US3292676A - Apparatus for case hardening wood - Google Patents

Apparatus for case hardening wood Download PDF

Info

Publication number
US3292676A
US3292676A US224158A US22415862A US3292676A US 3292676 A US3292676 A US 3292676A US 224158 A US224158 A US 224158A US 22415862 A US22415862 A US 22415862A US 3292676 A US3292676 A US 3292676A
Authority
US
United States
Prior art keywords
wood
workpiece
compressing
compressed
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US224158A
Inventor
Carroll H Van Hartesveldt
Buddy D Wahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoover Universal Inc
Original Assignee
Hoover Ball and Bearing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US6189A external-priority patent/US3171167A/en
Application filed by Hoover Ball and Bearing Co filed Critical Hoover Ball and Bearing Co
Priority to US224158A priority Critical patent/US3292676A/en
Application granted granted Critical
Publication of US3292676A publication Critical patent/US3292676A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/02Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing

Definitions

  • the present invention relates to a mechanism for providing an improved wood'product having a hardened corria yond the elastic limit of the wood to form a hardened I outer layer which is integral with the wood. Inasmuch as only the surface of the wood is compressed only a small volume of wood is sacrificed to' obtain surface-hardness. resistance to wear and local impact is desired. In accordance with the present invention the original volume of the wood has not been substantially reduced and the wood is protected by an integral hardened surface.
  • An object of the invention is to provide an improved mechanism for obtaining a wood structure having an integral case hardened compressed outer layer.
  • Another object of the invention is to provide an improved mechanism for compressing only the outer layer of wood beyond its elastic limit and stabilizing the compressed layer to provide a permanent structure which can withstand moisture and not return to its original uncompressed state.
  • Another object of the invention is to provide an improved mechanism for providing a case hardened surface for wood impregnated with a plastic or resin sealant which may be covered with a decorative paper layer.
  • Another object of the invention is to provide an improved mechanism which can be used to compress the outer surface of wood beyond its elastic limit and provide a case hardened layer simply and. inexpensively for production and manufacturing operations.
  • FIGURE 1 is a side elevational view of a mechanism, shown with portions in section for case hardening the outer surface of a wood workpiece in accordance with the method of the invention
  • FIGURE 2 is a side elevational view similar to FIG- URE 1, showing additional details and illustrating additional steps of the method;
  • FIGURE 3 is a side elevational view similar to FIG- URE 1 and illustrating another form of the method
  • FIGURE 4 is a side elevational view similar to FIG- URE 1 and illustrating still another form of the method
  • FIGURE 5 is a side elevational view with portions shown in section, illustrating a simplified form of the mechanism in accordance with the present invention
  • FIGURE 6 is an enlarged detailed sectional view illustrating in particular relative dimensions of a portion of the mechanism
  • FIGURE 7 is a side elevational view, shown partially in section, illustrating the method being performed with rollers
  • FIGURE 8 is a vertical sectional view taken through a wood workpiece finished in accordance with the present invention.
  • FIGURE '9 is a graph showing the stress-strain relationship for a type of wood such as maple;
  • FIGURES 10 through 14 are vertical sectional views taken through a wood workpiece being subjected to action of a mandrel in accordance with the present invention, shown somewhat in schematic form for describing the dimensional relationships involved;
  • FIGURE 15 is a graph showing the relationship between the specific gravity of the wood and the distance from the wood surface.
  • FIGURES 1 through 6 perform the method of the invention for forming a hardened compressed layer on the surface of a wood workpiece by applying a progressively increasing pressure to a limited area of the surface of the wood until the elastic limit is exceeded, such as lbyusing a mandrel or shoe having an inclined compressing surface which engages a limited area of the wood and has a slope within critical limits to insure overcoming the compressive strength of the surface layer of the wood workpiece.
  • the shoe applying its local pressure -is progressively advanced across the wood workpiece to enlarge the compressed area until the surface is covered with a layer of compressed wood.
  • the surface of the wood may be preheated to a temperature above 212 F. to the depth of crushing.
  • the compressed layer is stabilized while held compressed by heating to a temperature of 300-360 F. to a depth sufficient to reach all of the compressed wood.
  • the wood is then preferably cooled to a temperature 'of 210 F. or less to prevent the release of steam and drying of the wood.
  • the method may include impregnation of the wood surface with asealant such as resins or wax or a thermosetting resin which will then be cured in the stabilizing heating step.
  • a surface preheat step may be incorporated with surface impregnation of resin'before compressing by preheating in a range from 250 to 360 to dry the wood surface and B-stage the resin.
  • A-n impregnated decorative paper may be laid down on the impregnated wood surface before compressing, with the paper impregnated with a B-stage resin.
  • the wood workpiece 16 in the form of an elongated fiat board is surface hardened on both sides in the mechanism illustrated. While the method may be practiced with hardening on one side only, the mechanism illustrated shows a simultaneous hardening of both sides which provides a finished: wood workpiece hardened on both surfaces and avoids complications of warpage of the wood workpiece which may occur when one surface alone is hardened.
  • the workpiece 16 is moved relative to surface treating and compressing assemblies 17 and 17' by suitable means such as a :bar 18 placed across the end of the workpiece and forced in a direction to move the workpiece ahead of it.
  • Compressing of the surface layers of the workpiece is accomplished by sloped compressing surfaces 19 and 19' for the respective sides of the wood, on mandrels or shoes 22 and 22'.
  • a flexible shim or sheet 20,20 is positioned over the surfaces of the wood between the wood and the shoe compressing surfaces 19 and 19-
  • the shim may be of brass or of flexible steel preferably such as 1095' steel, and the r Preheating of the wood surface is accomplished byprev heating blocks 21, 21' which are positioned in advance of the compressing surface .19, 19 and are heated by suitable heating elements such as 21a, 21a. These impart sufiicient heat to the wood to heat it to a temperature above 212 F. to soften the surface fibers of the wood.
  • the preheat block has a smooth planar surface parallel to the wood and facing the wood for good heat transfer contact.
  • the shims 20 and 20 are sufficiently thin to permit rapid heat transfer and to conform to the shape of the surface of the shoes.
  • the size and temperature of the preheating blocks, and the size and temperature of the other heat transfer members are, of course, chosen relative to the speed at which the wood workpiece will be moved through the mechanism to attain the desired surface temperature of the wood.
  • the shoes or mandrels 22 and'22 are heated by heating elements such as 22a and 22a to heat the wood to a temperature of 300 F. to 360 F.
  • coolers or cooling blocks 23' and 23 illustrated as being hollow with a chamber 23a and 23a therein for acoolant fluid.
  • the cooling blocks reduce the temperature of the wood to a temperature of 210 F. or less, preventing the compressed moisture on the wood surface from flashing into steam to dry the surface and preventing the causing of blisters. tween the mandrels 22 and 22' and the cooling blocks 23 and 23'.
  • the elements of the assemblies such as the preheating blocks 21 and 21, the mandrels 22 and 22, and the An insulating wall 24 and 24' is provided be- 1 cooling blocks 23 and 23' are mounted as a unit and may be backed by plates or bars 25 and 25 which are supported by pressure bolts 26 that are threaded and receive nuts and function to hold the mandrels against the board with sufficient pressure to insure compressing the wood surface.
  • compression of the sur- I face of a wood workpiece 30 may be performed without the application of a stabilizing heat, for provision of Wood to be used where it will not be subjected to moisture.
  • a wood workpiece 30 is moved by suitable means, such as a bar 31 at the end, between mandrels 32 and 32' which have sloping compressing surfaces 33 and 33' and sheet material or shims 34 and 34 are positioned over the surface of the wood during engagement by the mandrels.
  • the finished wood product is illustrated in enlarged sectional view in FIGURE 8 at 40.
  • the outer surfaces As illustrated in FIGURE 2, a wood workpiece 45 is moved in-between the assemblies 25 and 25 being forced forwardly by the bar 18 which has cables 46 attached to its ends drawn forwardly by a motor driven winch arrangement 47 that moves the wood workpiece 45 forwardly at a uniform speed. Movement at uniform speed ispreferred to obtain an accompanying uniform heat application.
  • Ahead of the wood workpiece is a preheating mechanism illustrated as being conveniently in the form of infra-red lamps 48 and 48'. This preheating mechanism preheats the outer surface or skin of the wood from 200375 F. to remove surface moisture. This prevents the acquisition of moisture by the wood from the air which would be trapped beneath the surface of the preheating blocks 21 and 21 and beneath the surface of the mandrels 22 and 22'.
  • a wood workpiece 49 is forced between the surface compressing assemblies 25 M and 25', but the surfaces are first impregnated with a sealant such as a resin or wax or thermoplastic.
  • the sealant is applied in a manner shown schematically by a tank at 50 and the coated wood workpiece is passed through a drying oven where it is dried overnight or for an equivalent period at F. with the sealant penetrating the wood.
  • the preheatinglamps 48 and 48" then heat the impregnated wood surface to 250 F. to 360 F. to eliminate any moisture which has been gatheredfrom the air and to B-stage the resin if resin is used- This heat is at the outer skin surface of the Wood and not necessarily to the full compression depth as excess heating to the full depth would excessively soften the wood fibers.
  • Heating to compression depth is further accomplished by i the preheat blocks 21 and 21.
  • the pressure of the mandrels will distribute the impregnant and the heat of the mandrels, in the case when a thermosetting resin is used,- will cure the resin.
  • a wood workpiece 56 is moved between the surface hardening assemblies 25 and 25' after having been surface impregnated in the tank 50 and the drying oven 51 and after. the surface has been preheated by the lamps 48 and 48'.
  • FIGURE 7 While a, mandrel or shoe having an inclined compressing surface is preferred, the method can be practiced by the use of a roller, such as illustrated in FIGURE 7.
  • a wood workpiece 60 is moved relatively past a compress ing roller 61.
  • the roller must have a size within critical limits so as to engage a limited area of the wood surface andexceed the compressive strength of the wood at the surface and the compressing roller will be small.
  • To prevent bending of the roller it it is backed by a first backing roller 62 which is additionally backed by supporting rollers 63 and 64.
  • Heating elements not shown, may be provided to preheat the wood and to post-heat it after the surface has been compressed for stabilizing the hardened layer.
  • the size of the roller is critical so that a sufficiently small area is engaged to exceed the elastic limit of the wood at the surface. The relationship of the length L of area of wood engaged to the height H of wood.
  • FIGURE 6 which shows a mandrel or shoe 66 in enlarged detail
  • a wood workpiece 65 is forced past the mandrel with a thin shim 67 on the wood surface. and the mandrelhas a trailing surface 69 parallel to the wood surface and a leading surface 70 parallel to the uncompressed wood surface.
  • Themandrel is provided with fairing-or is rounded at locations 71 and 72 where the compressing surface joins the flat planar'surfaces 69 and 70.
  • the slope or the relationship of L to H is critical as will become apparent from the following description and examples.
  • FIG- URE 9 A typical stress-strain curve for wood is shown in FIG- URE 9.
  • the actual example plotted is edge-glued, vertical grained maple with the compression force perpendicular to the grain and approximately parallel to the plates of summer wood. Compressing the wood in this manner is preferred for obtaining a good finished product.
  • FIGURE 10 The general case is shown in FIGURE 10. As the wood is moved from right to left, as shown by the arrow, it will have an increasing downward force applied along the line X--Y. The wood which would have continued to al is compressed into 0 The wood which would have continued to b is compressed into b To have such compression occur, it is necessary that the distance the wood is compressed be large enough so that the elastic limit is exceeded. For a piece of maple 2" thick, with a modulus of elasticity of 2,000,000, and an elastic limit of 4,800 lbs. per sq. inch, a compression of .005 will initiate compression failure. Consequently, this eifect will be disergarded in this analysis.
  • FIGURE 11 is useful.
  • F is the total force along the sloped portion of the mandrel. force produces a stress which exceeds the elastic limit of the wood. Deeper into the wood, as at XZ, this force is spread over a larger area and at XW a still larger area- At successive depths the stress diminishes along these lines until the elastic limit of the wood is no longer exceeded. If this occurs at XW, then a case of compressed wood results at a depth equal to WY.
  • P is the force at YX. H, d and d are as described in FIGURE 13.
  • ZX is the unit pressure necessary for the complete densification of the wood.
  • WX is the unit pressure at the elastic limit of the wood.
  • mandrel is With a mandrel constructed as above, an edge-glued maple board was run. The case hardened board was then weighed and successive cuts were taken-off the surface. The piece was weighed and measured after each cut and the density plotted against depth as shown in FIGURE 15.
  • the wood may be preheated before putting it through the mandrel to reduce the forces necessary. When this is done the mandrel design must be calculated using the wood properties at the temperature chosen.
  • a most important feature of the use of phenolic resin components described above is the sealing of the wood surface during the case hardening process. Without it, we have found that the compressed surface becomes extremely dry as indicated by its lateral shrinkage even though it would be expected to bulge the top surface of the board at its unsupported sides. Our best result is attained by using a radiant heater above the surface of the wood at its entrance to the mandrel. The intensity of heat is set to bring the surface of the wood to 300 F. for 20 seconds. This dries the phenolic resin solution and takes it to a B-stage. This seals the wood surface before its subsequent travel under the mandrel.
  • aldehyde condensation products may be used to impregnate the wood surface and/or the paper covering, it such covering is used.
  • Such other aldehyde condensation products include the well known ureaformaldehyde, melamineformaldehyde, benzognanamine-formaldehyde (and other tn'azine-formaldehyde resins wherein the triazine has at least two unsubstituted amino groups), toluenesulfonamide-formaldehyde resins, etc.
  • the resins of this class that are used are thermosetting resins which in their early stages of condensation are water-soluble so that they may be more readily applied to the wood and/ or paper and caused to impregnate the same.
  • Moisture barriers may, however, be provided for the purpose of the instant invention by various thermoplastic resins which may be caused to impregnate the wood and/or paper to at least a limited extent. In using such resins the wood material is adequately cooled before it is released from the mandrels.
  • the resins are usually used in conjunction with a polymerization catalyst and/or accelerator; but such compositions are conventional and need not be described in greater detail herein.
  • a polymerizable unsaturated polyhydric alcohol-polycarboxylic acid polyester which is prepared by reaction of one or more polyhydric alcohols and one or more polybasic acids.
  • a resinous material is used to impregnate the Wood surface and/or the paper in substantially the manner hereinbefore described in connection with phenolic resins.
  • the proportion of polyhydric alcohols having more than two hydroxy groups, such as glycerol or pentaerythritol, and the proportion of polycarboxylic acids having more than two carboxy groups, such as citric acid, preferably is small so that in the production of the polyester there may be maximum esterification of the hydroxy and carboxy groups without attainment of excessive viscosity.
  • the unsaturated polyester be polymerizable into an infusible or high melting point resin, so that the proportion of unsaturated components should be such that the polyester contains an average of more than one double bond per molecule; for example, there may be an average of eleven or more double bonds in every ten molecules of the polyester.
  • the present invention is applicable to all polymerizable unsaturated polyhydric alcohol-polycarboxylic acid polyesters.
  • a typical example of such a polyester is a product prepared by the reaction of an unsaturated dicarboxylic acid such as maleic, fumaric, itaconic, citraconic or mesaconic acid with a di'hydric alcohol such as any polymethylene glycol-in the series from ethylene glycol to decamethylene glycol, propylene glycol, any butylene glycol, any polyethylene glycol in the series from diethylene glycol to nonaethylene glycol, dipropylene glycol, any glycerol monobasic acid monoester (in either the alpha or beta position), such as mon'oformin or monoacetin, any monoether or glycerol with a monohydric alcohol, such as monomethylin or monoethylene, or any dihydroxy alkane in which the hydroxy radicals are attached to carbon atoms that are primary or secondary or both, in the series from di hydroxy butan
  • Part of the unsaturated dicarboxylic acid may be replaced by a saturated dicarboxylic acid, such as any normal acid in the series from oxalic acid and malonic acid to sebacic acid, or any benzene dicarboxylic, naphthalene, dicarboxylic or cyclohexane dicarboxylic acid, or diglycolic, dilactic or resorcinol diacetic acid.
  • a saturated dicarboxylic acid such as any normal acid in the series from oxalic acid and malonic acid to sebacic acid, or any benzene dicarboxylic, naphthalene, dicarboxylic or cyclohexane dicarboxylic acid, or diglycolic, dilactic or resorcinol diacetic acid.
  • All of the unsaturated acid may be replaced by a saturated acid it a polyhydric alcohol is present whose molecule has two or three free hydroxy groups and consists of an ether of one or two molecules of allyl or meth'allyl alcohol with one molecule of .
  • a polyhydroxy com-pound such as glycerol, pentaglycerol, pentaerythritol butantetrol-l,2,3,4, a trihydroxy normal alkane having from four to five carbon atoms such as butantriol-l,2,3, or a monoalkyl ether of pentaerythritol or :butantetrol l,2,3,4 in which the alkyl radical has from one to four carbon atoms and has from one to two hydrogen atoms attached to the same carbon atom as the ether linkage, such as the monomethyl or monoisobutyl ether of pentaerythritol.
  • any of the ususal modifiers such as monobasic acids, monohydric alcohols and natural resin acids may be added.
  • the proportions of ingredients used are those proportions that produce a polymerizable polyester of the desired viscosity.
  • polyester properties such as solubility in various solvents, also may be varied by selecting various reacting ingredients and varying their proportions.
  • the infusibility, hardness and inertness of the product obtained 'by polymerization of the polyester may be increased by varying the initial reacting ingredients to increase the average number of double bonds per molecule of the polymerizable polyester.
  • the point to which the reaction of the ingredients is carried in the preparation of the polymerizable polyester is simply that point at which the product has the desired consistency.
  • the consistency or viscosity of the polyester varies directly with the average number of acid and alcohol residues in the molecule.
  • the average number of residues in the molecule of the polyester may vary from about three to about one hundred twenty.
  • the reaction carried out at a temperature high enough and for a time long enough to secure the desired consistency.
  • An elevated temperature preferably is employed to expedite the reaction, but during the preparation of the polyester, the temperature should not be so high nor the time of reaction so long as to cause substantial polymerization. There is less danger of premature polymerization if an inhibiting agent is added before the esterification is carried out.
  • the preparation of the unsaturated polyester preferably is carried out in an atmosphere of an inert gas such as carbon dioxide, nitrogen or the like, in order to prevent darkening or to make it possible to obtain [a pale or colorless product.
  • an inert gas such as carbon dioxide, nitrogen or the like
  • Bubbling the inert gas through the reacting ingredients is advantageous in that the gas serves the added functions of agitation and of expediting the removal of water formed by the reaction. It is desirable to exclude oxygen, which causes discoloration.
  • Polymeriaztion of these mate-rials usually is carried out at temperatures of about to about F.
  • a solution comprising one or more polymerizable unsaturated polyesters and one or more polymerizable monomeric allyl esters hereinbefore described is particularly useful. Either the unsaturated polyester or the allyl ester or both may be partially polymerized before the ingredients are mixed.
  • Allyl esters that are useful for the preparation of such 'a solution include diallyl phthalate, diallyl oxalate, [diallyl diglycolate, triallyl citrate, carbonyl bis-(allyl lactate), maleyl bis-(allyl lactate), fumaryl bis-(allyl lactate), succinyl bis-(allyl lactate), a-dipyl bis-(allyl lactate), sebacyl bis-(allyl lactate), phthalyl bis-(allyl lactate), fumaryl bis-(allyl glycolate), carbonyl bis-(allyl glycolate), carbonyl bis-(allyl salicylate), tetra-(allyl glycolate) silicate, and tetra-(allyl lactate) silicate.
  • Such a solution which usually contains about 20 to 80 percent of the allyl ester and about 70 to 80 percent of the polymerizable polyester, is particularly advantageous because the polyester has desirable physical properties and hardens very rapidly after the initial polymeriaztion whereas the presence of the allyl ester causes the polymerized product to be much more water resistant and insoluble. Moreover, the combination of the polyester and the allyl ester usually polymerizes more rapidly than either of such substances alone. (The terms parts and percent, as used herein to refer to quantities of material, means parts and percent by weight.)
  • 'A similar solution may be prepared by dissolving the polyester, before use, in a polymerizable substance such as styrene, vinyl acetate, methyl methacrylate or methyl acrylate.
  • a mechanism for compressing and hardening a surface layer of wood comprising means for uniformly applying a pressure overcoming the compressive strength of the surface of a limited area of a wood workpiece, a heater positioned in advance of said pressure applying means for preheating the surface of the wood to reduce the compressive strength, and means for relatively moving the wood workpiece past said pressure applying means so that the surface of the wood will be progressively compressed beyond its elastic limit and an outer layer of the wood will be uniformly permanently compressed to form a hardened surface.
  • a mechanism for compressing and hardening a surface layer of wood comprising means for uniformly applying a pressure overcoming the compressive strength of the surface of a limited area of a wood workpiece, means for relatively moving the Wood workpiece past said pressure applying means so that the surface of the wood will be progressively compressed beyond its elastic limit and an outer layer of the wood will be uniformly permanently compressed to form a hardened surface, and a heater positioned after said pressure applying means with respect to the relative movement of the wood workpiece to heat the compressed layer of wood and stabilize the compression.
  • a mechanism for compressing and hardening a surface layer of wood comprising means for uniformly applying a pressure overcoming the compressive strength of the surface of a limited area of a wood workpiece, means for relatively moving the wood workpiece past said pressure applying means so that :the surface of the wood will be progressively compressed beyond its elastic limit and an outer layer of the wood will be uniformly permanently compressed to form a hardened surface, a heater positioned after said pressure applying means with respect to the relative movement of the wood workpiece to heat the compressed layer of wood workpiece and stabilize the compression, and a cooler positioned after said heater with respect to the relative movement of the wood to condense moisture evaporated by the heater and prevent the escapeof steam and drying of the wood.
  • a mechanism [for compressing and hardening a surface layer of wood comprising a compressing shoe having a sloping compressing surface for engaging a limited area of a wood workpiece and compressing the wood surface beyond its elastic limit, means for relatively drawing the 'wood workpiece in a path past the shoe while the shoe is maintained in engagement therewith with a substantially uniform pressure, and means for supporting the wood workpiece against the shoe during such relative drawing of the workpiece past the shoe so that the wood surface will be progressively uniformly permanently compressed to a substantially uniform depth.
  • a mechanism for compressing and hardening a surface layer of wood comprising a compressing shoe;
  • sloping compressing surface with a critical slope with a ratio of length to height between the limits of 1:1 to 6:1 for engaging a limited area of a wood workpiece and compressing the wood surface beyond its elastic limit means for relatively drawing the wood workpiece in a path past the shoe while the shoe is maintained in engagement therewith with a substantially uniform pressure, and means for supporting the wood against the shoe during such relative drawing of the workpiece past the shoe so that the wood surface will be progressively uniformly permanently compressed to a substantially uniform depth.
  • a mechanism for compressing and hardening a surface layer of wood comprising a compressing shoe having a sloping compressing surface for enga g a limited area of a wood workpiece and compressing the wood surface beyond its elastic limit, an elongated flexible sheet of material for positioning between the wood surface and said shoe to prevent shearing off of a layer of wood with relative movement between the shoe and wood,
  • a mechanism for compressing and hardening a surface layer of wood comprising a compressing shoe having -a planar lead surface substantially parallel to the surface of a wood workpiece, having a trailing surface substantially parallel to said lead surface, and having permanently setting the material of said metal sheet while sliding thereover, and means for relatively drawing the wood workpiece in a path past the shoe while the shoe is maintained in compressing relationship with the wood with a substantially uniform pressure so that the surface will be progressively uniformly permanently compressed to a substantially uniform depth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

Dec. 20, 1966 C. H. VAN HARTESVELDT ETAL APPARATUS FOR CASE HARDENING WOOD Criginal Filed Feb. 2, 1960 5 Sheets-Sheet 1 Carroll H Baa 03y Q Mk! Dec. 1966 c. H. VAN HARTESVELDT ETAL 3,
APPARATUS FOR CASE HARDENING WOOD Original Filed Feb. 2. 1950 5 Sheets-Sheet 2 5 Car/0!! H Van Harfesz/elof 5 0 09 0 Mz/z! Dec. 20, 1966 c. H. VAN HARTESVELDT ETAL 3,292,675
APPARATUS FOR CASE HARDENING WOOD 5 Sheets-Sheet 3 Original Filed Feb. 2. 1960 FEE-5 Bade y 0 Wa/z/ 20, 1966 c. H. VAN HARTESVELDT ETAL 3,292,676
APPARATUS FOR CASE HARDENING WOOD Original Filed Feb. 2. 1960 5 sheets-Sheet 4 m 0' LU 01 F 2500 I00 75 5o 25 av s-rQAm A or ORIGINAL SIZE.
STEEL MAND-EEL HEIGHT 0F STEP 0? DISTANCE web FOQCE ON woop' 1966 c. H. VAN HARTESVELDT ETAL 3,
APPARATUS FOR CASE HARDENING WOOD Original Filed Feb. 2. 1960 5 Sheets-Sheet 5 .025 P msnmce Down mom hzEr-zzczziz United States Patent Patent No. 3,171,167. Divided and this application Sept. 17, 1962, Ser. No. 224,158
7 Claims. 01. 144-2 The present invention relates to a mechanism for providing an improved wood'product having a hardened corria yond the elastic limit of the wood to form a hardened I outer layer which is integral with the wood. Inasmuch as only the surface of the wood is compressed only a small volume of wood is sacrificed to' obtain surface-hardness. resistance to wear and local impact is desired. In accordance with the present invention the original volume of the wood has not been substantially reduced and the wood is protected by an integral hardened surface.
An object of the invention is to provide an improved mechanism for obtaining a wood structure having an integral case hardened compressed outer layer.
Another object of the invention is to provide an improved mechanism for compressing only the outer layer of wood beyond its elastic limit and stabilizing the compressed layer to provide a permanent structure which can withstand moisture and not return to its original uncompressed state.
Another object of the invention is to provide an improved mechanism for providing a case hardened surface for wood impregnated with a plastic or resin sealant which may be covered with a decorative paper layer.
Another object of the invention is to provide an improved mechanism which can be used to compress the outer surface of wood beyond its elastic limit and provide a case hardened layer simply and. inexpensively for production and manufacturing operations.
Other objects and advantages will become more apparent with the teaching of the principles of the inven- There are many environments where only surface tion in connection with the disclosure of the preferred embodiments thereof in the specification, claims and drawings, in which:
FIGURE 1 is a side elevational view of a mechanism, shown with portions in section for case hardening the outer surface of a wood workpiece in accordance with the method of the invention;
FIGURE 2 is a side elevational view similar to FIG- URE 1, showing additional details and illustrating additional steps of the method;
FIGURE 3 is a side elevational view similar to FIG- URE 1 and illustrating another form of the method;
FIGURE 4 is a side elevational view similar to FIG- URE 1 and illustrating still another form of the method;
FIGURE 5 is a side elevational view with portions shown in section, illustrating a simplified form of the mechanism in accordance with the present invention;
FIGURE 6 is an enlarged detailed sectional view illustrating in particular relative dimensions of a portion of the mechanism;
FIGURE 7 is a side elevational view, shown partially in section, illustrating the method being performed with rollers;
FIGURE 8 is a vertical sectional view taken through a wood workpiece finished in accordance with the present invention;
ice
FIGURE '9 is a graph showing the stress-strain relationship for a type of wood such as maple;
FIGURES 10 through 14 are vertical sectional views taken through a wood workpiece being subjected to action of a mandrel in accordance with the present invention, shown somewhat in schematic form for describing the dimensional relationships involved; and
FIGURE 15 is a graph showing the relationship between the specific gravity of the wood and the distance from the wood surface.
In the drawings:
The mechanisms illustrated in FIGURES 1 through 6 perform the method of the invention for forming a hardened compressed layer on the surface of a wood workpiece by applying a progressively increasing pressure to a limited area of the surface of the wood until the elastic limit is exceeded, such as lbyusing a mandrel or shoe having an inclined compressing surface which engages a limited area of the wood and has a slope within critical limits to insure overcoming the compressive strength of the surface layer of the wood workpiece. The shoe applying its local pressure -is progressively advanced across the wood workpiece to enlarge the compressed area until the surface is covered with a layer of compressed wood. The surface of the wood may be preheated to a temperature above 212 F. to the depth of crushing. to reduce the-force required and to minimize fiber damage during compression. The compressed layer is stabilized while held compressed by heating to a temperature of 300-360 F. to a depth sufficient to reach all of the compressed wood. The wood is then preferably cooled to a temperature 'of 210 F. or less to prevent the release of steam and drying of the wood.
The method may include impregnation of the wood surface with asealant such as resins or wax or a thermosetting resin which will then be cured in the stabilizing heating step. A surface preheat step may be incorporated with surface impregnation of resin'before compressing by preheating in a range from 250 to 360 to dry the wood surface and B-stage the resin. A-n impregnated decorative paper may be laid down on the impregnated wood surface before compressing, with the paper impregnated with a B-stage resin.
As illustrated in FIGURE 1, the wood workpiece 16 in the form of an elongated fiat board is surface hardened on both sides in the mechanism illustrated. While the method may be practiced with hardening on one side only, the mechanism illustrated shows a simultaneous hardening of both sides which provides a finished: wood workpiece hardened on both surfaces and avoids complications of warpage of the wood workpiece which may occur when one surface alone is hardened. The workpiece 16 is moved relative to surface treating and compressing assemblies 17 and 17' by suitable means such as a :bar 18 placed across the end of the workpiece and forced in a direction to move the workpiece ahead of it.
Compressing of the surface layers of the workpiece is accomplished by sloped compressing surfaces 19 and 19' for the respective sides of the wood, on mandrels or shoes 22 and 22'. To prevent thedisplacement of wood resin and fibers due to the dragof the shoe or mandrel, a flexible shim or sheet 20,20 is positioned over the surfaces of the wood between the wood and the shoe compressing surfaces 19 and 19- The shim may be of brass or of flexible steel preferably such as 1095' steel, and the r Preheating of the wood surface is accomplished byprev heating blocks 21, 21' which are positioned in advance of the compressing surface .19, 19 and are heated by suitable heating elements such as 21a, 21a. These impart sufiicient heat to the wood to heat it to a temperature above 212 F. to soften the surface fibers of the wood.
, The preheat block has a smooth planar surface parallel to the wood and facing the wood for good heat transfer contact. The shims 20 and 20 are sufficiently thin to permit rapid heat transfer and to conform to the shape of the surface of the shoes. The size and temperature of the preheating blocks, and the size and temperature of the other heat transfer members are, of course, chosen relative to the speed at which the wood workpiece will be moved through the mechanism to attain the desired surface temperature of the wood.
The shoes or mandrels 22 and'22 are heated by heating elements such as 22a and 22a to heat the wood to a temperature of 300 F. to 360 F.
Behind the mandrels 22 and 22' are coolers or cooling blocks 23' and 23, illustrated as being hollow with a chamber 23a and 23a therein for acoolant fluid. The cooling blocks reduce the temperature of the wood to a temperature of 210 F. or less, preventing the compressed moisture on the wood surface from flashing into steam to dry the surface and preventing the causing of blisters. tween the mandrels 22 and 22' and the cooling blocks 23 and 23'.
The elements of the assemblies, such as the preheating blocks 21 and 21, the mandrels 22 and 22, and the An insulating wall 24 and 24' is provided be- 1 cooling blocks 23 and 23' are mounted as a unit and may be backed by plates or bars 25 and 25 which are supported by pressure bolts 26 that are threaded and receive nuts and function to hold the mandrels against the board with sufficient pressure to insure compressing the wood surface.
As illustrated in FIGURE 5, compression of the sur- I face of a wood workpiece 30 may be performed without the application of a stabilizing heat, for provision of Wood to be used where it will not be subjected to moisture. A wood workpiece 30 is moved by suitable means, such as a bar 31 at the end, between mandrels 32 and 32' which have sloping compressing surfaces 33 and 33' and sheet material or shims 34 and 34 are positioned over the surface of the wood during engagement by the mandrels.
The finished wood product is illustrated in enlarged sectional view in FIGURE 8 at 40. The outer surfaces As illustrated in FIGURE 2,, a wood workpiece 45 is moved in-between the assemblies 25 and 25 being forced forwardly by the bar 18 which has cables 46 attached to its ends drawn forwardly by a motor driven winch arrangement 47 that moves the wood workpiece 45 forwardly at a uniform speed. Movement at uniform speed ispreferred to obtain an accompanying uniform heat application. Ahead of the wood workpieceis a preheating mechanism illustrated as being conveniently in the form of infra-red lamps 48 and 48'. This preheating mechanism preheats the outer surface or skin of the wood from 200375 F. to remove surface moisture. This prevents the acquisition of moisture by the wood from the air which would be trapped beneath the surface of the preheating blocks 21 and 21 and beneath the surface of the mandrels 22 and 22'.
As illustrated in FIGURE 3, a wood workpiece 49 is forced between the surface compressing assemblies 25 M and 25', but the surfaces are first impregnated with a sealant such as a resin or wax or thermoplastic. The sealant is applied in a manner shown schematically by a tank at 50 and the coated wood workpiece is passed through a drying oven where it is dried overnight or for an equivalent period at F. with the sealant penetrating the wood. The preheatinglamps 48 and 48" then heat the impregnated wood surface to 250 F. to 360 F. to eliminate any moisture which has been gatheredfrom the air and to B-stage the resin if resin is used- This heat is at the outer skin surface of the Wood and not necessarily to the full compression depth as excess heating to the full depth would excessively soften the wood fibers.
Heating to compression depth is further accomplished by i the preheat blocks 21 and 21. The pressure of the mandrels will distribute the impregnant and the heat of the mandrels, in the case when a thermosetting resin is used,- will cure the resin.
As illustrated in FIGURE 4, a wood workpiece 56 is moved between the surface hardening assemblies 25 and 25' after having been surface impregnated in the tank 50 and the drying oven 51 and after. the surface has been preheated by the lamps 48 and 48'.
of paper is laid from a supply roll 57. The paper is impregnated with B-stage resin and the paper is joined to the resin coated upper surface of the workpiece, a protective coat of resin is formed on theouter surface of i cable.
While a, mandrel or shoe having an inclined compressing surface is preferred, the method can be practiced by the use of a roller, such as illustrated in FIGURE 7. A wood workpiece 60 is moved relatively past a compress ing roller 61. The roller must have a size within critical limits so as to engage a limited area of the wood surface andexceed the compressive strength of the wood at the surface and the compressing roller will be small. To prevent bending of the roller it is backed by a first backing roller 62 which is additionally backed by supporting rollers 63 and 64. Heating elements, not shown, may be provided to preheat the wood and to post-heat it after the surface has been compressed for stabilizing the hardened layer. The size of the roller is critical so that a sufficiently small area is engaged to exceed the elastic limit of the wood at the surface. The relationship of the length L of area of wood engaged to the height H of wood.
engaged will be discussed later.
As illustrated in FIGURE 6, which shows a mandrel or shoe 66 in enlarged detail, a wood workpiece 65 is forced past the mandrel with a thin shim 67 on the wood surface. and the mandrelhas a trailing surface 69 parallel to the wood surface and a leading surface 70 parallel to the uncompressed wood surface. Themandrel is provided with fairing-or is rounded at locations 71 and 72 where the compressing surface joins the flat planar'surfaces 69 and 70. The slope or the relationship of L to H is critical as will become apparent from the following description and examples.
Various species and types of wood have varying densities. When dried or seasoned for use,the moisture remaining is in the cell walls and air fills ;-the cells. allows the wood to be crushed to total solids at which point it is virtually impossible to compress it further. In the totally compressed condition-virtually all. species of wood reach a density of 1.3-1.4, irrespective of initial density.
On the upper sur- 6 face 58 of the wood a decorative resin impregnated sheet A compression surface 68 compresses the wood This s A typical stress-strain curve for wood is shown in FIG- URE 9. The actual example plotted is edge-glued, vertical grained maple with the compression force perpendicular to the grain and approximately parallel to the plates of summer wood. Compressing the wood in this manner is preferred for obtaining a good finished product.
It is the FIGURE 9 stress=strain relationship typical of all wood that enables the surface compression of wood to be accomplished by the process of the present invention. The critical design consideration is the slope and height of the compression step.
The general case is shown in FIGURE 10. As the wood is moved from right to left, as shown by the arrow, it will have an increasing downward force applied along the line X--Y. The wood which would have continued to al is compressed into 0 The wood which would have continued to b is compressed into b To have such compression occur, it is necessary that the distance the wood is compressed be large enough so that the elastic limit is exceeded. For a piece of maple 2" thick, with a modulus of elasticity of 2,000,000, and an elastic limit of 4,800 lbs. per sq. inch, a compression of .005 will initiate compression failure. Consequently, this eifect will be disergarded in this analysis.
In considering the forces involved in the FIGURE example, FIGURE 11 is useful.
With wood moving from right to left, F is the total force along the sloped portion of the mandrel. force produces a stress which exceeds the elastic limit of the wood. Deeper into the wood, as at XZ, this force is spread over a larger area and at XW a still larger area- At successive depths the stress diminishes along these lines until the elastic limit of the wood is no longer exceeded. If this occurs at XW, then a case of compressed wood results at a depth equal to WY.
Because wood compresses at an increasingly greater stress after the elastic limit has been exceeded, the degree of compression increases from W to Y and reaches ultimate compression at Y.
General example Totally compressed density Initial density 1 2 H is, therefore, also the dimension of uncompressed wood which will be compressed into the wood below it. To determine the length of the slope required, the following calculation is necessary based on FIGURE 13.
P is the force at YX. H, d and d are as described in FIGURE 13.
Along line ZX is the unit pressure necessary for the complete densification of the wood. 'Along WX is the unit pressure at the elastic limit of the wood.
( P S, (stress at total eom'pression -in FIGURE 9,
if for maple, this is 7800) This P S (stress at elastic limitin FIGURE 9, this is XW I 4800) I (6) g 2 4s00 XW S 7800 (7) 2) Z (From 3) XW UW ZU s XW Solve for aall others are known) I sly XW S XW UW U 2 l s 2 KW 81 ZU 2 UW ZU XW 2 2 UW Z 2 w 2 .(fr0m 1 Using H, L, al and d Specific Example N0. 1
In the manufacture of boards for certain uses, assume that it is desirable to approach a maximum of compressed wood into .060" of the surface. To do this, we set up the requirement that the wood should be crushed to maximum density at the surface and then should. become less and less dense until at a depth of /8" the density of uncompressed wood would be reached.
(2-1) (.625) =.0625" From Formula 10.
l Therefore, mandrel is With a mandrel constructed as above, an edge-glued maple board was run. The case hardened board was then weighed and successive cuts were taken-off the surface. The piece was weighed and measured after each cut and the density plotted against depth as shown in FIGURE 15.
The wood may be preheated before putting it through the mandrel to reduce the forces necessary. When this is done the mandrel design must be calculated using the wood properties at the temperature chosen.
When wood is physically compressed as described above, it takes a permanent set. However, if it is wet subsequently, it tends to return to its former state. By heating to 300-360 it can be stabilized. In our process the compressed layer is stabilized by heating the mandrel and pushing the wood through slowly enough to first compress and then stabilize the wood. Also, heating the wood by a portion of the mandrel prior to its passing by the compression step plasticizes the surface sufficiently to resist fiber fracture.
In order to apply a durable and waterproof surface to the compressed and stabilized case, we have found it desirable to soak the boards prior to processing in a 20% water solution of unpolyrnerized phenolic resin components. Then with the mandrel at 350 F. we not only case harden the wood by compressing and stabilizing it, but we also create a cured phenolic resin surface. Because the phenolic solution does not penetrate far and because this surface material is compressed to about onehalf its original thickness, the layer is only a few thousandths of an inch thick. However, the phenolic resin layer can be built up by impregnating alpha-cellulose paper, curing it to a B-stage and placing it on top of the phenolic resin solution impregnated board. When this combination is run through the process, a glossy layer of paper reinforced phenolic resin is married to the phenolic resin in the surface of the compressed wood.
A most important feature of the use of phenolic resin components described above is the sealing of the wood surface during the case hardening process. Without it, we have found that the compressed surface becomes extremely dry as indicated by its lateral shrinkage even though it would be expected to bulge the top surface of the board at its unsupported sides. Our best result is attained by using a radiant heater above the surface of the wood at its entrance to the mandrel. The intensity of heat is set to bring the surface of the wood to 300 F. for 20 seconds. This dries the phenolic resin solution and takes it to a B-stage. This seals the wood surface before its subsequent travel under the mandrel.
In calculating the slope and height of a compression step there are several practical limitations to be considered. If the step is too steep, shearing forces set up would strip off the top layer of wood. An incipient condition of this nature would break up the wood fibers being compressed at the surface by bending them too sharply. Like- 81 I (4) ;=S (stress along L (5) P 2 =S (stress .alOng L cos 0 (7) a+0=arc tan =19A (8) a=arc tan -=2.4
(10) cos 0=.956
L S cos (12) =.95 .956=.t-109 3 Density distribution D 1 D 1 D 0.7 7/8 1 (original Wood) D, D
After compression 7 Before compression (13) 7 l'l' 2 g 2-- 1 X D0 .7
('14) From FIGURE 9, the density of wood along the Compression of Wood line is 1.40.7 stress-0.42 (15) S =.909 8 (from 12) D1 2 D +1) =1 e= s-42 909,s 42 1 2 3000 1 3000' 1 3000 D2=0.74 (from 13') The variation in density from 0.86 to 0.74 in A; of aninch is or .137 per inch. In Specific Example No. 1 and as verified by the sample run and reported as FIGURE 15, the
variation in density is wise, too steep and short a compression step would work the traveling shim past its elastic limit. These limitations can be alleviated somewhat by fairing the lead-in and exit contours of the step.
As the slope of the shoe is made flatter, the case hardening effect becomes less and less until the density gradient becomes so gradual that nothing significant is accomplished. This is shown in the following example:
Specific Example N0. 2
Given a step in the mandrel of H=% and L=3", find the density distribution when running a 1' maple board.
From FIGURE 14:
or 5.6 per inch. Therefore, this case hardening effect is may be converted to the B-stage by preliminary heating 1 and ultimately themioset during the passage between the mandrels. Resins of this type are particularly suitable in the practice of the invention not only for the provision of a suitable resin impregnated wood surface but also for the provision of a suitable decorative paper surface over the compressed wood surface and adequately adhered thereto. On the other hand, it will be appreciated that satisfactory results may also be obtained using numerous other phenolic resins, such as the alkyl phenolformaldehyde resins (e.g. p-tert. butylphenol-formaldehyde resins). In addition, other resinous aldehyde condensation products may be used to impregnate the wood surface and/or the paper covering, it such covering is used. Such other aldehyde condensation products include the well known ureaformaldehyde, melamineformaldehyde, benzognanamine-formaldehyde (and other tn'azine-formaldehyde resins wherein the triazine has at least two unsubstituted amino groups), toluenesulfonamide-formaldehyde resins, etc. Preferably the resins of this class that are used are thermosetting resins which in their early stages of condensation are water-soluble so that they may be more readily applied to the wood and/ or paper and caused to impregnate the same. Moisture barriers may, however, be provided for the purpose of the instant invention by various thermoplastic resins which may be caused to impregnate the wood and/or paper to at least a limited extent. In using such resins the wood material is adequately cooled before it is released from the mandrels.
The resins are usually used in conjunction with a polymerization catalyst and/or accelerator; but such compositions are conventional and need not be described in greater detail herein.
Another type of resin which has been found to be particularly suitable for use with a paper covering (but which may also be used to impregnate the wood itself) is a polymerizable unsaturated polyhydric alcohol-polycarboxylic acid polyester, which is prepared by reaction of one or more polyhydric alcohols and one or more polybasic acids. Such a resinous material is used to impregnate the Wood surface and/or the paper in substantially the manner hereinbefore described in connection with phenolic resins. The proportion of polyhydric alcohols having more than two hydroxy groups, such as glycerol or pentaerythritol, and the proportion of polycarboxylic acids having more than two carboxy groups, such as citric acid, preferably is small so that in the production of the polyester there may be maximum esterification of the hydroxy and carboxy groups without attainment of excessive viscosity. Ordinarily it is desirable that the unsaturated polyester be polymerizable into an infusible or high melting point resin, so that the proportion of unsaturated components should be such that the polyester contains an average of more than one double bond per molecule; for example, there may be an average of eleven or more double bonds in every ten molecules of the polyester.
The present invention is applicable to all polymerizable unsaturated polyhydric alcohol-polycarboxylic acid polyesters. A typical example of such a polyester is a product prepared by the reaction of an unsaturated dicarboxylic acid such as maleic, fumaric, itaconic, citraconic or mesaconic acid with a di'hydric alcohol such as any polymethylene glycol-in the series from ethylene glycol to decamethylene glycol, propylene glycol, any butylene glycol, any polyethylene glycol in the series from diethylene glycol to nonaethylene glycol, dipropylene glycol, any glycerol monobasic acid monoester (in either the alpha or beta position), such as mon'oformin or monoacetin, any monoether or glycerol with a monohydric alcohol, such as monomethylin or monoethylene, or any dihydroxy alkane in which the hydroxy radicals are attached to carbon atoms that are primary or secondary or both, in the series from di hydroxy butane to dihydroxy decane.
Part of the unsaturated dicarboxylic acid may be replaced by a saturated dicarboxylic acid, such as any normal acid in the series from oxalic acid and malonic acid to sebacic acid, or any benzene dicarboxylic, naphthalene, dicarboxylic or cyclohexane dicarboxylic acid, or diglycolic, dilactic or resorcinol diacetic acid. All of the unsaturated acid may be replaced by a saturated acid it a polyhydric alcohol is present whose molecule has two or three free hydroxy groups and consists of an ether of one or two molecules of allyl or meth'allyl alcohol with one molecule of .a polyhydroxy com-pound such as glycerol, pentaglycerol, pentaerythritol butantetrol-l,2,3,4, a trihydroxy normal alkane having from four to five carbon atoms such as butantriol-l,2,3, or a monoalkyl ether of pentaerythritol or :butantetrol l,2,3,4 in which the alkyl radical has from one to four carbon atoms and has from one to two hydrogen atoms attached to the same carbon atom as the ether linkage, such as the monomethyl or monoisobutyl ether of pentaerythritol.
In the preparation of the polymerizable unsaturated polyester, any of the ususal modifiers such as monobasic acids, monohydric alcohols and natural resin acids may be added. The larger the proportions of mon-obasic acids and monohydric alcohols, the lower is the average number of acid and alcohol residues in the resulting polyester molecules, and the lower is the viscosity of the polyester. On the other hand, the more nearly equal the molecular proportions of dibasic acid and di-hydric alcohol, the greater is the average number of residues in the resulting polyester molecules, and the greater is the viscosity. The proportions of ingredients used are those proportions that produce a polymerizable polyester of the desired viscosity. Other properties of the polyester, such as solubility in various solvents, also may be varied by selecting various reacting ingredients and varying their proportions. The infusibility, hardness and inertness of the product obtained 'by polymerization of the polyester may be increased by varying the initial reacting ingredients to increase the average number of double bonds per molecule of the polymerizable polyester.
The point to which the reaction of the ingredients is carried in the preparation of the polymerizable polyester is simply that point at which the product has the desired consistency. The consistency or viscosity of the polyester varies directly with the average number of acid and alcohol residues in the molecule. For example, the average number of residues in the molecule of the polyester may vary from about three to about one hundred twenty.
The reaction carried out at a temperature high enough and for a time long enough to secure the desired consistency. An elevated temperature preferably is employed to expedite the reaction, but during the preparation of the polyester, the temperature should not be so high nor the time of reaction so long as to cause substantial polymerization. There is less danger of premature polymerization if an inhibiting agent is added before the esterification is carried out.
The preparation of the unsaturated polyester preferably is carried out in an atmosphere of an inert gas such as carbon dioxide, nitrogen or the like, in order to prevent darkening or to make it possible to obtain [a pale or colorless product. Bubbling the inert gas through the reacting ingredients is advantageous in that the gas serves the added functions of agitation and of expediting the removal of water formed by the reaction. It is desirable to exclude oxygen, which causes discoloration.
Polymeriaztion of these mate-rials usually is carried out at temperatures of about to about F. A solution comprising one or more polymerizable unsaturated polyesters and one or more polymerizable monomeric allyl esters hereinbefore described is particularly useful. Either the unsaturated polyester or the allyl ester or both may be partially polymerized before the ingredients are mixed. Allyl esters that are useful for the preparation of such 'a solution include diallyl phthalate, diallyl oxalate, [diallyl diglycolate, triallyl citrate, carbonyl bis-(allyl lactate), maleyl bis-(allyl lactate), fumaryl bis-(allyl lactate), succinyl bis-(allyl lactate), a-dipyl bis-(allyl lactate), sebacyl bis-(allyl lactate), phthalyl bis-(allyl lactate), fumaryl bis-(allyl glycolate), carbonyl bis-(allyl glycolate), carbonyl bis-(allyl salicylate), tetra-(allyl glycolate) silicate, and tetra-(allyl lactate) silicate. Such a solution, which usually contains about 20 to 80 percent of the allyl ester and about 70 to 80 percent of the polymerizable polyester, is particularly advantageous because the polyester has desirable physical properties and hardens very rapidly after the initial polymeriaztion whereas the presence of the allyl ester causes the polymerized product to be much more water resistant and insoluble. Moreover, the combination of the polyester and the allyl ester usually polymerizes more rapidly than either of such substances alone. (The terms parts and percent, as used herein to refer to quantities of material, means parts and percent by weight.)
'A similar solution may be prepared by dissolving the polyester, before use, in a polymerizable substance such as styrene, vinyl acetate, methyl methacrylate or methyl acrylate.
It will be understood that modifications and variations may be effected without departing from the spirit and scope of the novel concepts of the present invention.
We claim:
1. A mechanism for compressing and hardening a surface layer of wood comprising means for uniformly applying a pressure overcoming the compressive strength of the surface of a limited area of a wood workpiece, a heater positioned in advance of said pressure applying means for preheating the surface of the wood to reduce the compressive strength, and means for relatively moving the wood workpiece past said pressure applying means so that the surface of the wood will be progressively compressed beyond its elastic limit and an outer layer of the wood will be uniformly permanently compressed to form a hardened surface.
2. A mechanism for compressing and hardening a surface layer of wood comprising means for uniformly applying a pressure overcoming the compressive strength of the surface of a limited area of a wood workpiece, means for relatively moving the Wood workpiece past said pressure applying means so that the surface of the wood will be progressively compressed beyond its elastic limit and an outer layer of the wood will be uniformly permanently compressed to form a hardened surface, and a heater positioned after said pressure applying means with respect to the relative movement of the wood workpiece to heat the compressed layer of wood and stabilize the compression.
3. A mechanism for compressing and hardening a surface layer of wood comprising means for uniformly applying a pressure overcoming the compressive strength of the surface of a limited area of a wood workpiece, means for relatively moving the wood workpiece past said pressure applying means so that :the surface of the wood will be progressively compressed beyond its elastic limit and an outer layer of the wood will be uniformly permanently compressed to form a hardened surface, a heater positioned after said pressure applying means with respect to the relative movement of the wood workpiece to heat the compressed layer of wood workpiece and stabilize the compression, and a cooler positioned after said heater with respect to the relative movement of the wood to condense moisture evaporated by the heater and prevent the escapeof steam and drying of the wood.
4. A mechanism [for compressing and hardening a surface layer of wood comprising a compressing shoe having a sloping compressing surface for engaging a limited area of a wood workpiece and compressing the wood surface beyond its elastic limit, means for relatively drawing the 'wood workpiece in a path past the shoe while the shoe is maintained in engagement therewith with a substantially uniform pressure, and means for supporting the wood workpiece against the shoe during such relative drawing of the workpiece past the shoe so that the wood surface will be progressively uniformly permanently compressed to a substantially uniform depth. 5. A mechanism for compressing and hardening a surface layer of wood comprising a compressing shoe;
having .a sloping compressing surface with a critical slope with a ratio of length to height between the limits of 1:1 to 6:1 for engaging a limited area of a wood workpiece and compressing the wood surface beyond its elastic limit, means for relatively drawing the wood workpiece in a path past the shoe while the shoe is maintained in engagement therewith with a substantially uniform pressure, and means for supporting the wood against the shoe during such relative drawing of the workpiece past the shoe so that the wood surface will be progressively uniformly permanently compressed to a substantially uniform depth.
6. A mechanism for compressing and hardening a surface layer of wood comprising a compressing shoe having a sloping compressing surface for enga g a limited area of a wood workpiece and compressing the wood surface beyond its elastic limit, an elongated flexible sheet of material for positioning between the wood surface and said shoe to prevent shearing off of a layer of wood with relative movement between the shoe and wood,
means for relatively drawing the wood workpiece in a path past the shoe while the shoe is maintained in compressing relationship therewith with a substantially uni form pressure, and means supporting the wood against the shoe during such relative drawing of the workpiece past the shoe so that the surface will be progressively uniformly permanently compressed to .a substantially uniform depth.
7. A mechanism for compressing and hardening a surface layer of wood comprising a compressing shoe having -a planar lead surface substantially parallel to the surface of a wood workpiece, having a trailing surface substantially parallel to said lead surface, and having permanently setting the material of said metal sheet while sliding thereover, and means for relatively drawing the wood workpiece in a path past the shoe while the shoe is maintained in compressing relationship with the wood with a substantially uniform pressure so that the surface will be progressively uniformly permanently compressed to a substantially uniform depth.
References Cited by the Examiner UNITED STATES PATENTS v 128,3'87 6/1872 Gy-les 144320 514,847 2/1894 -Du Bois l44-2 2,321,937 6/ 1943 Quinn. 2,354,090 7/1944 Stamm et a1.
WILLIAM W. DYER, JR., Primary Examiner. W. D. BRAY, Assistant Examiner.

Claims (1)

1. A MECHANISM FOR COMPRESSING AND HARDENING A SURFACE LAYER OF WOOD COMPRISING MEANS FOR UNIFORMLY APPLYING A PRESSURE OVERCOMING THE COMPRESSIVE STRENGTH OF THE SURFACE OF A LIMITED AREA OF A WOOD WORKPIECE, A HEATER POSITIONED IN ADVANCE OF SAID PRESSURE APPLYING MEANS FOR PREHEATING THE SURFACE OF THE WOOD TO REDUCE THE COMPRESSIVE STRENGTH, AND MEANS FOR RELATIVELY MOVING THE WOOD WORKPIECE PAST SAID PRESSURE APPLYING MEANS SO THAT THE SURFACE OF THE WOOD WILL BE PROGRESSIVELY
US224158A 1960-02-02 1962-09-17 Apparatus for case hardening wood Expired - Lifetime US3292676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US224158A US3292676A (en) 1960-02-02 1962-09-17 Apparatus for case hardening wood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6189A US3171167A (en) 1960-02-02 1960-02-02 Case hardening of wood
US224158A US3292676A (en) 1960-02-02 1962-09-17 Apparatus for case hardening wood

Publications (1)

Publication Number Publication Date
US3292676A true US3292676A (en) 1966-12-20

Family

ID=26675302

Family Applications (1)

Application Number Title Priority Date Filing Date
US224158A Expired - Lifetime US3292676A (en) 1960-02-02 1962-09-17 Apparatus for case hardening wood

Country Status (1)

Country Link
US (1) US3292676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642042A (en) * 1970-06-17 1972-02-15 Robert W Davidson Method of forming wood
US4554959A (en) * 1981-07-10 1985-11-26 Ry Ab, Fack Surface treatment of sheet material
EP2255937A1 (en) * 2009-05-29 2010-12-01 Zhejiang Shiyou Timber Co. Ltd. Surface reinforced solid wood profiles, flooring and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US128387A (en) * 1872-06-25 Improvement in treating wood and lumber to dry and season it
US514847A (en) * 1894-02-13 Henry l
US2321937A (en) * 1939-12-21 1943-06-15 Johns Manville Coated product and method of making same
US2354090A (en) * 1940-08-26 1944-07-18 Claude R Wickard Plywood

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US128387A (en) * 1872-06-25 Improvement in treating wood and lumber to dry and season it
US514847A (en) * 1894-02-13 Henry l
US2321937A (en) * 1939-12-21 1943-06-15 Johns Manville Coated product and method of making same
US2354090A (en) * 1940-08-26 1944-07-18 Claude R Wickard Plywood

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642042A (en) * 1970-06-17 1972-02-15 Robert W Davidson Method of forming wood
US4554959A (en) * 1981-07-10 1985-11-26 Ry Ab, Fack Surface treatment of sheet material
EP2255937A1 (en) * 2009-05-29 2010-12-01 Zhejiang Shiyou Timber Co. Ltd. Surface reinforced solid wood profiles, flooring and manufacturing method

Similar Documents

Publication Publication Date Title
US2744044A (en) Laminar product and method of making the same
CN1332674A (en) Coating process for composite base material in press
WO2006092330A1 (en) Production of moulded bodies from lignocellulose-based fine particle materials
US3166110A (en) Method for case hardening of wood
US3292676A (en) Apparatus for case hardening wood
US3171167A (en) Case hardening of wood
US3894975A (en) Adhesive paste comprising wood fibers and complex of styrene and maleic anhydride
US3448001A (en) Wood panel overlay and method and manufacture
US3157069A (en) Hammer board for drop forge hammer
US2830004A (en) Method of producing cured wood veneer article
US2744047A (en) Process of preparing decorative laminates
US3579369A (en) Wood members impregnated with synthetic organic resins and method of producing such impregnated members
US1880930A (en) Method of lacquering and impregnating with artificial resins
Breuer et al. High speed stamp forming of thermoplastic composite sheets
US3560255A (en) Composite wood-polymer product
JP5725595B2 (en) Molding method of compacted wood composite molded product
US1899768A (en) Sawdust wood fiber board and method of making same
US1987694A (en) Method of producing laminated material
US1709599A (en) Drop hammer
AT402404B (en) RECYCLING PROCESS FOR NON-FIBER REINFORCED DUROPLASTIC PLASTICS
JPH0929710A (en) Pretreating method for timber and manufacture of modified timber using the same
US4069276A (en) Low-pressure, no-cool phenolic type resin for decorative laminates
US1697248A (en) Process of treating wood
US1814193A (en) Drop hammer
CA2397716C (en) Wood impregnation