US3303561A - Process for the preparation of an ironaluminum alloy - Google Patents
Process for the preparation of an ironaluminum alloy Download PDFInfo
- Publication number
- US3303561A US3303561A US261152A US26115263A US3303561A US 3303561 A US3303561 A US 3303561A US 261152 A US261152 A US 261152A US 26115263 A US26115263 A US 26115263A US 3303561 A US3303561 A US 3303561A
- Authority
- US
- United States
- Prior art keywords
- aluminum
- iron
- alloy
- ingot
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 77
- 239000000956 alloy Substances 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 62
- 230000008569 process Effects 0.000 title claims description 57
- 238000002360 preparation method Methods 0.000 title claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 108
- 229910052782 aluminium Inorganic materials 0.000 claims description 68
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 68
- 229910052742 iron Inorganic materials 0.000 claims description 52
- 229910000838 Al alloy Inorganic materials 0.000 claims description 35
- 238000005266 casting Methods 0.000 claims description 32
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 claims description 31
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 22
- 229910052726 zirconium Inorganic materials 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 239000000654 additive Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 16
- 238000003754 machining Methods 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 239000010955 niobium Substances 0.000 claims description 10
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 10
- 238000007711 solidification Methods 0.000 claims description 10
- 230000008023 solidification Effects 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052727 yttrium Inorganic materials 0.000 claims description 9
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 9
- 238000011282 treatment Methods 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 16
- 238000005253 cladding Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 229910052790 beryllium Inorganic materials 0.000 description 13
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 13
- 238000001816 cooling Methods 0.000 description 13
- 239000010935 stainless steel Substances 0.000 description 13
- 229910001220 stainless steel Inorganic materials 0.000 description 13
- 238000005096 rolling process Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000005482 strain hardening Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000005864 Sulphur Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 235000012438 extruded product Nutrition 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
- G21C3/07—Casings; Jackets characterised by their material, e.g. alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49988—Metal casting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49988—Metal casting
- Y10T29/49991—Combined with rolling
Definitions
- the present invention is directed to a process by means of which it is possible to reduce the brittleness of the alloy and to permit the production of parts carrying a proportion of aluminum which may reach approximately 40% by weight.
- the process in accordance with the present invention is characterized by the steps of preparing a molten mixture of iron, aluminum and one or a number of components or additives which have the effect of reducing brittleness, the aluminum content :being comprised between 16% and 40%, of casting the said mixture under conditions such that internal stresses are very small, the'arrangements referred-to being so chosen as to prevent the occurrence of separations between grain boundaries, and of subsequently destroying the casting structure by a mechanical-working process of hot-state deformation.
- the said impurities are usually introduced by the iron, since aluminum can be obtained in a high state of purity.
- An addition of zirconium or of niobium provides appropriate and effective means of trapping the embrittling impurities such as carbon, oxygen and nitrogen.
- the proportion of addition elements is preferably fixed as a function of the proportion of the impurities present. Accordingly, it has been possible to determine, for example, that the proportion, by Weight, of zirconium must be at least equal to approximately ten times the proportion of carbon-that is to say in an atom-for-atom ratioin order to eliminate the troublesome effects which are due to the presence of carbon, the proportion of which can generally be maintained below 0.02%.
- the binary alloys of iron with aluminum which may comprise, if necessary, up to 1% of addition elements, containing a proportion by weight of aluminum which may vary between 18 and 31% are particularly valuable.
- the present invention such as melting and pouring in vacuo, in an inert atmosphere or in free air under a protective fi-ux; the starting materials are preferably as pure as possible.
- the sequence in which the two main or single constituents are introduced most effectively is that in which iron is fed in first, .followed by aluminum.
- the particular features heretofore described have the effect of obtaining a product, as cast, which has only slight brittleness; the remainder of the treatment is carried out in such manner as to obtain good mechanical properties (breaking strength, yield strength, elongation, hardness, etc.) with suitable impact strength.
- the remainder of the treatment according to the present invention therefore consists in a hot-state mechanical working process which produces the deformation of the as cast product.
- the casting structure is destroyed; the temperature reached is usually within the range of 600 C. to 1,200 0., and depends on the proportion of aluminum and on the nature and proportion of the additive or additives; the said roughing-down process can be carried out either by extrusion, pressure :forging and/ or rolling; this treatment can be carried out without shocks or without excessively rapid deformations.
- the temperature reached is usually within the range of 600 C. to 1,200 0., and depends on the proportion of aluminum and on the nature and proportion of the additive or additives; the said roughing-down process can be carried out either by extrusion, pressure :forging and/ or rolling; this treatment can be carried out without shocks or without excessively rapid deformations.
- the roughing-down process is alone suflicient to provide directly the finished products.
- the mechanical working process of deformation in the hot state or roughing-down process which makes it possible to destroy the casting structure, preferably compris es the steps of covering the ingot which is derived from the casting operation with a metallic jacket, of carrying out the operations of hot-state machine-work on the ingot as fitted with its jacket and of the elimination of the jacket.
- the jacketing'or cladding process can be effected by any conventional means, but must not be conducive to subsequent weakness at any point in a zone which is subjected to high stresses during the roughing-down process.
- Such means can include cold hydrostatic cladding, electrolytic coating, metallizing by projection, etc.
- One of these subsequent treatments can consist of coldstate deformation by machine-Work or so-called cold work, that is to say, which is carried out at room temperature or at a temperature between room temperature and the temperature of re-crystallization; this machinework process of deformation in the cold state or .cold work which results in strain-hardening, 'may be carried out, for example, either by rolling or drawing, and permits:
- the mini-mum thickness which can be achieved by cold rolling is much smaller than that achieved by hot rolling alone, at least in the case of the rolling machines which are usually employed;
- the cold working treatment is made possible by the roughing-down process which has been previously described, even when the aluminum content is higher than In this strain-hardened state and with an iron content which is higher than approximately 75%, the Fe-Al alloy is a disordered solid solution; the said alloy is therefore ferromagnetic and can be employed as a magneticmaterial, especially in the form of thin sheeting or foil.
- the Fe-Al alloys having an iron content within the range of 75 to 84% in accordance with the present invention are therefore new magnetic materials which constitute new industrial products; the said alloys have the advantage of a density which is lower than that of other iron-base magnetic alloys and which is also lower than that of such Fe-Al magnetic alloys as have already been prepared heretofore; moreover, the oxidation resistance of the alloys in accordance with the present invention is very high, and higher than that of the Fe-Al alloys of the prior art, inasmuch as the aluminum content is higher.
- the alloys in accordance with the present invention may, therefore, effectively replace in certain cases cobalt alloys with a view to constructing the magnets employed in nuclear reactors.
- the said alloy For the purpose of improving the mechanical characteristics of the Fe-Al alloy, it is of advantage to subject the said alloy, either directly after the roughingdown process or after the cold working process, to a heat treatment which has the effect of modifying the distribution of impurities as well as the structure of the alloy; the said heattreatment may be of any suitable known type which is adapted to the desired modifications, while the temperature must obviously not exceed that at which the grain would grow again to a large size; this treatment may accordingly consist, for example, of an annealing process or a drawing of temper.
- the treatment may subsequently be followed by a further mechanical treatment, either in the hot state or in the cold state or both, which is in turn followed by a heat treatment; the cycle may also be repeated a number of times.
- the alloy is intended to be employed as a structural material in either a. medium-temperature or high-temperature reactor, it may prove desirable for the purpose of, ensuring that the mechanical behavior of the said material during operation is stabilized to the maximum extent within the shortest possible time, to carry out the said heat treatment as a preliminary step, at least at the maximum temperature which is subsequently reached in the reactor channel
- the Fe-Al alloys in accordance with the present invention are characterized by remarkable oxidation resistance which is greater than that of stainless steel in the case of high aluminum contents (over 18%, for example), and which is essentially due to the fact that the external surface of the alloy is coated with a self-protecting film of oxide.
- the alloys in accordance with the present invention may also be contemplated for use as structural material in nuclear reactors, especially as cladding material for fuel elements.
- the neutron absorption of the alloy in accordance with the present invention is distinctly lower than in the case of stainless steel and the yield strength at high temperature, for example, between 450 C. and 700 C., is distinctly higher than that of stainless steel.
- the Al-Fe alloy which may in certain cases contain beryllium or even silicon, therefore constitutes a structural material which may be employed in nuclear reactors, for example, as cladding material, especially in high-temperature reactors, and may be employed in those cases in which stainless steel or beryllium are not suitable for use, the former on account of its very high neutron-absorption capacity, the latter on account of its brittleness, of its low creep strength above 600 C., of the swelling of cans or jackets as a result of the formation of helium pockets, and finally of its unduly low corrosion resistance when hot, especially in CO at 600 C.
- a reactor which is designed for the use of uranium oxide (natural uranium) as fuel, for the use of CO as a coolant gas at a temperature of 600 C. and a pressure of 60 kg./cm. and for the use of cylindrical fuel elements 15 'mm. in diameter, could not operv.ate with a can of stainless steel having a thickness of 0.2
- the cross-sections 2 of the cladding tubes are as follows:
- the percentage of aluminum contained in the alloy may be decreased while at the same time decreasing the global cross-section of the alloy; 1% by weight of beryllium is in fact equivalent from the viewpoint of neutron absorption cross-section to 2% by Weight of aluminum.
- Another object of the present invention resides in the provision of a process for producing an iron-aluminum alloy in which thealuminum content may be increased to a range above that normally feasible heretofore, without producing a product of which the brittleness is so great as to preclude any subsequent machining operations.
- Another object of the present invention resides in the provision of a novel iron-aluminum alloy containing, by weight, approximately 16 to 40% of aluminum of which the brittleness is relatively low and which permits of subsequent hot or cold working operations.
- a further object of the present invention resides in the provision of Fe-Al alloys in which the brittleness is controlled to a degree not realizable heretofore.
- a further object of the present invention resides in the provision of a process for the manufacture of iron-aluminum alloys in which the thermal stresses are reduced and incipient boundary separations are controlled to fall within acceptable values.
- a still further object of the present invention resides in a novel alloy principally containing iron and aluminum and having a relatively high proportion of aluminum which has magnetic properties and may be produced in the form of thin sheeting or foil.
- Another object of the present invention resides in the provision of a process for the manufacture of an ironaluminum alloy which permits of obtaining very small thicknesses, accurate dimensions, and cold working treatments as well as subsequent heat treatments.
- a further object of the present invention resides in the provision of a process for producing a low density iron-base magnetic alloy and in the resulting product which not only exhibits such low density properties, but also an oxidation resistance that is considerably higher than that of other iron-aluminum alloys as well as stainless steel.
- Still another object of the present invention resides in the provision of a process for producing an ironaluminum alloy having neutron absorption properties that are distinctly lower than those of stainless steel and having a yield strength that is considerably higher than that of stainless steel.
- Still a further object of the present invention resides in the provision of a process for producing an ironaluminum alloy and the alloy resulting from such process which may be used in nuclear reactors and has such properties and characteristics as to obviate the need for enriched fuels.
- the alloy to be produced has the following composition:
- the cooling rate is limited to approximately 50 C. per hour. It should be noted in passing that preheating is of course necessary in this example only on account of the fact that the casting mass employed in this example is small.
- step (b) Roughing-down.
- the ingot which is obtained from step (a) above after cooling is fitted with a metallic jacket, for example, of ordinary steel (XC 12 or XC 35 in particular).
- the covering of the ingot may be carried into effect by means of any one of the methods of conventional cladding, for example, by welding a sheet which has previously been wrapped around the ingot, by cold-state hydrostatic cladding, etc.
- the thickness of the jacket is obviously designed so that the subsequent mechanical treatments permit a thickness to remain which is such that there is no danger of tearing. This thickness was of the order of 2 mm. in the example described.
- the composite work-piece formedby the ingot which is covered with its jacket is subjected to a series of rolling passes at 1050 C., each pass necessarily resulting in a reduction in thickness which is sufficient to work-harden the metal right through.
- the presence of the jacket makes it possible to facilitate the surface flow of the alloy and permits of deformations which the ingot would not withstand if it were treated in the uncovered state.
- each pass resulted in a reduction in thickness of 2 mm.
- a reheating for a period of two minutes, thereby bringing the temperature back to 1050 C.
- the thickness of the composite workpiece can thus be reduced without difficulty to approximately 2 mm. It is apparent that the reheating treatment is only necessary on account of the fact that the temperature of the work-piece falls substantially as a result of the small dimensions of the latter.
- the composite work-piece can then be freed of its steel jacket (the thickness of which has obviously been substantially reduced to the same extent as those of the workpiece) by dilferent methods.
- the jacket which in the example described only remains in the form of a film of the order of a few tenths of a millimeter, can be, for example:
- Cold working-The alloy which is thus obtained may be subjected to subsequent mechanical operations which result in limited deformations, for example, deformation by rolling at room temperature with annealing treatments between successive rolling passes.
- EXAMPLE II (a) Melting and casting.A cast is prepared under conditions which are similar to those of Example I starting with 2.9 kilograms of electrolytic iron, 1.1 kilograms of aluminum and 4 grams of zirconium. The temperature is then raised to a few tens of degrees above the solidification temperature (or liquidus temperature) of the alloy and the latter is poured off in vacuo into a preheated ingot-mold. The cooling process is then carried out as in Example I.
- the alloy which is thus cast has the following composition by weight:
- the said machining operation may not be necessary in the case of certain surface conditions and when the roughing-down operation consists in a rolling process which can be performed after cladding according to a procedure which is similar to that described in the previous example. However, such a machining operation is necessary for the purpose of shaping the ingot when the treatment involves extrusion of the jacketed ingot.
- the lathe turning operation is performed with a view to obtaining a cylinder having a rounded front end.
- the work-piece which is thus machined is covered by means of any conventional process with a steel jacket having a shape which is adapted to that of the said work-piece and a thickness of a few millimeters. It may be useful to replace mild steel by other metals or alloys such as iron-aluminum alloys containing a low percentage of aluminum, which have the advantage of better oxidation resistance and, in certain cases, nickel or cupronickel.
- the composite part which is thus obtained is then pressextruded at 950 C. At this temperature, it is possible to reach an extrusion ratio of the order of 1:30, or in other words, it is possible to prepare rods of 11 mm. diameter from machined ingots of 60 mm. diameter.
- a similar process makes it possible to obtain tubes having a thickness which is less than one millimeter.
- the lathe turning operation is performed with a view to producing a hollow cylinder which is then clad both internally and externally.
- the separation of the alloy and its steel jacket can be carried out in accordance with any one of the processes which have already been referred toin Example 'I, for example, by chemical dissolution in a solution composed of 50% water and.50% nitric acid which rapidly dissolves the jacket, by oxidation of the jacket, by air heating or in an oxidizing atmosphere. In the latter case, the jacket disappears whereas the alloy is not attacked by virtue of its high resistance to oxidation.
- the extruded product obtained may, in certain cases, be employed as it stands, inasmuch as it has a good surface to. finish. However, it may, if necessary, be subjected to a further cold working treat ment and may, for example, be threaded on a threadcutting lathe. In fact, the grain size after extrusion is reduced to 20 or 30 microns and accordingly permits of machining.
- the part which has been either machined or extruded may besubjected to a heat treatment for a period of 8 one hour at 800 C.; after this heat treatment, the extruded product has the following characteristics:
- Tempera- Ultimate Yield Elongation titre Tensile Strength, at Fracture, 0. Strength, kgsJmm. Percent kgsJmrn.
- Example III The same operations as in Example II (melting, casting, machiningQjacketing, extrusion and elimination of the jacket) have also been applied to an alloy cont-aining 25% aluminum by Weight, the composition of which is as follows:
- the product obtained has the characteristics which are given in the table below:
- Tempera- Ultimate Yield Elongation ture Tensile Strength. at Fracture, 0. Strength, kgs./mrn. Percent kgs/mmfl 1 Brittle fracture.
- EXAMPLE V (a) Melting and casting. The same operations of melting and casting are applied to an alloy containing 25% aluminum having the following composition by weight:
- a reduction value of less than 90% can be obtained with final thicknesses of the order of one millimeter.
- the Vickers hardness number of the product is 500 HV; heat treatments by annealing at 950 C. make it possible to reduce this hardness number to 280 HV.
- a process for the preparation of an iron-aluminum alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof and the balance iron, comprising the steps of:
- a process for the preparation of a ternary ironaluminum base alloy consisting essentially of between greater than 18% and to about 40% by weight of aluminum, up to 2.8% by weight of berylliumand the balance iron, comprising the steps of:
- a process for the preparation of an iron-aluminum base alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% 'by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof, up to 2.8% by weight of beryllium and the balance iron, comprising the steps of:
- a process for the preparation of a binary iron-aluminum alloy consisting essentially of between 30% and about 40% by weight of aluminum and the balance iron, comprising the steps of:
- a process for the preparation of an iron-aluminum alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof and the balance iron, comprising the steps of:
- a binary iron-aluminum alloy consisting essentially of between 30% and about 40% by weight of aluminum and the balance iron.
- An iron-aluminum alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof and the balance iron.
- a relatively thin sheet composed of the iron-aluminum alloy of claim 11.
- a ternary iron-aluminum base alloy consisting essentially of between :greater than 18% and about 40% by weight of aluminum, up to 2.8% by weight of beryllium and the balance iron.
- An iron-aluminum base alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof, up to 2.8% by weight of beryllium and the balance iron.
- a ternary iron-aluminum base alloy consisting essentially of between greater than 18% and about 40% by weight aluminum, from about 1% to about 2.8% by Weight of berylli np and the balance iron.
- An iron-aluminum base alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof, from about 1% to about 2.8% by weight of silicon and the balance iron.
- a ternary iron-aluminum base alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, at least 1% by weight of a material selected from the group consisting of beryllium and silicon andthe balance iron.
- An iron-aluminum base alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof, at least 1% by 'weight of a material selected from the group consisting of beryllium and silicon and the balance iron.
- An iron-aluminum alloy consisting essentially of between greater than 18% and 31% by weight of aluminum, up to 1% by weight of an additive selected from the group consisting of zirconium, niobium, titanium, yttrium, the rare earths, boron and mixtures thereof and the balance iron, said alloy consisting solely of the Fe-Al phase.
- Alprocess for the preparation of an at least binary iron-aluminum alloy consisting essentially of between greater than 18% and about 40% by weight of aluminum and the balance iron, said alloy being characterized by a relatively low brittleness permitting machining operations, comprising the steps of:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- High Energy & Nuclear Physics (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Manufacturing Of Electric Cables (AREA)
- Heat Treatment Of Steel (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR889735A FR1323724A (fr) | 1962-03-02 | 1962-03-02 | Procédé de préparation d'un alliage fer-aluminium |
FR967787A FR85480E (fr) | 1962-03-02 | 1964-03-17 | Procédé de préparation d'un alliage fer-aluminium |
Publications (1)
Publication Number | Publication Date |
---|---|
US3303561A true US3303561A (en) | 1967-02-14 |
Family
ID=26194609
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US261152A Expired - Lifetime US3303561A (en) | 1962-03-02 | 1963-02-26 | Process for the preparation of an ironaluminum alloy |
US440441A Expired - Lifetime US3386819A (en) | 1962-03-02 | 1965-03-17 | Iron-aluminum alloys containing less than 84% by weight iron and an additive and process for preparing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US440441A Expired - Lifetime US3386819A (en) | 1962-03-02 | 1965-03-17 | Iron-aluminum alloys containing less than 84% by weight iron and an additive and process for preparing the same |
Country Status (10)
Country | Link |
---|---|
US (2) | US3303561A (en, 2012) |
BE (2) | BE660989A (en, 2012) |
CH (1) | CH503794A (en, 2012) |
DE (2) | DE1258608B (en, 2012) |
GB (2) | GB1030613A (en, 2012) |
IL (1) | IL23129A (en, 2012) |
LU (1) | LU48204A1 (en, 2012) |
NL (2) | NL6503371A (en, 2012) |
NO (1) | NO116549B (en, 2012) |
OA (1) | OA01988A (en, 2012) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3386819A (en) * | 1962-03-02 | 1968-06-04 | Commissariat Energie Atomique | Iron-aluminum alloys containing less than 84% by weight iron and an additive and process for preparing the same |
US4988488A (en) * | 1989-10-19 | 1991-01-29 | Air Products And Chemicals, Inc. | Iron aluminides and nickel aluminides as materials for chemical air separation |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4419130A (en) * | 1979-09-12 | 1983-12-06 | United Technologies Corporation | Titanium-diboride dispersion strengthened iron materials |
US5620651A (en) * | 1994-12-29 | 1997-04-15 | Philip Morris Incorporated | Iron aluminide useful as electrical resistance heating elements |
CN111455279A (zh) * | 2020-02-28 | 2020-07-28 | 深圳市新星轻合金材料股份有限公司 | 铁铝合金及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2768915A (en) * | 1954-11-12 | 1956-10-30 | Edward A Gaughler | Ferritic alloys and methods of making and fabricating same |
US2804387A (en) * | 1955-11-14 | 1957-08-27 | Ford Motor Co | Preparation of iron aluminum alloys |
US2846494A (en) * | 1955-11-30 | 1958-08-05 | Rca Corp | Thermoelectric devices |
US2859143A (en) * | 1954-08-06 | 1958-11-04 | Edward A Gaugler | Ferritic aluminum-iron base alloys and method of producing same |
US3026197A (en) * | 1959-02-20 | 1962-03-20 | Westinghouse Electric Corp | Grain-refined aluminum-iron alloys |
US3144330A (en) * | 1960-08-26 | 1964-08-11 | Alloys Res & Mfg Corp | Method of making electrical resistance iron-aluminum alloys |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3027252A (en) * | 1959-09-29 | 1962-03-27 | Gen Electric | Oxidation resistant iron-chromium alloy |
BE629096A (en, 2012) * | 1962-03-02 |
-
0
- BE BE629096D patent/BE629096A/xx unknown
- NL NL289214D patent/NL289214A/xx unknown
- DE DENDAT1251039D patent/DE1251039B/de active Pending
-
1963
- 1963-02-26 GB GB7696/63A patent/GB1030613A/en not_active Expired
- 1963-02-26 US US261152A patent/US3303561A/en not_active Expired - Lifetime
-
1965
- 1965-03-08 DE DEC35243A patent/DE1258608B/de active Pending
- 1965-03-09 IL IL23129A patent/IL23129A/en unknown
- 1965-03-09 OA OA51532A patent/OA01988A/xx unknown
- 1965-03-11 BE BE660989A patent/BE660989A/xx unknown
- 1965-03-12 GB GB10618/65A patent/GB1083083A/en not_active Expired
- 1965-03-15 CH CH357265A patent/CH503794A/fr unknown
- 1965-03-16 LU LU48204A patent/LU48204A1/xx unknown
- 1965-03-16 NO NO157234A patent/NO116549B/no unknown
- 1965-03-17 NL NL6503371A patent/NL6503371A/xx unknown
- 1965-03-17 US US440441A patent/US3386819A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2859143A (en) * | 1954-08-06 | 1958-11-04 | Edward A Gaugler | Ferritic aluminum-iron base alloys and method of producing same |
US2768915A (en) * | 1954-11-12 | 1956-10-30 | Edward A Gaughler | Ferritic alloys and methods of making and fabricating same |
US2804387A (en) * | 1955-11-14 | 1957-08-27 | Ford Motor Co | Preparation of iron aluminum alloys |
US2846494A (en) * | 1955-11-30 | 1958-08-05 | Rca Corp | Thermoelectric devices |
US3026197A (en) * | 1959-02-20 | 1962-03-20 | Westinghouse Electric Corp | Grain-refined aluminum-iron alloys |
US3144330A (en) * | 1960-08-26 | 1964-08-11 | Alloys Res & Mfg Corp | Method of making electrical resistance iron-aluminum alloys |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3386819A (en) * | 1962-03-02 | 1968-06-04 | Commissariat Energie Atomique | Iron-aluminum alloys containing less than 84% by weight iron and an additive and process for preparing the same |
US4988488A (en) * | 1989-10-19 | 1991-01-29 | Air Products And Chemicals, Inc. | Iron aluminides and nickel aluminides as materials for chemical air separation |
DE4033338A1 (de) * | 1989-10-19 | 1991-04-25 | Air Prod & Chem | Eisen-aluminide und nickel-aluminide als stoffe fuer die chemische auftrennung von luft |
Also Published As
Publication number | Publication date |
---|---|
IL23129A (en) | 1968-12-26 |
DE1258608B (de) | 1968-01-11 |
GB1030613A (en) | 1966-05-25 |
OA01988A (fr) | 1970-05-05 |
NO116549B (en, 2012) | 1969-04-14 |
DE1251039B (en, 2012) | |
BE660989A (en, 2012) | 1965-07-01 |
GB1083083A (en) | 1967-09-13 |
NL289214A (en, 2012) | |
NL6503371A (en, 2012) | 1965-09-20 |
LU48204A1 (en, 2012) | 1965-05-17 |
BE629096A (en, 2012) | |
CH503794A (fr) | 1971-02-28 |
US3386819A (en) | 1968-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08505225A (ja) | 内部ライナー付きジルコニウム被覆管の製法 | |
JPH0118979B2 (en, 2012) | ||
CN111334686B (zh) | 一种抗蠕变高冲击韧性耐蚀可焊钛合金及制备方法 | |
US3645800A (en) | Method for producing wrought zirconium alloys | |
JPS6239220B2 (en, 2012) | ||
US20130220493A1 (en) | Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same | |
US6544361B1 (en) | Process for manufacturing thin components made of zirconium-based alloy and straps thus produced | |
US3677723A (en) | Composite material of vanadium alloys and iron or nickel alloys | |
US2838395A (en) | Niobium base high temperature alloys | |
US3303561A (en) | Process for the preparation of an ironaluminum alloy | |
CN114150180B (zh) | 一种电子束熔丝3d打印用海洋工程钛合金材料及其制备方法 | |
KR910007917B1 (ko) | 원자로 연료용 합성 피복관의 제조공정 및 그 생산물 | |
US3156560A (en) | Ductile niobium and tantalum alloys | |
US4144059A (en) | Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom | |
US3617395A (en) | Method of working aluminum-magnesium alloys to confer satisfactory stress corrosion properties | |
US3230119A (en) | Method of treating columbium-base alloy | |
Webster | Zirconium and hafnium | |
EP0425465A1 (en) | A method of manufacturing cladding tubes for fuel rods for nuclear reactors | |
Seagle et al. | Electron-Beam Melting: Does It Improve the Properties of Metals and Compounds? | |
US3635700A (en) | Vanadium-base alloy | |
US3192073A (en) | Method of making oxidation resistant and ductile iron base aluminum alloys | |
USRE26122E (en) | Ductile niobium and tantalum alloys | |
CN115896620B (zh) | 一种耐腐蚀FeCrAl包壳及其制备方法 | |
US3476614A (en) | Ductility of dispersed phase alloys,particularly al-al2o3 | |
CN110777286A (zh) | 一种中强可焊耐蚀含钪高镁铝合金锻件的制备方法 |