyl ammonium chloride in the form of a 70% paste.
- a highly chromatic white fabric of good hand and good dimensional stability is obtained. It is as white as a sample of cotton fabric padded with a solution having the brightener in the same concentration, but neither a resin nor a cationic softener.
- a 0.05% padding solution of the brightener of Example 1 is prepared as in Example 2.
- the solution includes the following instead of the resin, accelerator and softener recited therein:
- Textile resin 12.0% o.w.s. of a resin mixture which is at least 75% methylated hexamethylol melamine.
- Accelerator 2.4% o.w.s. of a 30% solution of magnesium chloride.
- Cationic softener 8.0% of a 5% solution of Cationic Softener GW of Proctor and Gamble, a quaternary ammonium salt.
- Example 2 A cotton fabric of good hand and comparable brightness to that of Example 2 is obtained. This shows that the brightener behaves well in the presence of excess cationic softener.
- EXAMPLE 5 g The compound of this invention is highly desirable in that it is stable in the presence of a cationic softener and remains in solution. Expectedly similar compounds lose strength in the presence of a cationic softener. Otherwiseuseful brighteners, such as the last compound of the following table, even precipitate completely out of solution in the presence of a cationic softener. Thus, they cannot be used to treat cotton in the presence of a cationic softener.
- Effectiveness for use as a cotton brightener from a padding bath containing cationic softener is measured as the percent loss of strength, using as standard the dyeing obtained from a bath having neither cationic softener nor resin. The higher the loss, the less the effectiveness of the brightener.
- X is a member selected from the group consisting of hydrogen, ammonium, 89510101 and potassium,
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
United States Patent @fihce 3,3d93ti3 Patented Mar. 14, 1987 3,309,363 DAS TRIAZINE BRIGH'IENER Bennett George Buell, Somerville, Ni, assignor t American Cyanamid Company, Stamford, Qonn, a corporation of Maine No Drawing. Filed May 11, 1964, $91. No. 366,635 1 Claim. (Cl. 260-240) This invention relates to an improved means of simultaneously brightening and improving cellulose fibers. More particularly, it relates to the provision of a new brightener which can be effectively applied to cellulose fibers such as cotton simultaneously with the application of conventional textile improving resins and cationic softeners. It relates further to the resulting cotton fibers.
Cotton fabrics are generally finished by treatment with resins which make the fibers crease-resistant and also impart good wash-and-wear properties. These resins may undesirably render the fabrics hard to the touch. It has become the practice to include in the resin-treating composition a material which counteracts this undesirable side effect. For this purpose, softeners, mostly of the cationic type, are employed. These softeners are generally quaternary ammonium salts which are soluble in the aqueous resin-treating solution.
In a typical operation the textile resin monomer of the amino-aldehyde (called also amino resin) or epoxy type, together. with an acid-acting accelerator, is dissolved in an aqueous solution. To this solution is added the quaternary ammonium salt to serve as softener. A cotton fabric is padded in the solution and cured at elevated temperatures to produce the finished fabric. The fabric is creaseresistant and, at the same time, is soft.
If it is desired to treat the fabric with an optical brightener, this treatment normally has to be performed as a separate padding step, since most known optical brighteners are not effective in the presence of the cationic softener added to counteract the undesirable effects of the textile resin. Thus, until the present, it has been necessary to perform the optical brightening step separately from the simultaneous textile resin-cationic softener treating step. Separate treatments are undesirable, since they necessitate more padding equipment, require more time, and, thus, raise the cost of the finished fabric.
It is the object of the present invention to provide a new composition which permits the application of an .optical brightener and a textile improving resin in the presence of a cationic softener. This and other objiects have been accomplished in accordance with this invention by the discovery of the new compound of the formula:
2 OH OH This compound (or, equivalently, its ammonium or sodium or potassium salt) is surprisingly stable in an aqueous bath containing the conventional textile improving resins and cationic softeners. An aqueous padding bath having all three components leads to cotton fabrics which, in one step, are improved with respect to brightness, creaseresistance and softness. This is surprising since, as will be shown hereinafter, chemical structures which are presumably closely related and which are useful optical brighteners in the absence of the cationic softener, lose their effectiveness to a great extent in the presence of a cationic softener. The compound of the present invention retains its effectiveness substantially completely.
The brightener of this invention is made by reacting 2 moles of cyanuric chloride in an alkaline solution with one mole of 4,4'-diaminostilliene-2,2-disulfonic acid, followed by treatment with 4 rrioles of l-aminopropanediol- 2,3. The alkali used is preferably a hydroxide of an alkali metal such as sodium. The solution of the alkali salt of a compound of this invention may be used directly in the resin-softener application or the compound may be isolated as the free acid later dissolved with an alkali hydroxide before application.
The brightener of the present invention may be applied with conventional textile improving'resins. The preferred resin monomer is an amino resin, a type of resin monomer well-known in the art (see I. E. Blais, Amino Resins, New York, Reinhold, 1959, chapter 7), which is used together with an acid-acting accelerator, which can be a salt of a strong acid, like zinc nitrate, Zinc fluoroborate, magnesium chloride,ammonium sulfate, diammonium phosphate, etc. The accelerator initiates polymerization at the curing stage.
Any conventional cationic softener useful with the above-described resins may be used herein. Generally and preferably, they are quaternary ammonium salts such as a tetraalkyl ammonium salt. Preferred members of this type are dialkyl dimetnyl quaternary ammonium chlorides in which the alkyl is a fatty residue such as stearyl, coco or tallow radicals.
Cotton fabrics are treated in accordance with the present invention by conventional means except that the optical brightener and the resin-softener treatment will be accomplished simultaneously. As an example of a useful operating procedure, the cloth is passed through a padding bath containing approximately 0.1% of the brightener, 10.0% of a resin monomer (50% type), 2.0% of an accelerator (30% type) such as an acidic salt, 2.0% of a cationic softener (5% type) and 0.10% of a wetting agent. It is then nipped in a roller to about -80% pick-up and dried at room temperature. It is finally cured for 12 minutes at 325 F. The resulting fabric has good dimensional stability and a good hand and with the' brightener of this invention has outstanding whiteness.
In general, the brightener bath should contain from 0.01 to 1.0% of brightener based on the Weight of the padding solution. On the same basis, the concentration 3 of the cationic softener should be from 1 to 10% of a type.
The following examples, in which parts are by weight, are presented to illustrate further the present invention.
EXAMPLE 1 A solution is prepared containing:
18.5 grams 4,4-diaminostilbene-2,2-disulfonic acid, 220 grams of water,
20 milliliters 5 N sodium hydroxide solution,
100 milliliters acetone.
The solution is cooled to 0 C. and treated rapidly with a solution at 0 C. of 18.5 grams of cyanuric chloride in 150 milliliters of acetone. The reaction is exothermic, the temperature rising to about C. The mixture is cooled to 0 C. and stirred at this temperature until the reaction is complete. A solution of 40 milliliters of anhydrous sodium carbonate is added to bring the pH to about 5. The mixture is heated to C. and treated with 36.4 grams of 1-aminopropanediol-2,3. The acetone is stripped off and the remaining solution heated at reflux until the reaction is complete. The whole is cooled to ambient temperature, acidified with 5 N hydrochloric acid solution and the product filtered, washed with ether and dried. Yield is 51.1 grams of product; A is 345 m absorptivity at this wave length is 46.2.
EXAMPLE 2 A solution of the compound of Example 1 is made by dissolving 100 mg. of the compound in 100 ml. of water with one drop of 30 Baum caustic soda solution and warming. The solution is cooled to ambient temperature, and there is added to the solution indicated amounts, on weight of the solution (o.w.s.), of the following:
Textile resin: 10% dimethylolurea,
Accelerator: 2% of a 30% solution of magnesium chloride,
Cationic softener: 2% of a 5% solution of distearyl dimethyl ammonium chloride in the form of a 70% paste.
Water is added to a volume of 200 ml. Concentration of the compound of Example 1 in the padding solution is 0.05%.
80x80 (threads to the inch) percale cotton, about two yards, is given one dip and nip. Pickup is 80% solution on the Weight of the fiber. The padded cotton is cured for two minutes at 325 F.
A highly chromatic white fabric of good hand and good dimensional stability is obtained. It is as white as a sample of cotton fabric padded with a solution having the brightener in the same concentration, but neither a resin nor a cationic softener.
EXAMPLE 3 When cotton is padded in a 0.05% padding solution 1 of the brightener compound of Example 1 using the procedure of Example 2 and choosing one each of the following components in any combination, equally goo-d results are obtained: (1) Textile resin:
(a) a resin having at least methylated hexamethylol melamine to give 12.5% o.w.s. (b) dimethylolurea to give 10.0% o.w.s. (2) Accelerator:
(a) 30% aqueous zinc nitrate containing a small amount of an alkanolamine to give 2.0% o.w.s. (b) 30% aqueous solution of magnesium chloride to give 2.0% o.w.s. (3) Cationic softener:
(a) Softener GW, sold by Proctor and Gamble, a
quaternary ammonium salt, to give 2.0% o.w.s. (b) distearyl dimethyl ammonium chloride to give 2.0% o.w.s.
Highly chormatic white cotton fabric is obtained in each case.
EXAMPLE 4 Behavior of brightener of Example 1 in the presence of excess cationic softener This example shows the stability of the compound of Example 1 in the presence of excess concentrations of cationic softener.
A 0.05% padding solution of the brightener of Example 1 is prepared as in Example 2. The solution includes the following instead of the resin, accelerator and softener recited therein:
Textile resin: 12.0% o.w.s. of a resin mixture which is at least 75% methylated hexamethylol melamine.
Accelerator: 2.4% o.w.s. of a 30% solution of magnesium chloride.
Cationic softener: 8.0% of a 5% solution of Cationic Softener GW of Proctor and Gamble, a quaternary ammonium salt.
The padding and curing procedure is followed as in Example 2.
A cotton fabric of good hand and comparable brightness to that of Example 2 is obtained. This shows that the brightener behaves well in the presence of excess cationic softener.
EXAMPLE 5 g The compound of this invention is highly desirable in that it is stable in the presence of a cationic softener and remains in solution. Expectedly similar compounds lose strength in the presence of a cationic softener. Otherwiseuseful brighteners, such as the last compound of the following table, even precipitate completely out of solution in the presence of a cationic softener. Thus, they cannot be used to treat cotton in the presence of a cationic softener.
Such compounds are shown in the following table. Effectiveness for use as a cotton brightener from a padding bath containing cationic softener is measured as the percent loss of strength, using as standard the dyeing obtained from a bath having neither cationic softener nor resin. The higher the loss, the less the effectiveness of the brightener.
I N SOaNa X Z Remarks 0 CHzCHzOH NHCHz-CHCHg Loses 2530% strength in resin-cationic softener H H application.
-0 CHzCHzOH CHzCHz Loses 25% when applied as above. -N\ /O C HzCHg --O CH2CH2(OCH2CH2);O CHzCHzOH av. CH OHgOH Loses 30% when applied as 6.7. above.
CHgCHzOH Loses 30-40% as above;
also discolors the cloth.
0 CHzCH2OH NH-OaH4(SO H-m) Loses 30% when applied as above.
CHzCHzOH NHCHzCHzOH 2030% loss when applied as above.
' oniomon NHB CHzCHeOH 20-35% loss when applied as above.
OHaCHzOH NHCHzCHnOH NHCH2OH2OH Shows 20-30% strength loss from resin-softener application.
NHCqH4-(S O Na-p) N H CHzOHzOH Precipitates in presence of cationic softener. Whitening efiect totally lost.
What is claimed is; A compound of the formula:
SOaX N OH OH NH-CHr-CH-CH:
OH OH wherein X is a member selected from the group consisting of hydrogen, ammonium, 89510101 and potassium,
References Cited by the Examiner UNITED STATES PATENTS J RANDOLPH, Primary Examiner,
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US366635A US3309363A (en) | 1964-05-11 | 1964-05-11 | Das triazine brightener |
US583086A US3356524A (en) | 1964-05-11 | 1966-09-29 | Process for treating and brightening cellulose fibers |
US583091A US3382200A (en) | 1964-05-11 | 1966-09-29 | Composition for treating and brightening cellulose fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US366635A US3309363A (en) | 1964-05-11 | 1964-05-11 | Das triazine brightener |
Publications (1)
Publication Number | Publication Date |
---|---|
US3309363A true US3309363A (en) | 1967-03-14 |
Family
ID=23443861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US366635A Expired - Lifetime US3309363A (en) | 1964-05-11 | 1964-05-11 | Das triazine brightener |
Country Status (1)
Country | Link |
---|---|
US (1) | US3309363A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356524A (en) * | 1964-05-11 | 1967-12-05 | American Cyanamid Co | Process for treating and brightening cellulose fibers |
US3496112A (en) * | 1967-07-24 | 1970-02-17 | Lever Brothers Ltd | Fluorescent dye compositions |
US3606991A (en) * | 1968-12-18 | 1971-09-21 | Us Agriculture | Process for preparing wash-wear and durable press cottons which will absorb optical brighteners from laundry detergents under home laundry conditions |
US3655574A (en) * | 1969-01-18 | 1972-04-11 | Hoechst Ag | Optical brightening composition mixture of three analogous compounds |
US4077771A (en) * | 1975-07-16 | 1978-03-07 | Toyo Boseki Kabushiki Kaisha | Process for treating fibrous material |
US6919452B1 (en) * | 2000-10-03 | 2005-07-19 | Fuji Photo Film Co., Ltd | Diaminostilbene derivatives |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB705405A (en) * | 1950-10-05 | 1954-03-10 | Kearney & Trecker Corp | Improvements in or relating to a band sawing machine |
GB814579A (en) * | 1956-06-14 | 1959-06-10 | Cassella Farbwerke Mainkur Ag | Optical bleaching agents |
US2945762A (en) * | 1955-10-12 | 1960-07-19 | Eastman Kodak Co | Supersensitization of photographic emulsions using triazines |
FR1263092A (en) * | 1960-07-25 | 1961-06-05 | Ici Ltd | Manufacture of new water-soluble stilbene compounds and their application to the bleaching of polymerized substances |
-
1964
- 1964-05-11 US US366635A patent/US3309363A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB705405A (en) * | 1950-10-05 | 1954-03-10 | Kearney & Trecker Corp | Improvements in or relating to a band sawing machine |
US2945762A (en) * | 1955-10-12 | 1960-07-19 | Eastman Kodak Co | Supersensitization of photographic emulsions using triazines |
GB814579A (en) * | 1956-06-14 | 1959-06-10 | Cassella Farbwerke Mainkur Ag | Optical bleaching agents |
FR1263092A (en) * | 1960-07-25 | 1961-06-05 | Ici Ltd | Manufacture of new water-soluble stilbene compounds and their application to the bleaching of polymerized substances |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356524A (en) * | 1964-05-11 | 1967-12-05 | American Cyanamid Co | Process for treating and brightening cellulose fibers |
US3382200A (en) * | 1964-05-11 | 1968-05-07 | American Cyanamid Co | Composition for treating and brightening cellulose fibers |
US3496112A (en) * | 1967-07-24 | 1970-02-17 | Lever Brothers Ltd | Fluorescent dye compositions |
US3606991A (en) * | 1968-12-18 | 1971-09-21 | Us Agriculture | Process for preparing wash-wear and durable press cottons which will absorb optical brighteners from laundry detergents under home laundry conditions |
US3655574A (en) * | 1969-01-18 | 1972-04-11 | Hoechst Ag | Optical brightening composition mixture of three analogous compounds |
US4077771A (en) * | 1975-07-16 | 1978-03-07 | Toyo Boseki Kabushiki Kaisha | Process for treating fibrous material |
US20050230662A1 (en) * | 1999-09-30 | 2005-10-20 | Keizo Kimura | Diaminostilbene derivatives |
US6919452B1 (en) * | 2000-10-03 | 2005-07-19 | Fuji Photo Film Co., Ltd | Diaminostilbene derivatives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3202579A (en) | Phosphinic acid derivatives for protection of hair from damage in bleaching and dyeing the same | |
JP3935978B2 (en) | Compounds with UV absorption properties | |
ES356804A1 (en) | Polysulfonated bis-s-triazinylamino-stilbene-2,2'-disulfonic acids | |
US3600385A (en) | Bis-(triazinylamino) stilbene derivatives for optical brightening | |
US4295846A (en) | Process for the production of formaldehyde-free finishing agents for cellulosic textiles and the use of such agents | |
US2956898A (en) | Certification of correction | |
US3309363A (en) | Das triazine brightener | |
JPH07310095A (en) | Processing of fiber | |
US3112156A (en) | Treatment of cellulosic textile material with 1, 3-dimethyl-4, 5-dihydroxy-2-imidazolidinone | |
JP4359147B2 (en) | Method to improve UV protection index of cellulosic fiber material | |
US3356524A (en) | Process for treating and brightening cellulose fibers | |
EP0912530A2 (en) | USE OF TRIAZINE-BASED UVAs FOR USE AS QUENCHERS IN PAPER-MAKING PROCESSES | |
US3177207A (en) | Nh-chs | |
US2763650A (en) | Derivatives of x | |
EP0708096A1 (en) | Bistriazinylaminostilbene derivatives and their use as fluorescent whitening agents | |
US7407519B2 (en) | Process for improving the sun protection factor of cellulosic fibre material | |
US2671784A (en) | Chlorine-fast fluorescent optical | |
US3853583A (en) | Fluorescent whitening compositions | |
US3895009A (en) | Stilbene compounds | |
US3766083A (en) | Fluorescent whitening compositions | |
GB896533A (en) | New stilbene derivatives and process for their manufacture | |
US3716532A (en) | Process for preparing crystalline forms of 4,4'-bis[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)-amino]-stilbene-2,2'-disulfonic acid | |
US3487088A (en) | Process for preparing 1,3-dimethylol-4,5-dihydroxy-2-imidazolidinone | |
US3031326A (en) | Brightening agents for polyamide fibers | |
US3423407A (en) | 4,4'-bis(4,6-di(chloroanilino)-s-triazin-2-ylamino) - 2,2' - stilbenedisulfonic acid brighteners |