US3166110A - Method for case hardening of wood - Google Patents
Method for case hardening of wood Download PDFInfo
- Publication number
- US3166110A US3166110A US223625A US22362562A US3166110A US 3166110 A US3166110 A US 3166110A US 223625 A US223625 A US 223625A US 22362562 A US22362562 A US 22362562A US 3166110 A US3166110 A US 3166110A
- Authority
- US
- United States
- Prior art keywords
- wood
- workpiece
- compressing
- flat
- compressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002023 wood Substances 0.000 title claims description 154
- 238000000034 method Methods 0.000 title claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 18
- 230000000087 stabilizing effect Effects 0.000 claims description 8
- 229920005989 resin Polymers 0.000 description 26
- 239000011347 resin Substances 0.000 description 26
- 239000010410 layer Substances 0.000 description 25
- 230000006835 compression Effects 0.000 description 19
- 238000007906 compression Methods 0.000 description 19
- 229920000728 polyester Polymers 0.000 description 18
- 230000000712 assembly Effects 0.000 description 17
- 238000000429 assembly Methods 0.000 description 17
- 229920001568 phenolic resin Polymers 0.000 description 12
- 239000002253 acid Substances 0.000 description 10
- 239000005011 phenolic resin Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- -1 glyc crol Chemical class 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000000565 sealant Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920006305 unsaturated polyester Polymers 0.000 description 5
- 241000208140 Acer Species 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920002522 Wood fibre Polymers 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002025 wood fiber Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- 125000000349 (Z)-3-carboxyprop-2-enoyl group Chemical group O=C([*])/C([H])=C([H])\C(O[H])=O 0.000 description 1
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 1
- FBYFHODQAUBIOO-UHFFFAOYSA-N 2-(1-carboxyethoxy)propanoic acid Chemical compound OC(=O)C(C)OC(C)C(O)=O FBYFHODQAUBIOO-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- ZVMAGJJPTALGQB-UHFFFAOYSA-N 2-[3-(carboxymethoxy)phenoxy]acetic acid Chemical compound OC(=O)COC1=CC=CC(OCC(O)=O)=C1 ZVMAGJJPTALGQB-UHFFFAOYSA-N 0.000 description 1
- HLMLWEGDMMDCDW-UHFFFAOYSA-N 2-butylphenol;formaldehyde Chemical compound O=C.CCCCC1=CC=CC=C1O HLMLWEGDMMDCDW-UHFFFAOYSA-N 0.000 description 1
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 1
- WGKYSFRFMQHMOF-UHFFFAOYSA-N 3-bromo-5-methylpyridine-2-carbonitrile Chemical compound CC1=CN=C(C#N)C(Br)=C1 WGKYSFRFMQHMOF-UHFFFAOYSA-N 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- QISOBCMNUJQOJU-UHFFFAOYSA-N 4-bromo-1h-pyrazole-5-carboxylic acid Chemical compound OC(=O)C=1NN=CC=1Br QISOBCMNUJQOJU-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910000653 SAE 1095 Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- NBZANZVJRKXVBH-GYDPHNCVSA-N alpha-Cryptoxanthin Natural products O[C@H]1CC(C)(C)C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/[C@H]2C(C)=CCCC2(C)C)\C)/C)\C)/C)=C(C)C1 NBZANZVJRKXVBH-GYDPHNCVSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- BKXRKRANFLFTFU-UHFFFAOYSA-N bis(prop-2-enyl) oxalate Chemical compound C=CCOC(=O)C(=O)OCC=C BKXRKRANFLFTFU-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- INSRQEMEVAMETL-UHFFFAOYSA-N decane-1,1-diol Chemical compound CCCCCCCCCC(O)O INSRQEMEVAMETL-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000025 natural resin Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- OUJKULZFRNPRHO-UHFFFAOYSA-N prop-2-enyl 2-(2-oxo-2-prop-2-enoxyethoxy)acetate Chemical compound C=CCOC(=O)COCC(=O)OCC=C OUJKULZFRNPRHO-UHFFFAOYSA-N 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- QIQCZROILFZKAT-UHFFFAOYSA-N tetracarbon dioxide Chemical group O=C=C=C=C=O QIQCZROILFZKAT-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- PLCFYBDYBCOLSP-UHFFFAOYSA-N tris(prop-2-enyl) 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound C=CCOC(=O)CC(O)(CC(=O)OCC=C)C(=O)OCC=C PLCFYBDYBCOLSP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27M—WORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
- B27M1/00—Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
- B27M1/02—Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing
Definitions
- the present invention relates to a method for providing an improved wood product having a hardened compressed layer on the surface.
- This application is a division of our copending application, .Ser. No. 6,189, filed'February 2, 1960.
- the wood product made in accordance with the method has a surface layer which has been compressed beyond the elastic limit of the wood to form a hardened outer layer which is integral with the wood. Inasmuch as only the surface of the wood is compressed only a small volume of wood is sacrificed to obtain surface hardness. There are many environments where only surface resistance to wear and local impact is desired. In accordance with the present invention the original volume of the wood has not been substantially reduced and the wood is protected by an integral hardened surface.
- An object of the invention is to provide an improved method for obtaining a wood structure having an integral case hardened compressed outer layer.
- Another object of the invention is to provide an improved method for compressing only the outer layer of Wood beyond its elastic limit and stabilizing the compressed layer to provide a permanent structure which can withstand moisture and not return to its original uncompressed state.
- Another object of the invention is to provide an improved method for providing a case hardened surface for wood impregnated with a plastic or resin sealant which may be covered with a decorative paper layer.
- Another object of the invention is to provide an improved method which can be used to compress the outer surface of wood beyond its elastic limit and provide a case hardened layer simply and inexpensively for production and manufacturing operations.
- FIGURE 1 is a side elevational view of amechanism, shown with portions in section for case hardening the outer surface of a wood workpiece in accordance with the method of the invention
- FIGURE 2 is a side elevational view similar to FIG- URE 1, showing additional details and illustrating additional steps of the method;
- FIGURE 3 is a side elevational view similar to FIG- URE l and illustrating another form of the method
- FIGURE 4 is a side elevational View similar to FIG- URE 1 and illustrating still another form of the method
- FIGURE 5 is a side elevational view with portions shown in section, illustrating a simplified form of the mechanism in accordance with the present invention
- FIGURE 6 is an enlarged detailed sectional view illustrating in particular relative dimensions of a portion of the mechanism
- FIGURE 7 is a side elevational view, shown partially in section, illustrating the method being performed with rollers
- FIGURE 8 is a vertical sectional view taken through a wood workpiece finished in accordance with the present invention.
- FIGURE. 15 is a graph showing the relationship between the specific gravity of the wood and the distance from the wood surface. V v
- FIGURES 1 through6 perform the method of the invention for forming a hardened compressed layer on the surface of a wood workpiece by applying a progressively increasing pressure to a limited area of the surface of the wood'until the elastic limit is exceeded, such as by using a mandrel or shoe having an inclined compressing surface which engages a limited area of the wood and has a slope within critical limits to insure overcoming the compressive strength of the surface layer of the wood workpiece.
- the shoe applying its local pressure is progressively advanced across the wood workpiece .to enlarge the compressed area until the surface is covered with a layer of compressed wood.
- the surface of the wood may be preheated to a temperature above 212 F.
- the compressed layer is stabilized while held compressed by heating to a temperature of 300-360" F. to a. depth sufficient to reach all of the compressed wood.
- the wood is then preferably cooled to a temperature of 210 F. or less to prevent the release of steam and drying of the wood.
- the method may include impregnation of the wood surface with a sealant such as resins or wax or a thermosetting resin which will then be cured in the stabilizing heating step.
- a surface preheat step may be incorporated with surface impregnation of resin before compressing by preheating in a range from 250 to 360 to dry the wood surface and B-stage the resin.
- An impregnated decorative paper may be laid down on the impregnated wood surface before compressing, with the paperimpregnated with a B-stage resin.
- the wood workpiece 16 in the form of an elongated flat board is surface hardened on both sides in the mechanism illustrated. While the method may be practiced with hardening'on one side only, the mechanism illustrated shows a simultaneous harden- .ing of both sides which provides a finished wood workpiece hardened on both surfaces and avoids complications of warpage of the wood workpiece which may occur when one surface alone is hardened.
- the workpiece 16 is moved relative to surface treating and compressing assemblies 17 and 17 by suitable means such as a bar 18 placed across the end of the workpiece and forced in a direction to move the workpiece ahead of it.
- Compressing of the surface layers of the workpiece is accomplished by sloped compressing surfaces 19 and 19 for the respective sides of the wood, on'mandrels or shoes 22 and 22.
- a flexible shim or sheet 20, 20' is positioned over the surfaces of the wood between the wood and the shoe compressing surfaces 19 and 19'.
- the shim may be of brass or of flexible steel, preferably such as 1095 steel, and the shims may be anchored at the lead end of the wood to be drawn along therewith.
- a lubricant such as graphite or mineral oil is employed between the shim and the mandrel. Mineral oil is preferred and avoids the soiling effects of graphite.
- Preheating of the wood surface is accomplished by preheating blocks 21, 21'-which are positioned in advance of the compressingsurface 19, 19' and are heated by suitable heating elements such as 21a, 21a. These impart sufiicient heat to the wood to heat it to a temperature above 212 F. to soften the. surface fibers of the wood.
- the preheat block has a smooth planar surface parallel to thewood and facing the wood for good heat transfer contact.
- the shims 20 and 20' are sufiicientlythin to permit rapid heat transfer and to conform to the shape of the surface of the shoes.
- the size and temperature of the preheating blocks, and the size and temperature of the other. heat. transfer members are, of course, chosen relative to the speed at which the Wood workpiece will be moved through the mechanism to attain the desired surface temperature of the wood.
- the shoes or mandrels 22 and 22' are heated by heating elements'such as 22a and 22a to heat the wood to a temperature'of 300 F. to 360 F.
- the cooling blocks reduce the temperature of the wood to temperature of 210 F. or less, preventing the compressed moisture on the wood surfacefrom flashing into steam to dry the surface and preventing the causing of blisters.
- An insulating wall 24 and 24' is provided between the mandrels 22 and 22 and the coolingblocks 23 and 23'.
- the elements of the assemblies such as the preheating blocks 21 and 21', the mandrels 22 and 22, and the cooling blocks 23 and 23' are mounted as a unit and may be backed by plates or bars 25 and 25' which are supported by pressure bolts 26 thatare threaded and receive nuts and function to hold the mandrels against theboard with sufficient pressure to insure compressing the wood surface.
- compression of the surface of a wood workpiece 30 may be performed without the application of a stabilizing heat, for provision of wood to be used where it will not be subjected to moisture.
- a wood workpiece 30 is moved by suitable means, such as a bar 31 at the end, between mandrels 32 and 32' which have sloping compressing surfaces 33 and 33' and sheet material or shims 34 and 34' are positioned over the surface of the wood during engagement by the mandrels.
- suitable means such as a bar 31 at the end, between mandrels 32 and 32' which have sloping compressing surfaces 33 and 33' and sheet material or shims 34 and 34' are positioned over the surface of the wood during engagement by the mandrels.
- the finished wood product is illustratedin" enlarged sectional view in FIGURE 8 at 40.
- the outer surfaces 41 and 42 are compressed while the interior 43 of the wood is at its original density.
- the density of the wood ranges from a completely compressed outer layer with a specific gravity of 1.3-1.4 at the outer skin surface and diminishes'linearly through thedepth of compression to where the wood is at its natural density.- 1
- a wood workpiece 45 is moved in between the assemblies 25 and 25 being forced forwardly by the bar 18 which has cables 46 attached to its ends drawn forwardly by a motor driven winch arrangement 47 that moves the wood workpiece 45 forwardly at a uniform speed. Movement at uniform speed is preferred to obtain an accompanying uniform heat application.
- Ahead of the wood workpiece is a preheating mechanism illustrated as being conveniently in the form of infra-red lamps 48 and 48'.
- This preheating mechanism preheats the outer surface or skin of the wood from 200-375 F. to remove surface moisture. This prevents the acquisition of moisture by the wood from the air which would be trapped beneath the surface of the preheating blocks 21 and 21' and beneath the surface of the mandrels 22 and 22'.
- p p 7 As illustrated in FIGURE 3, a wood workpiece 49 is forced between the surface compressing assemblies 25 and 25, but the surfaces are first impregnated with a sealant such as a resin or wax or thermoplastic.
- the sealant is applied in a manner shown schematically by a tank at 50 and the coated wood workpiece is passed through a drying oven where it is dried overnight or for an equivalent period at F. with the sealant penetrating the wood.
- the preheating lamps 48 and .48 then heat the impregnated wood surface to 250 F. to 360 F. to eliminate any moisture which has been gathered from the air and to B-stage the resin if resin is'used. This heat is at the outer skin surface of the wood and not necessarily to the full compression depth as excess heating to the full depth would excessively soften the wood fibers. Heating to compression depth is further accomplished by the preheat blocks 21 and 21.
- the pressure of the mandrels will distribute the impregnant and the heat of the mandrels, in the case when a thermosetting resin is used, will cure the resin.
- a wood workpiece 56 is moved between the surface hardening assemblies 25 and 25 after having been surface. impregnated in the tank 50 and the drying oven 51 and after the surface has been preheated by the lamps 48' and 48'.
- a decorativeresin impregnated sheet of paper is laid from a supply roll 57. The paper is impregnated with B-stage resin and the paper is joined to the resin coated upper surface of theworkpiece a protectivve coa-ting of resin is formed on theouter. surface of the impregnated paper.
- FIGURE 7 While a mandrel or shoe having an inclined compressing surface is preferred, the method can be practiced by the use of a roller, such as illustrated in FIGURE 7.
- a wood workpiece 60 is moved relatively past a compressing roller. 61.
- the roller must have a size within critical limits so as to engage a limited area of the wood surface and exceed the compressive strengthof the wood at the surface and the compressing roller will be small. Toprevent bending of the roller it is backed by a first backing roller 62 which is additionally backed by supporting rollers 63 and 64. Heatingelements, not shown, may be provided to preheat the wood and to post-heat it after the surface has been compressed for stabilizing the hardened layer.
- the size of, the roller is critical so that a sufliciently small area is engaged to exceed the elastic limit of the wood at the surface. The relationship of the length L of area of wood engaged ,to the height H of wood engaged will be discussed later.;
- FIGURE 6 which shows a mandrel or shoe 66 in enlarged detail, a wood workpiece 65 is forced past the mandrel with a thin shim 67. on the wood surface.
- A' compression surface 68 compresses the wood and the mandrel has a trailing surface 69 parallel to the wood surface and a leading surface 70 parallel to the uncompressed wood surface.
- the mandrel isprovided with fairing or is rounded at locations 71 and 72where the compressing surface joins the flat. planar surfaces 69 and 70.
- the slope or the relationship of L to H is critical and will become apparent from the following description and examples.
- FIG- URE 9 A typical stress-strain curve for wood is'shown in FIG- URE 9.
- the actual example plotted is edge-glued, vertical grained maple with the compression force perpendic:
- the critical design consideration is the slope and height of the compression step.
- FIGURE 10 The general case is shown in FIGURE 10. As the wood is moved fiom right to left, as shown by the arrow, it will have an increasing downward force applied along the line X-Y. The wood which would have continued to a is compressed into a The wood which would have continued to 12 is compressed into 15 To have such compression occur, it is necessary that the distance the wood is compressed be large enough so that the elastic limit is exceeded. For a piece of maple 2" thick, with a modulus of elasticity of 2,000,000, and an elastic limit of 4,800 lbs. per sq. inch, a compression of .005" will initiate compression failure. Consequently, this effect will be disregarded in this analysis.
- FIGURE 11 is useful.
- the mandrel to reduce the forces necessary. Mien this is done the mandrel design must be calculated using the wood properties at the temperature chosen.
- the compressed layer is stabilized by heating the mandrel and pushing the wood through slowly enough to first compress and then stabilize the WOOd. Also, heating the wood by a pontion of the mandrel prior to its passing by the compression step plasticizes the surface sufficiently to resist fiber fracture.
- the phenolic resin layer can be built up by impregnating alpha-cellulose paper, curing it to a B-stage and placing it on top of the phenolic resin solution impregnated board. When this combination is run through the process, a glossy layer of paper reinforced phenolic resin is married to the phenolic resin in the surface of the compressed wood.
- a most important feature of the use of phenolic resin components described above is the sealing of the wood surface during the case hardening process. Without it, we have found that the compressed surface becomes extremely dry as indicated by its lateral shrinkage even though it would be expectedto bulge the top surface of the board at its unsupported sides. Our best result is attained by using a radiant heater above the surface of the wood at its entrance to the mandrel. The intensity of heat is set to bring thesurface of the wood to 300 F. for seconds. This driesthe phenolic resin solution and takes it to a B-stage. This seals the wood surface before its subsequent travel under the mandrel.
- Density distribution 7 0 D2 I A Do 1 (Original wood) After compression Before compression 1 gwflxn z From FIGURE 9, the density of wood along the (14) Compression of Wood line is D-W Stress- 0.42
- resin and B-stage resin makes specific reference to 20% aqueous phenol-formaldehyde resins. These resins may be converted to the B-stage by preliminary heating and ultimately thermoset during the passage between the mandrels. Resins of this type are particularly suitable in the practice of the invention not only for the provision of a suitable resin impregnated wood surface but also for the provision of a suitable decorative paper surface over the compressed wood surface and On the other hand, it will' adequately adhered thereto. be appreciated that satisfactory results may also be obtained using numerous other phenolic resins, such as the alkyl phenol-formaldehyde resins (e.g. p-tert. butylphenol-formaldehyde resins).
- alkyl phenol-formaldehyde resins e.g. p-tert. butylphenol-formaldehyde resins.
- Moisture barriers may, however, be provided for the purpose of the instant invention by various thermoto the wood and/ or paper and caused to impregnate the wood and/ or paper to at least a limited extent. In using such resins the wood material is adequately cooled before it is released from the mandrels.
- the resins are usually used in conjunction with a polymerization catalyst and/or accelerator; but such compositions are conventional and need not be described in greater detail herein.
- Another type of resin which has been found to be particularly suitable for use with a paper covering is a polymerizable unsaturated polyhydric alcohol-polycarboxlic acid polyester, which is prepared by reaction of one or more polyhydric alcohols and one or more polybasic acids.
- a resinous material is used to impregnate the wood surface and/ or the paper in substantially the manner hereinbefore described in connection with phenolic resins.
- the proportion of polyhydric alcohols having more than two hydroxy groups, such as glycerol or pentaerythritol, and the proportion of polycarboxylic acids having more than two carboxy groups, such as citric acid, preferably is small so that in the production of the polyester there may be maximum esterification of the hydroxy and carboxy groups without attainment of excessive viscosity.
- the unsaturated polyester be polymerizable into an infusible or high melting point resin, so that the proportion of unsaturated components should be such that the polyester contains an average of more than one double bond per molecule; for example, there may be an average of eleven or more double bonds in every ten molecules of the polyester.
- the present invention is applicable to all polymerizable unsaturated polyhydric alcohol-polycarboxylic acid polyesters.
- a typical example of such a polyester is a product prepared by the reaction of an unsaturated dicarboxylic acid such as maleic, fumaric, itaconic, citraconic or mesaconic acid with a dihydric alcohol such as any polymethyh ene glycol in the series from ethylene glycol to decamethylene glycol, propylene glycol, any butylene glycol, any polyethylene glycol in the series from diethylene glycol to nonaethylene glycol, dipropylene glycol, any glycerol monobasic acid monoester (in either the alpha or beta position), such as monoformin or monoacetin, any monoether or glycerol with a monollydric alcohol, such as monomethylin or monoethylene, or any dihydroxy alkane in which the hydroxy radicals are attached to carbon atoms that are primary or secondary or both, in the series from dihydroxy but
- Part of the unsaturated dicarboxylic acid may be replaced by a saturated dicarboxylic acid, such as any normal acid in the series from oxalic acid and malonic acid to sebacic acid, or any benzene dicarboxylic, naphthalene, dicarboxylic or cyclohexane dicarboxylic acid, or diglycolic, dilactic or resorcinol diacetic acid.
- a saturated dicarboxylic acid such as any normal acid in the series from oxalic acid and malonic acid to sebacic acid, or any benzene dicarboxylic, naphthalene, dicarboxylic or cyclohexane dicarboxylic acid, or diglycolic, dilactic or resorcinol diacetic acid.
- All of the unsaturated acid may be replaced by a saturated acid if a polyhydric alcohol is present whose molecule has two or three free hydroxygroups and consist of an ether of one or two molecules of allyl or methallyl alcohol with one molecule of a polyhydroxy compound such as glyc crol, pentaglycerol, pentaerytlnitol butantetroll,2,3,4, a trihydroxy normal alkane having from four to five carbon atoms such as butantriol-l,2,3, or a monoalkyl ether of pentaerythritol or butantetrol-l,2,3,4 in which the alkyl radical has from one to four carbon atoms and has from one to two hydrogen atoms attached to the same carbon atom as the ether of pentaerythritol.
- a polyhydric alcohol is present whose molecule has two or three free hydroxygroups and consist of an ether of one or two molecules of allyl or methallyl alcohol with one
- any of the usual modifiers such as monobasic acids, monohydric alcohols and natural resin acids may be added.
- Other properties of the polyester such as solubility in various solvents, also may be varied by selecting various reacting ingredients and varying their proportions. The infusibility, hardness and inertness of the product obtained by polymerization of the polyester may be increased by varying the initial reacting ingredients to increase the average number of double bonds per molecule of the polymerizable polyester.
- the point to which the reaction of the ingredients is carried in the preparation of the polymerizable polyester is simply that point at which the product has the desired consistency.
- the consistency or viscosity of the polyester varies directly with the average number of acid and alcohol residues in the molecule. erage number of residues in the molecule of the polyester may vary from about three to about one hundred twenty.
- the reaction is carried out at a temperature high enough and for a time long enough to secure the desired consistency.
- An elevated temperature preferably is employed to expedite the reaction, but during the preparation of the polyester, the temperature should not be so high nor the time of reaction so long as to cause substantial polymerization. There is less danger of premature polymerization if an inhibiting agent is added before the esterification is carried out.
- the preparation of the unsaturated polyester preferably is carried out in an atmosphere of an inert gas such as 7 carbon dioxide, nitrogen or the like, in order to prevent I alone.
- Bubbling the inert gas through the reacting ingredients is advantageous in that the gas serves the add-ed functions of agitation and or" expediting the removal of water formed by the reaction. It is desirable to exclude oxygen, which causes discoloration.
- Polymerization of these materials usually is carried out at temperatures of about to about F.
- a solution comprising one or more polymerizable unsaturated polyesters and one or more polymerizable monomeric allyl esters hereiribefore described is particularly useful. Either the unsaturated polyester or the allyl ester or both may be partially polymerized before the ingredients are mixed.
- Allyl esters that are useful for the preparation of such a solution include diallyl phthalate, diallyl oxalate, diallyl diglycolate, triallyl citrate, carbonyl bis-(allyl lactate), maleyl bis-(allyl lactate), fumaryl bis-(allyl lactate), succinyl bis-(allyl lactate), adipyl bis-(allyl lactate), sebacyl bis-(allyl lactate), phthalyl bis-(allyl lactate), iumaryl bis-(allyl glycolate), carbonyl bis-(allyl glycolate), carbonyl bis-(allyl salicylate), tetra- (allyl glycolate) silicate, and tetra-(allyl lactate) silicate.
- Such a solution which usually contains about 20 to 80 percent of the allyl ester and about 70 to 80 percent of the polymerizable polyester, is particularly advantageous because the polyester has desirable physical properties and hardens very rapidly after the initial polymerization Whereas the presence of the allyl ester causes'the polymerized product to be much more Water resistant and insoluble. Moreover,
- a similar solution may be prepared by dissolving the polyester, before use, in a polymerizable substance such as styrene, vinyl acetate, methyl methacrylate or methyl acrylate.
- the method of forming a hardened compressed layer on the surface of wood by forcing the same through opposite surface compressing assemblies at least one of which has a continuous surface including a first'flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said first to said second fiat surface, comprising the steps of sandwiching saidwood in between two flexible sheets, relatively moving said sheets with the wood therebetween through said surface assembliesand during such movement (1) preheating the surface of the wood at said first flat surface, (2) applying a progressively increasing pressure to the surface of the wood at said compressing surface, and (3) while maintaining the pressure on the surface of the wood during movement past said second flat surface, heating the surface of the wood to a stabilizing temperature and thereafter cooling the surface of the wood.
- the method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of confining the flat workpiece between a pair of flexible sheets, forcing the sheets with the confinedworkpiece through opposite surface assemblies at least one of which has a continuous surface for engaging one of the sheets including a first flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said first to said second flat surface, and while said sheets and confined workpiece are moved through said assemblies (1) preheating the surface of the workpiece at said first flat surface, (2) applying a progressively increasing pressure to the surface of the workpiece at. said compressing surface, and (3) while maintaining the pressure of the surface of the workpiece during movement past said second flat surface, heating the surface of the' workpiece and thereafter cooling the surface of the workpiece.
- the method of forming a hardened compressed layer on the surface of a flat wood workpiece comprising the steps of confining the workpiece between a pair of flexible sheets, relatively moving the sheets and the confined workpiece through opposite surface assemblies which have continuous surfaces for engaging the outer surfaces of the flexible sheets, at least one of said continuous surfaces in-.
- the method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of impregnating the surface of the workpiece with a sealant, confining the flat workpiece between a pair of flexible sheets, forcing the sheets with the confined workpiece through opposite surface assemblies at least one of which has a continuous surface for engaging one of the sheets including a first flat surface, a second flat surface;
- the method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of confining the flat workpiece between a pair of flexible sheets, forcing the sheets with the confined workpiece through opposite surface assemblies at least one of which has a continuous surface for engaging'one of the sheets including a first flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said first to said second flat surface,
- the method of forming a hardened compressed layer on the surface of a flat wood workpiece comprising the steps of confining the workpiece between a pair of flexible sheets, relatively moving the sheets and the confined workpiece through opposite surface assemblies which have continuous surfaces for engaging the outer surfaces of the flexible sheets, at least one of said continuous surfaces including a first flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said second flat surface, and while relative of the workpiece at said first flat surface to reduce the fiber strength of the wood, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface, and (3) while maintaining the pressure on the surface of the workpiece during relative movement past said second flat surface, heating the surface of the workpiece to a stabilizing temperature for the wood and thereafter cooling the surface of the workpiece.
- the method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of applying plastic resin to the surface of the workpiece, sandwiching the workpiece in between two flexible sheets, relatively moving the sheets and the workpiece through opposite surface assemblies at least one of which has a continuous surface for engaging one of the sheets including a first fiat surface, a second flat surface generally parallel to saidfirst fiat surface and a compressing surface inclined inwardly from said first to said second flat surface, and while relative movement occurs between said assemblies and said flexible sheets and workpiece (l) preheating at the first fiat surface the surface of the workpiece to accomplish partial polymerization of the resin, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface, and (3) while maintaining the pressure on the surface of the workpiece during relative movement past said second flat surface, heating the surface of the workpiece and thereafter cooling the surface of the workpiece.
- thermoplastic resins which may be Signed and sealed this 22nd day of June 1965.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
Description
Jan. 19, 1965 c. H. VAN HARTESVELDT ETAL 3,
METHOD FOR CASE HARDENING OF WOOD Original Filed Feb. 2, 1960 5 Sheets-Sheet l N\\\\ x\\ \\\w 1.
g: m L: r hw w 5 w m R, x Q A E. W v5 w A, by? blur m A \\\\\w//////////////// 0 Jan. 19, 1965 c. H. 'VAN HARTESVELDT ETAL 3,166,110
METHOD FOR CASE HARDENING OF woos Original Filed Feb. 2. 1960 5 Sheets-Sheet 2 qqr;
Jan. 19, 1965 c. H. VAN HARTESVELDT ETAL 3,
METHOD FOR CASE HARDENING OF woon Original Filed Feb. 2, 1960 5 Sheets-Sheet 3 5. J51. ,5). E35... .5 u 5*; H 3% U /zz g 6%. MM @155 Jan. 19, 1965 c. H. VAN HARTESVELDT ETAL 0 METHOD FOR CASE HARDENING 0F woon Original Filed Feb. 2, 1960 5 Sheets-Sheet 4 E- 9 L 0 Q. 6 2 5.000 -4 -soo n m m m 5 2,500
I00 75 SO 25' O s'rQAm OF ORIGINAL SIZE STEEL MANDEEL HEIGHT 6F STEP 2 DISTANCE HOOD \5 OOMPQEG-SE- MOTION Carroll fl Im flarieszzelc/l Buoo y 0. #2!
Jan. 19, 1965 c. H. VAN HARTESVELDT ETAL 0 METHOD FOR CASE HARDENING 0F WOOD Original Filed Feb. 2, 1960 5 Sheets-Sheet 5 Peace on woao A.
MEM- MEASURED alt EsTIMATEP t PEEmc'rzo L15 \D Q a l E 3 E 3 use W a l x 3 I i 93. I 2 El 25 l 3 r-- k -l H d- 0 we I i I 0. 2 I I u i 0 .025 .050 .075 .I .116 .250 l P msnncs pow mom suaFAua 0F cnse HAEDEvE-O woo V 8 lfizezzfiiczz-" United States- Patent METHGD FOR (EASE HARDENING F WGGD Carroll H. Van Hartesveldt and Buddy D. Wahl, Toledo,
Ohio, assignors to Hoover Bali and Bearing Company,
Ann Arbor, Mich a corporation of Michigan Original application Feb. 2, 1960, Ser. No. 6,189. Divided and this application Sept. 14, 1962, Ser. No. zzaezs 8 Claims. (Cl. 144-327) The present invention relates to a method for providing an improved wood product having a hardened compressed layer on the surface. This application is a division of our copending application, .Ser. No. 6,189, filed'February 2, 1960.
The wood product made in accordance with the method has a surface layer which has been compressed beyond the elastic limit of the wood to form a hardened outer layer which is integral with the wood. Inasmuch as only the surface of the wood is compressed only a small volume of wood is sacrificed to obtain surface hardness. There are many environments where only surface resistance to wear and local impact is desired. In accordance with the present invention the original volume of the wood has not been substantially reduced and the wood is protected by an integral hardened surface. a
An object of the invention is to provide an improved method for obtaining a wood structure having an integral case hardened compressed outer layer.
Another object of the invention is to provide an improved method for compressing only the outer layer of Wood beyond its elastic limit and stabilizing the compressed layer to provide a permanent structure which can withstand moisture and not return to its original uncompressed state.
Another object of the invention is to provide an improved method for providing a case hardened surface for wood impregnated with a plastic or resin sealant which may be covered with a decorative paper layer.
Another object of the invention is to provide an improved method which can be used to compress the outer surface of wood beyond its elastic limit and provide a case hardened layer simply and inexpensively for production and manufacturing operations.
Other objects and advantages will become more apparent with the teaching of the principles of the invention in connection with the disclosure of the preferred embodiments thereof in the specification, claims and drawings, in which:
, FIGURE 1 is a side elevational view of amechanism, shown with portions in section for case hardening the outer surface of a wood workpiece in accordance with the method of the invention;
FIGURE 2 is a side elevational view similar to FIG- URE 1, showing additional details and illustrating additional steps of the method;
FIGURE 3 is a side elevational view similar to FIG- URE l and illustrating another form of the method;
7 FIGURE 4 is a side elevational View similar to FIG- URE 1 and illustrating still another form of the method;
FIGURE 5 is a side elevational view with portions shown in section, illustrating a simplified form of the mechanism in accordance with the present invention;
FIGURE 6 is an enlarged detailed sectional view illustrating in particular relative dimensions of a portion of the mechanism;
FIGURE 7 is a side elevational view, shown partially in section, illustrating the method being performed with rollers;
FIGURE 8 is a vertical sectional view taken through a wood workpiece finished in accordance with the present invention;
3,166,110 Pfatent ed Jan. 1965:
ice
of a mandrel in accordance with the present invention,
shown somewhat inschematic form for describing the dimensional relationships involved; and
FIGURE. 15 is a graph showing the relationship between the specific gravity of the wood and the distance from the wood surface. V v
In the drawings: 7 p
The mechanisms illustrated'in FIGURES 1 through6 perform the method of the invention for forming a hardened compressed layer on the surface of a wood workpiece by applying a progressively increasing pressure to a limited area of the surface of the wood'until the elastic limit is exceeded, such as by using a mandrel or shoe having an inclined compressing surface which engages a limited area of the wood and has a slope within critical limits to insure overcoming the compressive strength of the surface layer of the wood workpiece. The shoe applying its local pressure is progressively advanced across the wood workpiece .to enlarge the compressed area until the surface is covered with a layer of compressed wood. The surface of the wood may be preheated to a temperature above 212 F. to the depth of crushing to reduce the force required and to minimize fiber damage during compression. The compressed layer is stabilized while held compressed by heating to a temperature of 300-360" F. to a. depth sufficient to reach all of the compressed wood. The wood is then preferably cooled to a temperature of 210 F. or less to prevent the release of steam and drying of the wood.
The method may include impregnation of the wood surface with a sealant such as resins or wax or a thermosetting resin which will then be cured in the stabilizing heating step. A surface preheat step may be incorporated with surface impregnation of resin before compressing by preheating in a range from 250 to 360 to dry the wood surface and B-stage the resin. An impregnated decorative paper may be laid down on the impregnated wood surface before compressing, with the paperimpregnated with a B-stage resin.
As illustrated in FIGURE 1, the wood workpiece 16 in the form of an elongated flat board is surface hardened on both sides in the mechanism illustrated. While the method may be practiced with hardening'on one side only, the mechanism illustrated shows a simultaneous harden- .ing of both sides which provides a finished wood workpiece hardened on both surfaces and avoids complications of warpage of the wood workpiece which may occur when one surface alone is hardened. The workpiece 16 is moved relative to surface treating and compressing assemblies 17 and 17 by suitable means such as a bar 18 placed across the end of the workpiece and forced in a direction to move the workpiece ahead of it.
Compressing of the surface layers of the workpiece is accomplished by sloped compressing surfaces 19 and 19 for the respective sides of the wood, on'mandrels or shoes 22 and 22. To prevent the displacement of wood resin and fibers due to the drag of the shoe or mandrel, a flexible shim or sheet 20, 20' is positioned over the surfaces of the wood between the wood and the shoe compressing surfaces 19 and 19'. The shim may be of brass or of flexible steel, preferably such as 1095 steel, and the shims may be anchored at the lead end of the wood to be drawn along therewith. A lubricant such as graphite or mineral oil is employed between the shim and the mandrel. Mineral oil is preferred and avoids the soiling effects of graphite.
Preheating of the wood surface is accomplished by preheating blocks 21, 21'-which are positioned in advance of the compressingsurface 19, 19' and are heated by suitable heating elements such as 21a, 21a. These impart sufiicient heat to the wood to heat it to a temperature above 212 F. to soften the. surface fibers of the wood. The preheat block has a smooth planar surface parallel to thewood and facing the wood for good heat transfer contact. The shims 20 and 20' are sufiicientlythin to permit rapid heat transfer and to conform to the shape of the surface of the shoes. The size and temperature of the preheating blocks, and the size and temperature of the other. heat. transfer members are, of course, chosen relative to the speed at which the Wood workpiece will be moved through the mechanism to attain the desired surface temperature of the wood.
The shoes or mandrels 22 and 22' are heated by heating elements'such as 22a and 22a to heat the wood to a temperature'of 300 F. to 360 F.
Behind the mandrels 22 and 22' are coolers or cooling blocks 23 and 23, illustrated as being hollow with a charm ber 23:; and 23a therein for a coolant fluid. The cooling blocks reduce the temperature of the wood to temperature of 210 F. or less, preventing the compressed moisture on the wood surfacefrom flashing into steam to dry the surface and preventing the causing of blisters. An insulating wall 24 and 24' is provided between the mandrels 22 and 22 and the coolingblocks 23 and 23'.
The elements of the assemblies, such as the preheating blocks 21 and 21', the mandrels 22 and 22, and the cooling blocks 23 and 23' are mounted as a unit and may be backed by plates or bars 25 and 25' which are supported by pressure bolts 26 thatare threaded and receive nuts and function to hold the mandrels against theboard with sufficient pressure to insure compressing the wood surface. As illustrated in FIGURE 5, compression of the surface of a wood workpiece 30 may be performed without the application of a stabilizing heat, for provision of wood to be used where it will not be subjected to moisture. A wood workpiece 30 is moved by suitable means, such as a bar 31 at the end, between mandrels 32 and 32' which have sloping compressing surfaces 33 and 33' and sheet material or shims 34 and 34' are positioned over the surface of the wood during engagement by the mandrels. The finished wood product is illustratedin" enlarged sectional view in FIGURE 8 at 40. The outer surfaces 41 and 42 are compressed while the interior 43 of the wood is at its original density. As will be described later in connection with FIGURE 15 and with the analysis of the slope required for the mandrel, the density of the wood ranges from a completely compressed outer layer with a specific gravity of 1.3-1.4 at the outer skin surface and diminishes'linearly through thedepth of compression to where the wood is at its natural density.- 1 As illustrated in FIGURE 2,. a wood workpiece 45 is moved in between the assemblies 25 and 25 being forced forwardly by the bar 18 which has cables 46 attached to its ends drawn forwardly by a motor driven winch arrangement 47 that moves the wood workpiece 45 forwardly at a uniform speed. Movement at uniform speed is preferred to obtain an accompanying uniform heat application. Ahead of the wood workpiece is a preheating mechanism illustrated as being conveniently in the form of infra-red lamps 48 and 48'. This preheating mechanism preheats the outer surface or skin of the wood from 200-375 F. to remove surface moisture. This prevents the acquisition of moisture by the wood from the air which would be trapped beneath the surface of the preheating blocks 21 and 21' and beneath the surface of the mandrels 22 and 22'. p p 7 As illustrated in FIGURE 3, a wood workpiece 49 is forced between the surface compressing assemblies 25 and 25, but the surfaces are first impregnated with a sealant such as a resin or wax or thermoplastic. The sealant is applied in a manner shown schematically by a tank at 50 and the coated wood workpiece is passed through a drying oven where it is dried overnight or for an equivalent period at F. with the sealant penetrating the wood. The preheating lamps 48 and .48 then heat the impregnated wood surface to 250 F. to 360 F. to eliminate any moisture which has been gathered from the air and to B-stage the resin if resin is'used. This heat is at the outer skin surface of the wood and not necessarily to the full compression depth as excess heating to the full depth would excessively soften the wood fibers. Heating to compression depth is further accomplished by the preheat blocks 21 and 21. The pressure of the mandrels will distribute the impregnant and the heat of the mandrels, in the case when a thermosetting resin is used, will cure the resin.
As illustrated in FIGURE 4, a wood workpiece 56 is moved between the surface hardening assemblies 25 and 25 after having been surface. impregnated in the tank 50 and the drying oven 51 and after the surface has been preheated by the lamps 48' and 48'. On the upper surface 58 of the wood a decorativeresin impregnated sheet of paper is laid from a supply roll 57. The paper is impregnated with B-stage resin and the paper is joined to the resin coated upper surface of theworkpiece a protectivve coa-ting of resin is formed on theouter. surface of the impregnated paper.
In each of the arrangements, when the wood workpiece consists of a long board, means will be provided to guide the board and prevent'it from bowing. Guide rollers may be provided, or the cable 46, FIGURE 2, may be provided with connections that engage and support the board at its side, such as for example fittings which slidably clamp over the board and have eyelets slidable on the cable.
While a mandrel or shoe having an inclined compressing surface is preferred, the method can be practiced by the use of a roller, such as illustrated in FIGURE 7. A wood workpiece 60 is moved relatively past a compressing roller. 61. The roller must have a size within critical limits so as to engage a limited area of the wood surface and exceed the compressive strengthof the wood at the surface and the compressing roller will be small. Toprevent bending of the roller it is backed by a first backing roller 62 which is additionally backed by supporting rollers 63 and 64. Heatingelements, not shown, may be provided to preheat the wood and to post-heat it after the surface has been compressed for stabilizing the hardened layer. The size of, the roller is critical so that a sufliciently small area is engaged to exceed the elastic limit of the wood at the surface. The relationship of the length L of area of wood engaged ,to the height H of wood engaged will be discussed later.;
' As illustrated in FIGURE 6,.which shows a mandrel or shoe 66 in enlarged detail, a wood workpiece 65 is forced past the mandrel with a thin shim 67. on the wood surface.
A' compression surface 68 compresses the wood and the mandrel has a trailing surface 69 parallel to the wood surface and a leading surface 70 parallel to the uncompressed wood surface. The mandrel isprovided with fairing or is rounded at locations 71 and 72where the compressing surface joins the flat. planar surfaces 69 and 70. The slope or the relationship of L to H is critical and will become apparent from the following description and examples.
.Various species and types of wood have varying densities. When dried or seasoned for use, the moisture remain-.
ing is in the cell walls and air fills the cells. This allows the wood tobecrushed to total solids at which point it is virtually impossible to compress-it further. In the totally compressed condition virtually all species of wood reach a' density of 1.3-1.4, irrespective of initial density.,
A typical stress-strain curve for wood is'shown in FIG- URE 9. The actual example plotted is edge-glued, vertical grained maple with the compression force perpendic:
ular to the grain and approximately parallel to the plates of summer wood. Compressing the woodin this manneris preferred for obtaining a good finished product.
It is the FIGURE 9 stress-strain relationship typical of,
all wood that enables the surface compression of wood to be accomplished by the process of the present invention. The critical design consideration is the slope and height of the compression step.
The general case is shown in FIGURE 10. As the wood is moved fiom right to left, as shown by the arrow, it will have an increasing downward force applied along the line X-Y. The wood which would have continued to a is compressed into a The wood which would have continued to 12 is compressed into 15 To have such compression occur, it is necessary that the distance the wood is compressed be large enough so that the elastic limit is exceeded. For a piece of maple 2" thick, with a modulus of elasticity of 2,000,000, and an elastic limit of 4,800 lbs. per sq. inch, a compression of .005" will initiate compression failure. Consequently, this effect will be disregarded in this analysis.
In considering the forces involved in the FIGURE example, FIGURE 11 is useful.
With wood moving from right to left, F is the total force along the sloped portion of the mandrel. This force produces a stress which exceeds the elastic limit of the wood. Deeper into the wood, as at XZ, this force is' General Example Suppose that it is desired to case harden a piece. of wood as shown in FIGURE 12. d is the dimension required for wood at its ultimate compressed density and d is compressed wood varying in density from the ultimate at the top of the layer to that for uncompressed wood at the bottom. Because this gradient is approximately linear, the height of the step in the mandrel H must equal a Totally compressed density Initial density (d1+}2d2) H is, therefore, also the dimension of uncompressed wood which will be compressed into the wood below it. To determine the length of the slope required, the following calculation is necessary based on FIGURE 13. P is the force at YX. H, d and d are as described in FIG- URE 13.
Along line ZX is the unit pressure necessary for the complete deusification of the wood. Along WX is the unit pressure at the elastic limit of the wood.
P S, (Stress at total ccmpressionin FIGURE (4) '27: 9, for maple, this is 7800) P 8; (Stress at elastic limit-Au FIGURE 9,
(5) KW this is 4800) a 2 v. 7 (from 3.)(XW)2-(UW)2 z'U (XW) (s) Solve for (XW)2 (all others are known) Specific Example N0. 1
In the manufacture of boards for certain uses, assume that it is desirable to approach a maximum of compressed woo-d into .060" of the surface. T 0 do this, We
set up the requirement that the wood-should be crushed the maxirnum density at the surface and then should become less and less dense until at a depth of As" the density of uncompressed Wood would be reached.
From the preceding formula d =0 8 7800 lbs. per sq. in.
d =.125" 4800 lbs. per sq. in. Specific gravity of maple0.7 y Specific gravity of totally compressed maplel.4
re-ace =(21)(.0625)=.0625 From Formula 10.
the mandrel to reduce the forces necessary. Mien this is done the mandrel design must be calculated using the wood properties at the temperature chosen.
When wood is physically compressed as described above, it takes a permanent set.
heating to 300-360" it can be stabilized. In our process the compressed layer is stabilized by heating the mandrel and pushing the wood through slowly enough to first compress and then stabilize the WOOd. Also, heating the wood by a pontion of the mandrel prior to its passing by the compression step plasticizes the surface sufficiently to resist fiber fracture.
In order to apply a durable and waterproof surface to the compressed and stabilized case, we have found it desirable to soak the boards prior to processing in a 20% water solution of unpolymerized phenolic resin com- 7 7 However, if it is wet subsequently, it tends to return to its'former state. By
case harden the wood. by compressing and stabilizing it,.
but we also create a cured phenolic resin surface. Be-
I cause the phenolic solution does not penetrate far and because this surface material is compressed to about one-half its original thickness, the layer is only a few thousandths of an inch thick. However, the phenolic resin layer can be built up by impregnating alpha-cellulose paper, curing it to a B-stage and placing it on top of the phenolic resin solution impregnated board. When this combination is run through the process, a glossy layer of paper reinforced phenolic resin is married to the phenolic resin in the surface of the compressed wood.
A most important feature of the use of phenolic resin components described above is the sealing of the wood surface during the case hardening process. Without it, we have found that the compressed surface becomes extremely dry as indicated by its lateral shrinkage even though it would be expectedto bulge the top surface of the board at its unsupported sides. Our best result is attained by using a radiant heater above the surface of the wood at its entrance to the mandrel. The intensity of heat is set to bring thesurface of the wood to 300 F. for seconds. This driesthe phenolic resin solution and takes it to a B-stage. This seals the wood surface before its subsequent travel under the mandrel.
In calculating the slope and height. of a compression step there are several practical limitations to be considered. If the step is too steep,shearing forces set up would strip off the top layer of wood. An incipent condition of this nature would break up the wood fibers being compressed at the surface by bending them too sharply. Likewise, too steep and 'short a compression step would work the traveling shim past its elastic limit. These limitations can be aHeviated somewhat by fairing the lead-in and exit contours of the step.
As the slope of the shoe is made flatter, the casehardening elfect becomes less and less until the density gradient becomes so gradual that nothing significant is accomplish'ed. This is shown in the following example:
Specific Example No. 2 I 7 Given a step in the mandrel of H and L 3", find the density distribution when running a 1" maple board.
From FIGURE 14: a 7
L 1 s +s i W P (4) =S (Stress along L S (Stress along L (6) eos0 7 a+0=Arc Tang =19.4
. I V s a Arc Tan 2.4
(10) cos 0=.956
15 S =.9O9S (from 12) (is D,+'D =1.6=
D D ts-42 aws -42 3000 1 3000' 1 4800+2560 17) S 5500 lbs. per sq. in.
D,=0.74 (from 13) The variation in density from 0.86 to 0.74 in /8 of an inch is or .137 per inch. In Specific Example No. l and as verified by the sample run and reported as FIGURE 15,"
the variation in density is or 5.6 per inch. Therefore, this case hardening effect is or 41 times as much as the more gradual slope.
As used hereinbefore in the specific examples, the terms resin and B-stage resin makes specific reference to 20% aqueous phenol-formaldehyde resins. These resins may be converted to the B-stage by preliminary heating and ultimately thermoset during the passage between the mandrels. Resins of this type are particularly suitable in the practice of the invention not only for the provision of a suitable resin impregnated wood surface but also for the provision of a suitable decorative paper surface over the compressed wood surface and On the other hand, it will' adequately adhered thereto. be appreciated that satisfactory results may also be obtained using numerous other phenolic resins, such as the alkyl phenol-formaldehyde resins (e.g. p-tert. butylphenol-formaldehyde resins). Inaddition, other resinous water-soluble so that they may be more readily applied to the wood and/ or paper and cause to impregnate the same. Moisture barriers may, however, be provided for the purpose of the instant invention by various thermoto the wood and/ or paper and caused to impregnate the wood and/ or paper to at least a limited extent. In using such resins the wood material is adequately cooled before it is released from the mandrels.
The resins are usually used in conjunction with a polymerization catalyst and/or accelerator; but such compositions are conventional and need not be described in greater detail herein.
Another type of resin which has been found to be particularly suitable for use with a paper covering (but which may also be used to impregnate the Wood itself) is a polymerizable unsaturated polyhydric alcohol-polycarboxlic acid polyester, which is prepared by reaction of one or more polyhydric alcohols and one or more polybasic acids. Such a resinous material is used to impregnate the wood surface and/ or the paper in substantially the manner hereinbefore described in connection with phenolic resins. The proportion of polyhydric alcohols having more than two hydroxy groups, such as glycerol or pentaerythritol, and the proportion of polycarboxylic acids having more than two carboxy groups, such as citric acid, preferably is small so that in the production of the polyester there may be maximum esterification of the hydroxy and carboxy groups without attainment of excessive viscosity. Ordinarily it is desirable that the unsaturated polyester be polymerizable into an infusible or high melting point resin, so that the proportion of unsaturated components should be such that the polyester contains an average of more than one double bond per molecule; for example, there may be an average of eleven or more double bonds in every ten molecules of the polyester.
The present invention is applicable to all polymerizable unsaturated polyhydric alcohol-polycarboxylic acid polyesters. A typical example of such a polyester is a product prepared by the reaction of an unsaturated dicarboxylic acid such as maleic, fumaric, itaconic, citraconic or mesaconic acid with a dihydric alcohol such as any polymethyh ene glycol in the series from ethylene glycol to decamethylene glycol, propylene glycol, any butylene glycol, any polyethylene glycol in the series from diethylene glycol to nonaethylene glycol, dipropylene glycol, any glycerol monobasic acid monoester (in either the alpha or beta position), such as monoformin or monoacetin, any monoether or glycerol with a monollydric alcohol, such as monomethylin or monoethylene, or any dihydroxy alkane in which the hydroxy radicals are attached to carbon atoms that are primary or secondary or both, in the series from dihydroxy butane to dihydroxy decane.
Part of the unsaturated dicarboxylic acid may be replaced by a saturated dicarboxylic acid, such as any normal acid in the series from oxalic acid and malonic acid to sebacic acid, or any benzene dicarboxylic, naphthalene, dicarboxylic or cyclohexane dicarboxylic acid, or diglycolic, dilactic or resorcinol diacetic acid. All of the unsaturated acid may be replaced by a saturated acid if a polyhydric alcohol is present whose molecule has two or three free hydroxygroups and consist of an ether of one or two molecules of allyl or methallyl alcohol with one molecule of a polyhydroxy compound such as glyc crol, pentaglycerol, pentaerytlnitol butantetroll,2,3,4, a trihydroxy normal alkane having from four to five carbon atoms such as butantriol-l,2,3, or a monoalkyl ether of pentaerythritol or butantetrol-l,2,3,4 in which the alkyl radical has from one to four carbon atoms and has from one to two hydrogen atoms attached to the same carbon atom as the ether of pentaerythritol.
In the preparation of the polymerizable unsaturated polyester, any of the usual modifiers such as monobasic acids, monohydric alcohols and natural resin acids may be added. The larger the proportions. of monobasic v proportions that produce a polymerizable polyester of the desired viscosity. Other properties of the polyester, such as solubility in various solvents, also may be varied by selecting various reacting ingredients and varying their proportions. The infusibility, hardness and inertness of the product obtained by polymerization of the polyester may be increased by varying the initial reacting ingredients to increase the average number of double bonds per molecule of the polymerizable polyester.
The point to which the reaction of the ingredients is carried in the preparation of the polymerizable polyester is simply that point at which the product has the desired consistency. The consistency or viscosity of the polyester varies directly with the average number of acid and alcohol residues in the molecule. erage number of residues in the molecule of the polyester may vary from about three to about one hundred twenty.
The reaction is carried out at a temperature high enough and for a time long enough to secure the desired consistency. An elevated temperature preferably is employed to expedite the reaction, but during the preparation of the polyester, the temperature should not be so high nor the time of reaction so long as to cause substantial polymerization. There is less danger of premature polymerization if an inhibiting agent is added before the esterification is carried out.
The preparation of the unsaturated polyester preferably is carried out in an atmosphere of an inert gas such as 7 carbon dioxide, nitrogen or the like, in order to prevent I alone.
darkening or to make it possible to obtain a pale or colorless product. Bubbling the inert gas through the reacting ingredients is advantageous in that the gas serves the add-ed functions of agitation and or" expediting the removal of water formed by the reaction. It is desirable to exclude oxygen, which causes discoloration.
Polymerization of these materials usually is carried out at temperatures of about to about F. A solution comprising one or more polymerizable unsaturated polyesters and one or more polymerizable monomeric allyl esters hereiribefore described is particularly useful. Either the unsaturated polyester or the allyl ester or both may be partially polymerized before the ingredients are mixed.
Allyl esters that are useful for the preparation of such a solution include diallyl phthalate, diallyl oxalate, diallyl diglycolate, triallyl citrate, carbonyl bis-(allyl lactate), maleyl bis-(allyl lactate), fumaryl bis-(allyl lactate), succinyl bis-(allyl lactate), adipyl bis-(allyl lactate), sebacyl bis-(allyl lactate), phthalyl bis-(allyl lactate), iumaryl bis-(allyl glycolate), carbonyl bis-(allyl glycolate), carbonyl bis-(allyl salicylate), tetra- (allyl glycolate) silicate, and tetra-(allyl lactate) silicate. Such a solution, which usually contains about 20 to 80 percent of the allyl ester and about 70 to 80 percent of the polymerizable polyester, is particularly advantageous because the polyester has desirable physical properties and hardens very rapidly after the initial polymerization Whereas the presence of the allyl ester causes'the polymerized product to be much more Water resistant and insoluble. Moreover,
the combination of the polyester and the allyl ester usually.
polymerizesmore rapidly than either of such substances (T he terms parts and percen as used herein to refer to quantities of material, means parts and percent by weight.)
A similar solution may be prepared by dissolving the polyester, before use, in a polymerizable substance such as styrene, vinyl acetate, methyl methacrylate or methyl acrylate.
On the other hand, the more nearly equal 1 For example, the av- It will'be understood that modifications and variations may be effected Without departing 'from the spirit and scope of the novel concepts of the present invention.
We claim:
l. The method of forming a hardened compressed layer on the surface of wood ,by forcing the same through opposite surface compressing assemblies at least one of which has a continuous surface including a first'flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said first to said second fiat surface, comprising the steps of sandwiching saidwood in between two flexible sheets, relatively moving said sheets with the wood therebetween through said surface assembliesand during such movement (1) preheating the surface of the wood at said first flat surface, (2) applying a progressively increasing pressure to the surface of the wood at said compressing surface, and (3) while maintaining the pressure on the surface of the wood during movement past said second flat surface, heating the surface of the wood to a stabilizing temperature and thereafter cooling the surface of the wood.
2. The method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of confining the flat workpiece between a pair of flexible sheets, forcing the sheets with the confinedworkpiece through opposite surface assemblies at least one of which has a continuous surface for engaging one of the sheets including a first flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said first to said second flat surface, and while said sheets and confined workpiece are moved through said assemblies (1) preheating the surface of the workpiece at said first flat surface, (2) applying a progressively increasing pressure to the surface of the workpiece at. said compressing surface, and (3) while maintaining the pressure of the surface of the workpiece during movement past said second flat surface, heating the surface of the' workpiece and thereafter cooling the surface of the workpiece.
3. The method of forming a hardened compressed layer on the surface of a flat wood workpiece comprising the steps of confining the workpiece between a pair of flexible sheets, relatively moving the sheets and the confined workpiece through opposite surface assemblies which have continuous surfaces for engaging the outer surfaces of the flexible sheets, at least one of said continuous surfaces in-.
cluding a first flat surface, a second flat surface parallel to said firstflat surface and a compressing surface inclined inwardly from said first to said second flat surface, and
while relative movement occurs between said assemblies and said flexible sheets and confined workpiece, (1) preheating the surface of the workpiece at said first flat surface so as to reduce the fiber strength of the wood, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface exceeding the compressive strength of the wood, and (3) while maintaining the pressure on the surface of the workpiece during relative movement past said second flat surface, heating the surface of the workpiece to a temperature to stabilize the compression of the wood and thereafter cooling the. surface of the workpiece to prevent moisture in the wood from flashing into steam.
4. Themethod claimed in claim 3 wherein the ratio of the length of area progressively compressed in the direc. tion of relativemovementto the decrease in wood thickness is less than 6:1 and greater than 1:1.
5. The method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of impregnating the surface of the workpiece with a sealant, confining the flat workpiece between a pair of flexible sheets, forcing the sheets with the confined workpiece through opposite surface assemblies at least one of which has a continuous surface for engaging one of the sheets including a first flat surface, a second flat surface;
parallel tosaid first flat surface and a compressing surface inclined inwardly from said first to said second flat surface, and whilesaid sheets and confined workpiece are moved through said assemblies (1) preheating the surface of the workpiece at said first flat surface, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface, and (3) while maintaining the pressure on the surface of the workpiece during movement past said second flat surface, heating the surface of the workpiece and thereafter cooling the surface of the workpiece.
6. The method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of confining the flat workpiece between a pair of flexible sheets, forcing the sheets with the confined workpiece through opposite surface assemblies at least one of which has a continuous surface for engaging'one of the sheets including a first flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said first to said second flat surface,
and while said sheets and confined workpiece are moved through said assemblies (1) preheating the surface of the workpiece at said first fiat surface, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface, and (3) while maintaining the pressure on the surface of the workpiece during movemerit past said second fiat surface heating the surface of the workpiece.
7. The method of forming a hardened compressed layer on the surface of a flat wood workpiece comprising the steps of confining the workpiece between a pair of flexible sheets, relatively moving the sheets and the confined workpiece through opposite surface assemblies which have continuous surfaces for engaging the outer surfaces of the flexible sheets, at least one of said continuous surfaces including a first flat surface, a second flat surface parallel to said first flat surface and a compressing surface inclined inwardly from said second flat surface, and while relative of the workpiece at said first flat surface to reduce the fiber strength of the wood, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface, and (3) while maintaining the pressure on the surface of the workpiece during relative movement past said second flat surface, heating the surface of the workpiece to a stabilizing temperature for the wood and thereafter cooling the surface of the workpiece.
. 8. The method of forming a hardened compressed layer on the surface of a flat workpiece of material which is compressible in response to pressure and heat comprising the steps of applying plastic resin to the surface of the workpiece, sandwiching the workpiece in between two flexible sheets, relatively moving the sheets and the workpiece through opposite surface assemblies at least one of which has a continuous surface for engaging one of the sheets including a first fiat surface, a second flat surface generally parallel to saidfirst fiat surface and a compressing surface inclined inwardly from said first to said second flat surface, and while relative movement occurs between said assemblies and said flexible sheets and workpiece (l) preheating at the first fiat surface the surface of the workpiece to accomplish partial polymerization of the resin, (2) applying a progressively increasing pressure to the surface of the workpiece at said compressing surface, and (3) while maintaining the pressure on the surface of the workpiece during relative movement past said second flat surface, heating the surface of the workpiece and thereafter cooling the surface of the workpiece.
(References on following page) 13 14 UNITED STATES PATENTS 2,586,308 2/52 Curtis 144327 2 94 Du i 144 327 XR 2,666,463 1/54 Heritage 144320 $75; $35 144*327 XR LESTER M. SWINGLE, Primary Examiner.
5/43 Farney 144-268 5 EARL EMSHWILLER, WILLIAM W. DYER, JR., 11/48 Stamm et a1. 144 -327 XR Examiners.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,166,110 January 19, 1965 Carroll H. Van Hartesveldt et a1.
It is hereby certified that'error appears in the above numbered patent requiring correction and that the said Letters. Patent should read as corrected below.
as in the patent:
before ""4800" insert S lines shown below instead of T J (.0625+.12s 2 column 9, lines 4 and 5-, for "thermo-to the wood and/or paperand" read thermoplastic resins which may be Signed and sealed this 22nd day of June 1965.
(SEAL) Attest:
EDWARD J. BRENNER ERNEST W. SWIDER H Attesting Officer Commissioner of Patents
Claims (1)
1. THE METHOD OF FORMING A HARDENED COMPRESSED LAYER ON THE SURFACE OF WOOD BY FORCING THE SAME THROUGH OPPOSITE SURFACE COMPRESSING ASSEMBLIES AT LEAST ONE OF WHICH HAS A CONTINUOUS SURFACE INCLUDING A FIRST FLAT SURFACE, A SECOND FLAT SURFACE PARALLEL TO SAID FIRST FLAT SURFACE AND A COMPRESSING SURFACE INCLINED INWARDLY FROM SAID FIRST TO SAID SECOND FLAT SURFACE, COMPRISING THE STEPS OF SANDWICHING SAID WOOD IN BETEWEEN TWO FLEXIBLE SHEETS, RELATIVELY MOVING SAID SHEETS WITH THE WOOD THEREBETWEEN THROUGH SAID SURFACE ASSEMBLIES AND DURING SUCH MOVEMENT (1) PREHEATING THE SURFACE OF THE WOOD AT SAID FIRST FLAT SURFACE, (2) APPLYING A PROGRESSIVELY INCREASING PRESSURE TO THE SURFACE OF THE WOOD AT SAID COMPRESSING SURFACE, AND (3) WHILE MAINTAINING THE PRESSURE ON THE SURFACE OF THE WOOD DURING MOVEMENT PAST SAID SECOND FLAT SURFACE, HEATING THE SURFACE OF THE WOOD TO A STABILIZING TEMPERATURE AND THEREAFTER COOLING THE SURFACE OF THE WOOD.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US223625A US3166110A (en) | 1960-02-02 | 1962-09-14 | Method for case hardening of wood |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6189A US3171167A (en) | 1960-02-02 | 1960-02-02 | Case hardening of wood |
US223625A US3166110A (en) | 1960-02-02 | 1962-09-14 | Method for case hardening of wood |
Publications (1)
Publication Number | Publication Date |
---|---|
US3166110A true US3166110A (en) | 1965-01-19 |
Family
ID=26675301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US223625A Expired - Lifetime US3166110A (en) | 1960-02-02 | 1962-09-14 | Method for case hardening of wood |
Country Status (1)
Country | Link |
---|---|
US (1) | US3166110A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3552329A (en) * | 1969-12-10 | 1971-01-05 | Tridair Industries | Panel construction and method |
US4560431A (en) * | 1983-02-02 | 1985-12-24 | Herbert Kannegiesser Gmbh & Co. | Device for gluing sheet-like textile articles |
US5190088A (en) * | 1989-08-24 | 1993-03-02 | Dansk Teknologisk Institut | Method and apparatus for compressing a wood sample |
US5328744A (en) * | 1990-10-09 | 1994-07-12 | E. I. Du Pont De Nemours And Company | Panel having a core with thermoplastic resin facings |
US5423933A (en) * | 1993-05-19 | 1995-06-13 | Horian; Richard C. | Fabrication of plastic and wood veneer composite |
US5678618A (en) * | 1993-11-18 | 1997-10-21 | Lindhe; Curt | Process for producing hard elements of wood |
US5685353A (en) * | 1993-05-18 | 1997-11-11 | Valtion Teknillinen Tutkimuskeskus | Method for compressive shape-drying of wood |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US128387A (en) * | 1872-06-25 | Improvement in treating wood and lumber to dry and season it | ||
US514847A (en) * | 1894-02-13 | Henry l | ||
US575973A (en) * | 1897-01-26 | John mclachlan | ||
US638477A (en) * | 1899-06-29 | 1899-12-05 | William A Beasley | Die for compressing wood. |
US2321738A (en) * | 1941-03-20 | 1943-06-15 | Wurlitzer Co | Apparatus for producing multiply tubing |
US2453679A (en) * | 1943-12-08 | 1948-11-09 | Alfred J Stamm | Method of forming compressed wood structures |
US2586308A (en) * | 1948-06-02 | 1952-02-19 | Curtis John Ross | Method of making shuttle blocks |
US2666463A (en) * | 1949-02-21 | 1954-01-19 | Weyerhaeuser Timber Co | Method of densifying wood |
-
1962
- 1962-09-14 US US223625A patent/US3166110A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US128387A (en) * | 1872-06-25 | Improvement in treating wood and lumber to dry and season it | ||
US514847A (en) * | 1894-02-13 | Henry l | ||
US575973A (en) * | 1897-01-26 | John mclachlan | ||
US638477A (en) * | 1899-06-29 | 1899-12-05 | William A Beasley | Die for compressing wood. |
US2321738A (en) * | 1941-03-20 | 1943-06-15 | Wurlitzer Co | Apparatus for producing multiply tubing |
US2453679A (en) * | 1943-12-08 | 1948-11-09 | Alfred J Stamm | Method of forming compressed wood structures |
US2586308A (en) * | 1948-06-02 | 1952-02-19 | Curtis John Ross | Method of making shuttle blocks |
US2666463A (en) * | 1949-02-21 | 1954-01-19 | Weyerhaeuser Timber Co | Method of densifying wood |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3552329A (en) * | 1969-12-10 | 1971-01-05 | Tridair Industries | Panel construction and method |
US4560431A (en) * | 1983-02-02 | 1985-12-24 | Herbert Kannegiesser Gmbh & Co. | Device for gluing sheet-like textile articles |
US5190088A (en) * | 1989-08-24 | 1993-03-02 | Dansk Teknologisk Institut | Method and apparatus for compressing a wood sample |
US5328744A (en) * | 1990-10-09 | 1994-07-12 | E. I. Du Pont De Nemours And Company | Panel having a core with thermoplastic resin facings |
US5685353A (en) * | 1993-05-18 | 1997-11-11 | Valtion Teknillinen Tutkimuskeskus | Method for compressive shape-drying of wood |
US5423933A (en) * | 1993-05-19 | 1995-06-13 | Horian; Richard C. | Fabrication of plastic and wood veneer composite |
US5678618A (en) * | 1993-11-18 | 1997-10-21 | Lindhe; Curt | Process for producing hard elements of wood |
WO1996032257A1 (en) * | 1994-11-03 | 1996-10-17 | Atlantic Automotive Components | Fabrication of plastic and wood veneer composite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2901455A (en) | Molding composition comprising synthetic resin and metallic filaments, articles molded therefrom and method of making same | |
US3765934A (en) | Process for impregnating porous, cellulosic material by in situ polymerization of styrene-maleic anhydride complex | |
US3166110A (en) | Method for case hardening of wood | |
EP1858677A1 (en) | Production of moulded bodies from lignocellulose-based fine particle materials | |
US3292676A (en) | Apparatus for case hardening wood | |
US3171167A (en) | Case hardening of wood | |
US3894975A (en) | Adhesive paste comprising wood fibers and complex of styrene and maleic anhydride | |
US3448001A (en) | Wood panel overlay and method and manufacture | |
US3157069A (en) | Hammer board for drop forge hammer | |
DE1419139A1 (en) | Process for the manufacture of an impregnated, dry, flexible laminate for laminating wood veneers | |
US3996328A (en) | Method for finishing resinous surface coverings | |
US3579369A (en) | Wood members impregnated with synthetic organic resins and method of producing such impregnated members | |
US3560255A (en) | Composite wood-polymer product | |
CN1108593A (en) | Method of hardening wood and processing it into products | |
US1891430A (en) | Method of gluing wood with phenol condensation products | |
JP2011037184A (en) | Molding method of compacted wood composite molding | |
JPH0929710A (en) | Wood pretreatment method and modified wood production method using the same | |
US1709599A (en) | Drop hammer | |
CA3157506A1 (en) | Method for preparation of densified wood article | |
JP2006335039A (en) | Method for producing modified wood material | |
US4069276A (en) | Low-pressure, no-cool phenolic type resin for decorative laminates | |
US1991056A (en) | Molded product and method of producing the same | |
US3120466A (en) | Method of producing hardboard in prdetermined shapes and a mat used in such method | |
JPH0716925B2 (en) | Modified wood | |
RU2811112C1 (en) | Method of manufacturing product from dense wood |