US3289886A - Timing device and method - Google Patents

Timing device and method Download PDF

Info

Publication number
US3289886A
US3289886A US346603A US34660364A US3289886A US 3289886 A US3289886 A US 3289886A US 346603 A US346603 A US 346603A US 34660364 A US34660364 A US 34660364A US 3289886 A US3289886 A US 3289886A
Authority
US
United States
Prior art keywords
operator
aerosol
motor
timer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US346603A
Inventor
Goldsholl Morton
James E Logan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US346603A priority Critical patent/US3289886A/en
Application granted granted Critical
Publication of US3289886A publication Critical patent/US3289886A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/26Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operating automatically, e.g. periodically
    • B65D83/262Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operating automatically, e.g. periodically by clockwork, motor, electric or magnetic means operating without repeated human input
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F1/00Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals without driving mechanisms, e.g. egg timers
    • G04F1/04Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals without driving mechanisms, e.g. egg timers by movement or acceleration due to gravity
    • G04F1/08Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals without driving mechanisms, e.g. egg timers by movement or acceleration due to gravity by a body falling a prefixed distance in air or in a viscous material

Definitions

  • the present invention relates a timer and method. Both the device and methodhave particularly valuable commercial application in the field of aerosol sprays.
  • a related object of the invention looks to providing a timer and method for dispensing which is self contained, and which requires no outside source of electrical current for its operation.
  • a further and more detailed object of the present invention is to provide an aerosol dispensing timer which inherently has low internal friction.
  • a related object is to provide such a timer in which the current drain on the self contained batteries is intermittent, and only caused at that time when the actual discharge of the aerosol spray occurs.
  • the batteries which are employed will last from six months to a year in many applications.
  • Still another object of the present invention is -to provide a timer and method for dispensing aerosol type products which minimizes service-requirements, and is fail safe in operation due to a unique switching mechanism and inoperative condition when not properly positioned.
  • Another and related object of the present invention is to provide an aerosol timer which may be used on aerosol dispensing containers whether in the upright or the inverted position.
  • Related to the foregoing object is a further object of providing an aerosol timer which is easy to mount, and permits virtually instantaneous replacement and refilling of the aerosol containers.
  • Still another object of the present invention looks to the provision of a timer for use on aerosol packaged sprays which is compact, inexpensive to manufacture, and has wide adaptability to various aerosol items.
  • FIGURE 1 is a front elevation of a timing device illustrative of the present invention shown in operative engagement with an aerosol container.
  • FIGURE 2 is a partially broken partially cut away side view of the aerosol container and timer shown in FIG. 1.
  • FIGURE 3 is a top view of the timer shown in FIG- URES l and 2 with the cap thereof removed.
  • FIGURE 4 is an exploded perspective partially diagrammatic view illustrating the power train and timing device of the subject timer mechanism.
  • FIGURE 5 is a diagrammatic view of the electrical circuit of the subject timer.
  • FIGURE 6 is a front elevation of the plunger employed as the principal timing element along with an end view immediately adjacent thereto.
  • FIGURE -7 is a perspective view of the operator assembly which is activated by the power train shown diagrammatically in FIGURE 4.
  • FIGURE 8 is a top view of the operator in reduced scale.
  • FIGURE 9 is a side view of the operator shown in perspective in FIGURE 7 and in top view in FIGURE 8.
  • the device and method for dispensing measured amounts of aerosol type products is shown in its exterior View in FIGURE 1.
  • the timer assembly 10 consists of a housing 11 (preferably molded from plastic) which tapers downwardly to a snapon ring or neck 12 at one end.
  • the aerosol container 14 has a containerlid lip -15 at its upper portion which is engaged by the snap ring shoulder 16 thereby securing the container 14 and timer assembly 10 together as an integral one piece unit. While the assembly has been shown with the aerosol container at the bottom, the container to sit on a shelf or other fiat surface, for those aerosol containers which are adapted to operate in the inverted position, it will be readily apparent that the entire unit as illustrated in FIGURE 1 can be inverted end for end.
  • the dispenser nozzle '18 conventionally fits within the dispenser valve actuator 19 of the aerosol container 14.
  • the dispenser valve actuator 19 is engaged by a dispensing head contact 50 which, according to the timing cycle, is periodically depressed in order to discharge a metered amount of aerosol product.
  • a relief port or opening 17 is provided in the snapon ring permitting the aerosol product to escape into the atmosphere.
  • the operator assembly of which the dispensing head contact 50 is but a part is driven by means of the motor 29.
  • the motor is a small 3-volt DC. motor which is driven by 1 /2 volt flashlight type batteries Zl.
  • the motor 20 drives a drive shaft 22 which in turn is coupled to the gearhea-d 24.
  • the gearhead 24 is a cluster of gears with a 750:1 reduction.
  • a cam drive shaft 26 is coupled to the gearhead assembly 24 and scribed in greater detail hereinafter, the cam 25 drives the operator assembly 40 which, in turn, depresses dispensing head contact 50 and operates the dispenser valve actuator 19.
  • the timed relationship of activating the timer and the aerosol dispenser is achieved by the use of switch plate 29 in combination With the timer 30.
  • switch plate supports 28 extend from the cam 25 and are coupled to the switch plate 29.
  • the timer assembly 30 includes a cylindrical body or tube 35 with an interiorly positioned plunger 31.
  • the plunger 31 has a cylindrical body portion and a tapered contact 34 at each end.
  • the tube 35 is preferably fabricated from aluminum with an interior diameter approximating A of an inCh with a tolerance of plus or minus inch.
  • a precision glass bore for more accurate timing may also be employed with an interior tolerance of plus or screw machine part from free machining brass.
  • the plunger 31 is normally formed as a The tolerance on the diameter is 110002, and for best electrical contact reliability it may be silver plated.
  • the tube cap assembly 36 closes each end of the tube 35 with the plunger 31 in a fluid suspension.
  • the tube cap assemblies 36 each contain tube cap contacts 38 which are positioned to flank the tapered contact 34 portion of the plunger 31 when the plunger settles to one end or the other of the tube 35. These contacts are best formed of a beryllium copper material.
  • the tube cap contacts 38 continue through the tube cap assemblies 36 and emerge as the lead wire contacts 39.
  • the lead wires serve the two-fold purpose of conducting the current through the circuit whichis closed when the tapered contact 34 contacts the tube cap contacts 38, as well as physically securing the timer assembly 30 to the switch plate 29.
  • the dotted lines in FIGURE 4 illustrates how the lead wire contacts both electrically and physically engage the switch plate.
  • the plunger 31 proceeds down the tube at a rate of speed which is a function of the tolerance between the diameter of the plunger 31 and the interior diameter of the tube 35 and the viscosity of the liquid.
  • a viscosity of 5,000 centipoises of the 200 fluid is acceptable, and a viscosity of 100,000 centipoises is desirable for longer periods between activation.
  • the timing accuracy of the device will depend a good deal on the tolerances of the tube, plunger, and temperatureviscosity relationship of the liquid used.
  • the Dow Corning silicone fluid 200 series shows less change in vicosity with changes in temperature than most known fluids, and accordingly is referred to here as a very acceptable commercial application.
  • the actual timing is arrived at by experimentation utilizing the various variables referred to above. Careful testing indicates, however, that the cyclic rate can be timed within i% with an aluminum tube having an interior diameter of A of inch and tolerance to :001 of an inch.
  • FIGURES 7 through 9 The precise configuration of the operator assembly 40 is best illustrated in FIGURES 7 through 9.
  • a roller 41 or cam follower is mounted to a roller support plate 42.
  • a pair of bent over ears 43 which engage the roller support legs 44.
  • the roller support legs 44 are actually formed of a single piece of bent wire reversely folded at their upper ends, and tapering at the lower portion to a flat horizontal member which is coupled to the base plate 45 by means of the base plate clamp 47.
  • the spring arms 46 are also formed of a continuous piece of spring wire and their horizontal straight members are secured by the base plate clamps 47 so that the coil spring portion 48 is immediately beneath the spring arms 46.
  • the spring arms 46 terminate in anchor tongs 49 at their upper portion which engage the operator abutment (see FIG. 3) specially formed in the housing 11 to secure the operator assembly 40 in position.
  • the dispensing head contact 50 which extends from the lower portion of the base plate 45, as discussed earlier, contacts the dispenser valve actuator 19 in the manner shown in FIGURES 1 and 2.
  • the electrical circuit is shown in FIGURE 5, and relates, of course, to the switch plate construction as shown in FIGURES 4 and 5. It will be observed that the entire circuit 52 is so designed as to reduce the wiring to a minimum.
  • a constant contact 54 and intermittent contact 55 are provided on a contact arm assembly 59 (see FIG. 2) and are positioned to yieldably and slideably engage the constant energized ring 56 and the intermittent plates 58 respectively. Ring 56 and plates 58 are positioned on the switch plate 29 by those techniques well known in the field of printed circuitry. It will be observed (again in FIG. 2) that the contact arm 59 is secured to a contact arm support 60 conveniently molded into the housing 11 for that purpose.
  • a connection is made between the intermittent contact 55 and one terminal of the battery 21 by means of conductor 61.
  • Conductor 62 connects the other terminal of battery 21 to one terminal on the motor 20, while conductor 64 connects the other terminal of motor 20 to constant contact 54. It will be appreciated that, in this manner, the circuit is closed to energize the motor when both the constant contact 54 and intermittent contact 55 are positioned on the switch plate constant ring 56, and is open to deenergize the motor when intermittent contact 55 is in contact with one of the diametrically opposed intermittent plates 58 and tapered contacts 34 are open. It will be observed that the intermittent plates 58 are separated by a gap from the constant energized ring 56 so that the motor 20 is deenergized each time the switch plate 29 rotates until tube cap contacts 38 are closed by plunger 31.
  • the constant contact 54 and intermittent contact 55 both are in contact with the constant ring 56 and therefore the circuit will remain closed until the 180 reversal of the switch plate occurs which simultaneously brings about a 180 reversal of the timer assembly 30.
  • the plunger 31 is again at the top of the tube 35, and the cycle is repeated as the plunger steadily moves downward through the fluid inside the tube.
  • plastic battery mounting cups 68 are molded in the housing 11 (see FIG. 3), and a battery spring 66 is provided in the housing top 65 to perform the twofold function of holding the batteries 21 in place within the battery mounting cups 68, and to complete the series connection between the batteries.
  • Suitable housing top 65 release means are provided so that the batteries can be replaced readily when they require service.
  • the device is intended for use primarily with a meter type discharge, it is primarily fail safe. If the batteries should run out, irrespective of the position of the cam 25 and the timer assembly 30, just one metered charge of aerosol suspension will be discharged. In addition, if the device should fall on its side, the plunger 31 'will not move readily in one direction or the other, and
  • the subject device in its battery operated form, can be employed for the operation of a fog horn on boats or prominent land locations.
  • the timer can be used to signal the discharge of shells or other noise'making devices to frighten birds off of various locations on an airport. The same may also be taken in orchards during that season of the year when the fruit is ripe to frighten birds away from the fruit.
  • the method employed in the timing contemplates the utilization of a plunger type time delay device which is coordinated with an electrical circuit and operator to require power only at that time when the short term function or operation is required. During the balance of the cycle there is no energy consumed from the batteries, the total energy expended being the potential energy of the plunger being converted into a minute amount of kinetic energy while it moves down through the fluid in the tube.
  • the lift on the cam 25 to bring the cam follower up to the top of the lobe 27 is quite gradual, preferably in the form of an archimedes spiral so that a constant mechanical adtage is employed, thereby maintaining a constant loading against the effort of the coil springs on the operator assembly, and not overloading the batteries at any portion of the 180 reversal of the switch plate.
  • the method of intermittently dispensing an aerosol product comprising the steps of connecting an aerosol dispenser to an operator, connecting a gravity type switch to the operator, and connecting a battery-motor to the gravity switch and operator, energizing the motor responsive to the cycling of the gravity switch and deenergizing the same upon the completion of the cycle, and linking the gravity switch and the operator so that the operator dispenses the aerosol product only when the battery-motor is energized.
  • the method of intermittently dispensing an aerosol product comprising the steps of selecting a container with a meter valve, connecting the aerosol container to an operator, coupling the operator to a cam-switch, connecting a gravity type switch to the cam-switch, and connecting a battery-motor to the cam-switch and operator, energizing the motor responsive to the cycling of the gravity switch and deenergizing the same upon the completion of the cycle, and linking the gravity-switch and the cam-switch so that the cam-switch activates the operator to dispense the aerosol product only when the batterymotor is energized.
  • An intermittent power demand timer comprising, in combination, a fluid filled tube, a plunger within the tube adapted to migrate from one end of the tube to the other by gravity, electrical contacts at each end of the tube adapted for engagement with the plunger to close a circuit, drive means coupled to the tube to reverse the same end for end, a power source for energizing the drive means, circuit connections including the electrical contacts connecting the power source and the drive means for energizing the drive means when the plunger closes the circuit, and switch means operated upon rotation of the tube for energizing the drive means to reverse the tube end for end before disconnecting the power supply to await the subsequent cyclic gravity inspired migration of the plunger.
  • An intermittent power demand timer comprising, in combination, gravity switch means adapted to close a circuit after a period of time when reversed end for end, drive means coupled to the gravity switch to reverse the same end for end, a power source for energizing the drive means, circuit connections including the gravity switch means connecting the power source and the drive means for energizing the drive means when the circuit is closed by the gravity switch means, and switch means operated upon rotation of the gravity switch means for energizing the drive means to reverse the gravityswitch means end for end before disconnecting the power source to await the subsequent operation of the gravity switch means.
  • An intermittent power demand timer as claimed in claim 4, wherein the switch means comprises a circular printed circuit, and contact means engaging the printed circuit to connect or disconnect the power source from the drive means.
  • An intermittent power demand timer as claimed in claim 4, including a cam connected to the tube, the cam being contoured to work an operator as the tube is rotated end for end.
  • An intermittent power demand timer comprising, in combination, a fluid filled tube, a plunger within the tube adapted to migrate from one end of the tube to the other by gravity, electrical contacts at each end of the tube adapted for engagement with the plunger to close a circuit, drive means coupled to the tube to reverse the same end for end, a power source coupled to said drive means for energizing the same, switch means comprising, a circular printed circuit board having a first conductive contact area and a pair of diametrically opposed second conductive areas interposed within said first conductive contact area and insulated therefrom, said switch means being coupled to and rotated by said drive means, circuit connections connecting one of said electrical contacts to said first and second conductive contact areas, respectively, and a pair of contacts in said coupling between said power source and said drive means and in contact with said switch means, said pair of contacts when in contact with said first conductive contact area closing said coupling between said power source and said drive means to energize said drive means and when one said pair of contacts is in contact with said first conductive area and the other
  • An aerosol dispensing timing device comprising, in combination, a housing adapted to engage an aerosol container, a dispensing head on the container, battery-motor means secured to the housing, operator means within the housing adapted to operatively engage the dispensing head, gravity activated timer means, switching cam means engaging the operator and timer means, and drive means coupling the battery-motor means with the switching cam means whereby the battery-motor inverts the gravity timer intermittently to recycle the same while the switching cam means simultaneously activates the operator to provide a predetermined interval between dispensing of the aerosol product.
  • An aerosol dispensing timing device comprising, in combination, a housing adapted to engage an aerosol container, a dispensing head, battery-motor means secured to the housing, operator means including a cam follower within the housing adapted to operatively engage the dispensing head, gravity activated timer means, switching means including a cam engaging the operator cam follower, and drive means coupling the battery-motor means with the switching cam means whereby the battery-motor inverts the gravity timer intermittently to recycle the same while simultaneously activating the operator to provide a predetermined dispensing of the aerosol product.
  • An aerosol dispensing timing device comprising, in combination, a housing adapted to engage an aerosol container, a dispensing head, battery-motor means secured to the housing, operator means within the housing adapted to operatively engage the dispensing head, tube and plunger timer means, switching cam means engaging the operator and timer means, and drive means coupling the battery-motor means with the switching cam means where by the battery-motor invents the plunger timer means intermittently to recycle the same while simultaneously activating the operator to provide a predetermined dispensing of the aerosol product.
  • the switching cam means is a circular member with a complementary cam, and a cam follower on the operator to engage the switching cam means.

Description

6, 1966 M. GOLDSHOLL ETAL 3,289,886
I TIMING DEVICE AND METHOD Filed Feb. 24, 1964 5 Sheets-Sheet 1 zazai a 8 iv 59 je'zaerczs mrc/fofls M (was 02%;:
Meg/5 1966 M. GOLDSHOLL ETAL 3,239,886
TIMING DEVICE AND METHOD Filed Feb. 24, 1964 5 Sheets-Sheet 2 za my 6, 1966 M. GOLDSHOLL ETAL 3,289,886
TIMING DEVICE AND METHOD Filed Feb. 24, 1964 I3 Sheets-Sheet 5 United States Patent 7 3,28,886 TIMING DEVICE AND METHOD Morton Goldsholl, 800 Kimballwood Lane, Highland Parkhlllh, and J ames E. Logan, 637 Brummel St., Evanston,
Filed Feb. 24, 1964, Ser. No. 346,603 11 Claims. (Cl. 222-1) The present invention relates a timer and method. Both the device and methodhave particularly valuable commercial application in the field of aerosol sprays.
Various aerosol dispensed type products have been developed for repelling moths, adding fragrance to a room, and serving as a deodorant for toilet facilities and the like. When the aerosol spray is to be used, the home owner or attendant must pick upthe container, and manually spray whatever measured amount is believed proper for the particular application. Quite obviously a cedar type spray, or a moth preventative spray which should be applied daily in a closet may be overlooked from time to time. If the home owner is away for several days, the treatment is not properly fulfilled. In outdoor toilet facilities and other areas where a deodorant is desired, the responsible person is often too busy to utilize the aerosol container at the appropriate times.
In view of the foregoing, it is one of the principal objects of the present invention to provide a timer and a method for dispensing, at regular intervals, a measured amount of the aerosol packaged substance for the particular application required. A related object of the invention looks to providing a timer and method for dispensing which is self contained, and which requires no outside source of electrical current for its operation.
A further and more detailed object of the present invention is to provide an aerosol dispensing timer which inherently has low internal friction. A related object is to provide such a timer in which the current drain on the self contained batteries is intermittent, and only caused at that time when the actual discharge of the aerosol spray occurs. Thus, for example, if a deodorant is to be discharged for ten seconds once every hour, there will only be a ten second current drain and no subsequent drain for a one hour period. In this manner the batteries which are employed will last from six months to a year in many applications.
Still another object of the present invention is -to provide a timer and method for dispensing aerosol type products which minimizes service-requirements, and is fail safe in operation due to a unique switching mechanism and inoperative condition when not properly positioned.
Another and related object of the present invention is to provide an aerosol timer which may be used on aerosol dispensing containers whether in the upright or the inverted position. Related to the foregoing object is a further object of providing an aerosol timer which is easy to mount, and permits virtually instantaneous replacement and refilling of the aerosol containers.
Still another object of the present invention looks to the provision of a timer for use on aerosol packaged sprays which is compact, inexpensive to manufacture, and has wide adaptability to various aerosol items.
Further objects and advantages of the subject invention will become apparent as the following description of an illustrative embodiment proceeds, taken in conjunction with the accompanying illustrative drawings in which:
FIGURE 1 is a front elevation of a timing device illustrative of the present invention shown in operative engagement with an aerosol container.
FIGURE 2 is a partially broken partially cut away side view of the aerosol container and timer shown in FIG. 1.
FIGURE 3 is a top view of the timer shown in FIG- URES l and 2 with the cap thereof removed.
3,289,886 Patented Dec. 6, 1966 FIGURE 4 is an exploded perspective partially diagrammatic view illustrating the power train and timing device of the subject timer mechanism.
FIGURE 5 is a diagrammatic view of the electrical circuit of the subject timer.
FIGURE 6 is a front elevation of the plunger employed as the principal timing element along with an end view immediately adjacent thereto.
FIGURE -7 is a perspective view of the operator assembly which is activated by the power train shown diagrammatically in FIGURE 4.
FIGURE 8 is a top view of the operator in reduced scale.
FIGURE 9 is a side view of the operator shown in perspective in FIGURE 7 and in top view in FIGURE 8.
The device and method for dispensing measured amounts of aerosol type products is shown in its exterior View in FIGURE 1. There it will be seen that the timer assembly 10 consists of a housing 11 (preferably molded from plastic) which tapers downwardly to a snapon ring or neck 12 at one end. The aerosol container 14 has a containerlid lip -15 at its upper portion which is engaged by the snap ring shoulder 16 thereby securing the container 14 and timer assembly 10 together as an integral one piece unit. While the assembly has been shown with the aerosol container at the bottom, the container to sit on a shelf or other fiat surface, for those aerosol containers which are adapted to operate in the inverted position, it will be readily apparent that the entire unit as illustrated in FIGURE 1 can be inverted end for end.
The dispenser nozzle '18 conventionally fits within the dispenser valve actuator 19 of the aerosol container 14.
' In this instance, as more clearly illustrated in FIGURE 2,
the dispenser valve actuator 19 is engaged by a dispensing head contact 50 which, according to the timing cycle, is periodically depressed in order to discharge a metered amount of aerosol product. As shown in FIGURE 1, a relief port or opening 17 is provided in the snapon ring permitting the aerosol product to escape into the atmosphere.
The operator assembly of which the dispensing head contact 50 is but a part is driven by means of the motor 29. Most desirably, the motor is a small 3-volt DC. motor which is driven by 1 /2 volt flashlight type batteries Zl. Referring now to FIGURE 4, it will be seen that the motor 20 drives a drive shaft 22 which in turn is coupled to the gearhea-d 24. The gearhead 24 is a cluster of gears with a 750:1 reduction. A cam drive shaft 26 is coupled to the gearhead assembly 24 and scribed in greater detail hereinafter, the cam 25 drives the operator assembly 40 which, in turn, depresses dispensing head contact 50 and operates the dispenser valve actuator 19.
The timed relationship of activating the timer and the aerosol dispenser is achieved by the use of switch plate 29 in combination With the timer 30. Again referring to FIGURE 4, it will be observed that switch plate supports 28 extend from the cam 25 and are coupled to the switch plate 29. The timer assembly 30 includes a cylindrical body or tube 35 with an interiorly positioned plunger 31. As will be observed in FIGURE 6, the plunger 31 has a cylindrical body portion and a tapered contact 34 at each end. The tube 35 is preferably fabricated from aluminum with an interior diameter approximating A of an inCh with a tolerance of plus or minus inch. A precision glass bore for more accurate timing may also be employed with an interior tolerance of plus or screw machine part from free machining brass.
3 minus .0002. The plunger 31 is normally formed as a The tolerance on the diameter is 110002, and for best electrical contact reliability it may be silver plated.
After suitable fluid (to be described hereinafter) is placed inside the tube 35, the tube cap assembly 36 closes each end of the tube 35 with the plunger 31 in a fluid suspension. The tube cap assemblies 36 each contain tube cap contacts 38 which are positioned to flank the tapered contact 34 portion of the plunger 31 when the plunger settles to one end or the other of the tube 35. These contacts are best formed of a beryllium copper material. The tube cap contacts 38 continue through the tube cap assemblies 36 and emerge as the lead wire contacts 39. The lead wires serve the two-fold purpose of conducting the current through the circuit whichis closed when the tapered contact 34 contacts the tube cap contacts 38, as well as physically securing the timer assembly 30 to the switch plate 29. The dotted lines in FIGURE 4 illustrates how the lead wire contacts both electrically and physically engage the switch plate.
In operation, by filling the timer assembly 30 with a viscous liquid such as a silicone base fluid, the Dow Corning 200 fluid being ideal for the purpose, the plunger 31 proceeds down the tube at a rate of speed which is a function of the tolerance between the diameter of the plunger 31 and the interior diameter of the tube 35 and the viscosity of the liquid. For a short cycle, a viscosity of 5,000 centipoises of the 200 fluid is acceptable, and a viscosity of 100,000 centipoises is desirable for longer periods between activation.
Various factors effect the time of the plunger descent. The length of time of the descent, and consequently the length of time between discharges, increases with an increase in the viscosity of the fluid. Conversely, the length of time between discharges decreases with an increasing gap area between the plunger and the tube. As the temperature decreases the time of the cycle increases, and vice versa due to the varying of the viscosity of the fluid. In addition the weight and configuration of the plunger 31 will also change the timing. For example if the specific gravity of the plunger 31 is increased, the time of the cycle will be shortened. It will be apparent that due to the various non-linear effects referred to above, the timing accuracy of the device will depend a good deal on the tolerances of the tube, plunger, and temperatureviscosity relationship of the liquid used. The Dow Corning silicone fluid 200 series shows less change in vicosity with changes in temperature than most known fluids, and accordingly is referred to here as a very acceptable commercial application. With a commercial device, the actual timing is arrived at by experimentation utilizing the various variables referred to above. Careful testing indicates, however, that the cyclic rate can be timed within i% with an aluminum tube having an interior diameter of A of inch and tolerance to :001 of an inch.
The precise configuration of the operator assembly 40 is best illustrated in FIGURES 7 through 9. There it will be seen that a roller 41 or cam follower is mounted to a roller support plate 42. At the flanking edges of the roller support plate 42 are a pair of bent over ears 43 which engage the roller support legs 44. The roller support legs 44 are actually formed of a single piece of bent wire reversely folded at their upper ends, and tapering at the lower portion to a flat horizontal member which is coupled to the base plate 45 by means of the base plate clamp 47. The spring arms 46 are also formed of a continuous piece of spring wire and their horizontal straight members are secured by the base plate clamps 47 so that the coil spring portion 48 is immediately beneath the spring arms 46. The spring arms 46 terminate in anchor tongs 49 at their upper portion which engage the operator abutment (see FIG. 3) specially formed in the housing 11 to secure the operator assembly 40 in position. The dispensing head contact 50 which extends from the lower portion of the base plate 45, as discussed earlier, contacts the dispenser valve actuator 19 in the manner shown in FIGURES 1 and 2.
The electrical circuit is shown in FIGURE 5, and relates, of course, to the switch plate construction as shown in FIGURES 4 and 5. It will be observed that the entire circuit 52 is so designed as to reduce the wiring to a minimum. A constant contact 54 and intermittent contact 55 are provided on a contact arm assembly 59 (see FIG. 2) and are positioned to yieldably and slideably engage the constant energized ring 56 and the intermittent plates 58 respectively. Ring 56 and plates 58 are positioned on the switch plate 29 by those techniques well known in the field of printed circuitry. It will be observed (again in FIG. 2) that the contact arm 59 is secured to a contact arm support 60 conveniently molded into the housing 11 for that purpose. A connection is made between the intermittent contact 55 and one terminal of the battery 21 by means of conductor 61. Conductor 62 connects the other terminal of battery 21 to one terminal on the motor 20, while conductor 64 connects the other terminal of motor 20 to constant contact 54. It will be appreciated that, in this manner, the circuit is closed to energize the motor when both the constant contact 54 and intermittent contact 55 are positioned on the switch plate constant ring 56, and is open to deenergize the motor when intermittent contact 55 is in contact with one of the diametrically opposed intermittent plates 58 and tapered contacts 34 are open. It will be observed that the intermittent plates 58 are separated by a gap from the constant energized ring 56 so that the motor 20 is deenergized each time the switch plate 29 rotates until tube cap contacts 38 are closed by plunger 31.
It is quite apparent from FIGURE 5 that as the plunger 31 moves downwardly through the timer assembly 30, and more particularly the tube 35, the tapered end portion 34 of the plunger 31 will become wedged between the tube cap contacts 38 and therefore complete the circuit in the lead wire contacts 39 immediately energizing the motor 20. As the motor 20 drives the cam plate 25 the cammed surface engages the roller 41 or cam follower and proceeds to move the operator assembly 40 until it is, through the action of the coil spring 48, permitted to lower the dispensing head contact 50 and dispense a metered charge of the aerosol product. Just as soon as the circuit is closed, and the switch plate 29 starts rotating, the constant contact 54 and intermittent contact 55 both are in contact with the constant ring 56 and therefore the circuit will remain closed until the 180 reversal of the switch plate occurs which simultaneously brings about a 180 reversal of the timer assembly 30. At the end of the cycle the plunger 31 is again at the top of the tube 35, and the cycle is repeated as the plunger steadily moves downward through the fluid inside the tube.
The details of the battery mounting are not shown except that plastic battery mounting cups 68 are molded in the housing 11 (see FIG. 3), and a battery spring 66 is provided in the housing top 65 to perform the twofold function of holding the batteries 21 in place within the battery mounting cups 68, and to complete the series connection between the batteries. Suitable housing top 65 release means are provided so that the batteries can be replaced readily when they require service.
Because the device is intended for use primarily with a meter type discharge, it is primarily fail safe. If the batteries should run out, irrespective of the position of the cam 25 and the timer assembly 30, just one metered charge of aerosol suspension will be discharged. In addition, if the device should fall on its side, the plunger 31 'will not move readily in one direction or the other, and
therefore will not activate the unit. It requires substantially the full weight of the plunger 31 to make an adequate contact between the tube cap contacts 38 in order to activate the unit, and accordingly any upsetting of the vertical or inverted position will render this contact impotent and the unit inoperative.
In review it will be observed that a unique'timing device, adaptable for various ,other remote timing operations apart from aerosol dispensing has been disclosed. For example, the subject device, in its battery operated form, can be employed for the operation of a fog horn on boats or prominent land locations. In addition the timer can be used to signal the discharge of shells or other noise'making devices to frighten birds off of various locations on an airport. The same may also be taken in orchards during that season of the year when the fruit is ripe to frighten birds away from the fruit.
The method employed in the timing contemplates the utilization of a plunger type time delay device which is coordinated with an electrical circuit and operator to require power only at that time when the short term function or operation is required. During the balance of the cycle there is no energy consumed from the batteries, the total energy expended being the potential energy of the plunger being converted into a minute amount of kinetic energy while it moves down through the fluid in the tube. It will also be observed that the lift on the cam 25 to bring the cam follower up to the top of the lobe 27 is quite gradual, preferably in the form of an archimedes spiral so that a constant mechanical adtage is employed, thereby maintaining a constant loading against the effort of the coil springs on the operator assembly, and not overloading the batteries at any portion of the 180 reversal of the switch plate.
Although particular embodiments of the invention have been shown and described in full here, there is no intention to thereby limit the invention to the details of such embodiments. On the contrary, the intention is to cover all modifications, alternatives, embodiments, usages and equivalents of a timer and method as fall within the spirit and scope of the invention, specification and the appended claims.
We claim:
1. The method of intermittently dispensing an aerosol product comprising the steps of connecting an aerosol dispenser to an operator, connecting a gravity type switch to the operator, and connecting a battery-motor to the gravity switch and operator, energizing the motor responsive to the cycling of the gravity switch and deenergizing the same upon the completion of the cycle, and linking the gravity switch and the operator so that the operator dispenses the aerosol product only when the battery-motor is energized.
2. The method of intermittently dispensing an aerosol product comprising the steps of selecting a container with a meter valve, connecting the aerosol container to an operator, coupling the operator to a cam-switch, connecting a gravity type switch to the cam-switch, and connecting a battery-motor to the cam-switch and operator, energizing the motor responsive to the cycling of the gravity switch and deenergizing the same upon the completion of the cycle, and linking the gravity-switch and the cam-switch so that the cam-switch activates the operator to dispense the aerosol product only when the batterymotor is energized.
3. An intermittent power demand timer comprising, in combination, a fluid filled tube, a plunger within the tube adapted to migrate from one end of the tube to the other by gravity, electrical contacts at each end of the tube adapted for engagement with the plunger to close a circuit, drive means coupled to the tube to reverse the same end for end, a power source for energizing the drive means, circuit connections including the electrical contacts connecting the power source and the drive means for energizing the drive means when the plunger closes the circuit, and switch means operated upon rotation of the tube for energizing the drive means to reverse the tube end for end before disconnecting the power supply to await the subsequent cyclic gravity inspired migration of the plunger.
4. An intermittent power demand timer comprising, in combination, gravity switch means adapted to close a circuit after a period of time when reversed end for end, drive means coupled to the gravity switch to reverse the same end for end, a power source for energizing the drive means, circuit connections including the gravity switch means connecting the power source and the drive means for energizing the drive means when the circuit is closed by the gravity switch means, and switch means operated upon rotation of the gravity switch means for energizing the drive means to reverse the gravityswitch means end for end before disconnecting the power source to await the subsequent operation of the gravity switch means.
5. An intermittent power demand timer, as claimed in claim 4, wherein the switch means comprises a circular printed circuit, and contact means engaging the printed circuit to connect or disconnect the power source from the drive means.
6. An intermittent power demand timer, as claimed in claim 4, including a cam connected to the tube, the cam being contoured to work an operator as the tube is rotated end for end.
7. An intermittent power demand timer comprising, in combination, a fluid filled tube, a plunger within the tube adapted to migrate from one end of the tube to the other by gravity, electrical contacts at each end of the tube adapted for engagement with the plunger to close a circuit, drive means coupled to the tube to reverse the same end for end, a power source coupled to said drive means for energizing the same, switch means comprising, a circular printed circuit board having a first conductive contact area and a pair of diametrically opposed second conductive areas interposed within said first conductive contact area and insulated therefrom, said switch means being coupled to and rotated by said drive means, circuit connections connecting one of said electrical contacts to said first and second conductive contact areas, respectively, and a pair of contacts in said coupling between said power source and said drive means and in contact with said switch means, said pair of contacts when in contact with said first conductive contact area closing said coupling between said power source and said drive means to energize said drive means and when one said pair of contacts is in contact with said first conductive area and the other one of said pair of contacts is in contact with said second conductive area opening said coupling to deenergize said drive means until said plunger migrates to the opposite end of said tube.
8. An aerosol dispensing timing device comprising, in combination, a housing adapted to engage an aerosol container, a dispensing head on the container, battery-motor means secured to the housing, operator means within the housing adapted to operatively engage the dispensing head, gravity activated timer means, switching cam means engaging the operator and timer means, and drive means coupling the battery-motor means with the switching cam means whereby the battery-motor inverts the gravity timer intermittently to recycle the same while the switching cam means simultaneously activates the operator to provide a predetermined interval between dispensing of the aerosol product.
9. An aerosol dispensing timing device comprising, in combination, a housing adapted to engage an aerosol container, a dispensing head, battery-motor means secured to the housing, operator means including a cam follower within the housing adapted to operatively engage the dispensing head, gravity activated timer means, switching means including a cam engaging the operator cam follower, and drive means coupling the battery-motor means with the switching cam means whereby the battery-motor inverts the gravity timer intermittently to recycle the same while simultaneously activating the operator to provide a predetermined dispensing of the aerosol product.
10. An aerosol dispensing timing device comprising, in combination, a housing adapted to engage an aerosol container, a dispensing head, battery-motor means secured to the housing, operator means within the housing adapted to operatively engage the dispensing head, tube and plunger timer means, switching cam means engaging the operator and timer means, and drive means coupling the battery-motor means with the switching cam means where by the battery-motor invents the plunger timer means intermittently to recycle the same while simultaneously activating the operator to provide a predetermined dispensing of the aerosol product.
11. The dispenser of claim 10 in which the switching cam means is a circular member with a complementary cam, and a cam follower on the operator to engage the switching cam means.
References Cited by the Examiner UNITED STATES PATENTS 1,815,729 7/1931 Armstrong et al 18533 2,928,573 3/1960 Edelstein 22270 2,937,789 5/1960 Tarna 222-1 2,967,643 1/1961 Edelstein et a1. 22270 3,001,672 9/1961 Wahl 222-1 3,171,245 3/1965 Breed 58144 M. HENSON WOOD, IR., Primary Examiner.
RAPHAEL M. LUPO, LOUIS J. DEMBO, ROBERT B.
REEVES, Examiners.
F. R. HANDREN, H. S. LANE, Assistant Examiners.

Claims (2)

1. THE METHOD OF INTERMITTENTLY DISPENSING AN AEROSOL PRODUCT COMPRISING THE STEPS OF CONNECTING AN AEROSOL DISPENSER TO AN OPERATOR, CONNECTING A GRAVITY TYPE SWITCH TO THE OPERATOR, AND CONNECTING A BATTERY-MOTOR TO THE GRAVITY SWITCH AND OPERTOR, ENERGIZING THE MOTOR RESPONSIVE TO THE CYCLING OF THE GRAVITY SWITCH AND DEENERGIZING THE SAME UPON THE COMPLETION OF THE CYCLE, AND LINKING THE GRAVITY SWITCH AND THE OPERATOR SO THAT THE OPERATOR DISPENSES THE AEROSOL PRODUCT ONLY WHEN THE BATTERY-MOTOR IS ENERGIZED
8. AN AEROSOL DISPENSING TIMING DEVICE COMPRISING, IN COMBINATION, A HOUSING ADAPTED TO ENGAGE AN AEROSOL CONTAINER, A DISPENSING HEAD ON THE CONTAINER, BATTERY-MOTOR MEANS SECURED TO THE HOUSING, OPERATOR MEANS WITHIN THE HOUSING ADAPTED TO OPERATIVELY ENGAGE THE DISPENING HEAD, GRAVITY ACTIVATED TIMER MEANS, SWITCHING CAM MEANS ENGAGING THE OPERATOR AND TIMER MEANS, AND DRIVE MEANS COUPLING THE BATTERY-MOTOR MEANS WITH THE SWITCHING CAM MEANS WHEREBY THE BATTERY-MOTOR INVERTS THE GRAVITY TIMER INTERMITTENTLY TO RECYCLE THE SAME WHILE THE SWITCHING CAM MEANS SIMULTANEOUSLY ACTIVATES THE OPERATOR TO PROVIDE A PREDETERMINED INTERVAL BETWEEN DISPENSING OF THE AEROSOL PRODUCT.
US346603A 1964-02-24 1964-02-24 Timing device and method Expired - Lifetime US3289886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US346603A US3289886A (en) 1964-02-24 1964-02-24 Timing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US346603A US3289886A (en) 1964-02-24 1964-02-24 Timing device and method

Publications (1)

Publication Number Publication Date
US3289886A true US3289886A (en) 1966-12-06

Family

ID=23360179

Family Applications (1)

Application Number Title Priority Date Filing Date
US346603A Expired - Lifetime US3289886A (en) 1964-02-24 1964-02-24 Timing device and method

Country Status (1)

Country Link
US (1) US3289886A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643836A (en) * 1969-12-18 1972-02-22 William Grayson Hunt Programmed timer device and dispensing apparatus incorporating same
US3647116A (en) * 1970-09-10 1972-03-07 Virginia Chemicals Inc Mounting bracket for periodically dispensing aerosol bombs
US3794216A (en) * 1973-02-22 1974-02-26 Spray A Matic Prod Inc Pressure powered aerosol timer
US4407585A (en) * 1981-12-11 1983-10-04 Hartford Louise D Scent-awake clock
US4645353A (en) * 1985-04-08 1987-02-24 Kavoussi James P Scent clock alarm device
US5046336A (en) * 1989-12-28 1991-09-10 Raytheon Company Battery powered dispenser
USD361375S (en) 1994-08-17 1995-08-15 Amrep, Inc. Aerosol dispensing cabinet
WO2000075046A1 (en) 1999-06-04 2000-12-14 Multi-Vet Ltd. Automatic aerosol dispenser
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
US20030132254A1 (en) * 2001-11-29 2003-07-17 Giangreco Guillermo Luis Automatic actuator for aerosol valves
WO2006114533A1 (en) * 2005-04-28 2006-11-02 Persee Medica Device for applying a fluid to an area to be treated, comprising a timing system
FR2885059A1 (en) * 2005-04-28 2006-11-03 Persee Medica Cold fluid e.g. hydrofluorocarbon, applying device for e.g. warts treatment, has fluid container housed in aerosol, and fluid release activation units coupled to timer controlling time length for which fluid is released via discharge nozzle
US20090254770A1 (en) * 2008-04-02 2009-10-08 Gene Sipinski Low voltage reset determination and operational flow modification for microprocessor-controlled devices
US7837065B2 (en) * 2004-10-12 2010-11-23 S.C. Johnson & Son, Inc. Compact spray device
US20110109174A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Electric generator
US20110109051A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Tunable pneumatic suspension
US20110109413A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Electric coil and method of manufacture
US20110108339A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Electric motor
US8061562B2 (en) 2004-10-12 2011-11-22 S.C. Johnson & Son, Inc. Compact spray device
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
US8459499B2 (en) 2009-10-26 2013-06-11 S.C. Johnson & Son, Inc. Dispensers and functional operation and timing control improvements for dispensers
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8766493B2 (en) 2011-07-01 2014-07-01 Nucleus Scientific, Inc. Magnetic stator assembly
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities
US10476360B2 (en) 2016-09-13 2019-11-12 Indigo Technologies, Inc. Axial flux motor having rotatably coupled coil stator assemblies and methods of using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1815729A (en) * 1927-10-20 1931-07-21 Joseph V Armstrong Winding mechanism
US2928573A (en) * 1958-02-25 1960-03-15 Syncro Mist Controls Inc Valve actuating assembly for metered spray atomizing devices
US2937789A (en) * 1953-10-16 1960-05-24 Ajax Magnethermic Corp Controlled metal dispensing
US2967643A (en) * 1958-02-25 1961-01-10 Syncro Mist Controls Inc Intermittent valve actuating assembly for atomizing devices
US3001672A (en) * 1958-07-01 1961-09-26 Eugene A Wahl Method and apparatus for powder feeding
US3171245A (en) * 1963-02-25 1965-03-02 Breed Corp Dashpot timer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1815729A (en) * 1927-10-20 1931-07-21 Joseph V Armstrong Winding mechanism
US2937789A (en) * 1953-10-16 1960-05-24 Ajax Magnethermic Corp Controlled metal dispensing
US2928573A (en) * 1958-02-25 1960-03-15 Syncro Mist Controls Inc Valve actuating assembly for metered spray atomizing devices
US2967643A (en) * 1958-02-25 1961-01-10 Syncro Mist Controls Inc Intermittent valve actuating assembly for atomizing devices
US3001672A (en) * 1958-07-01 1961-09-26 Eugene A Wahl Method and apparatus for powder feeding
US3171245A (en) * 1963-02-25 1965-03-02 Breed Corp Dashpot timer

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643836A (en) * 1969-12-18 1972-02-22 William Grayson Hunt Programmed timer device and dispensing apparatus incorporating same
US3647116A (en) * 1970-09-10 1972-03-07 Virginia Chemicals Inc Mounting bracket for periodically dispensing aerosol bombs
US3794216A (en) * 1973-02-22 1974-02-26 Spray A Matic Prod Inc Pressure powered aerosol timer
US4407585A (en) * 1981-12-11 1983-10-04 Hartford Louise D Scent-awake clock
US4645353A (en) * 1985-04-08 1987-02-24 Kavoussi James P Scent clock alarm device
US5046336A (en) * 1989-12-28 1991-09-10 Raytheon Company Battery powered dispenser
USD361375S (en) 1994-08-17 1995-08-15 Amrep, Inc. Aerosol dispensing cabinet
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
US6540155B1 (en) 1997-12-25 2003-04-01 Gotit Ltd. Automatic spray dispenser
WO2000075046A1 (en) 1999-06-04 2000-12-14 Multi-Vet Ltd. Automatic aerosol dispenser
US6216925B1 (en) 1999-06-04 2001-04-17 Multi-Vet Ltd. Automatic aerosol dispenser
US20030132254A1 (en) * 2001-11-29 2003-07-17 Giangreco Guillermo Luis Automatic actuator for aerosol valves
US8887954B2 (en) 2004-10-12 2014-11-18 S.C. Johnson & Son, Inc. Compact spray device
US8091734B2 (en) 2004-10-12 2012-01-10 S.C. Johnson & Son, Inc. Compact spray device
US10011419B2 (en) 2004-10-12 2018-07-03 S. C. Johnson & Son, Inc. Compact spray device
US7837065B2 (en) * 2004-10-12 2010-11-23 S.C. Johnson & Son, Inc. Compact spray device
US9457951B2 (en) 2004-10-12 2016-10-04 S. C. Johnson & Son, Inc. Compact spray device
US8678233B2 (en) 2004-10-12 2014-03-25 S.C. Johnson & Son, Inc. Compact spray device
US7954667B2 (en) 2004-10-12 2011-06-07 S.C. Johnson & Son, Inc. Compact spray device
US8342363B2 (en) 2004-10-12 2013-01-01 S.C. Johnson & Son, Inc. Compact spray device
US8061562B2 (en) 2004-10-12 2011-11-22 S.C. Johnson & Son, Inc. Compact spray device
FR2885540A1 (en) * 2005-04-28 2006-11-17 Persee Medica DEVICE FOR APPLYING A FLUID TO AN AREA TO BE TREATED COMPRISING A TIMER
WO2006114533A1 (en) * 2005-04-28 2006-11-02 Persee Medica Device for applying a fluid to an area to be treated, comprising a timing system
FR2885059A1 (en) * 2005-04-28 2006-11-03 Persee Medica Cold fluid e.g. hydrofluorocarbon, applying device for e.g. warts treatment, has fluid container housed in aerosol, and fluid release activation units coupled to timer controlling time length for which fluid is released via discharge nozzle
US8746504B2 (en) 2007-05-10 2014-06-10 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US9061821B2 (en) 2007-08-16 2015-06-23 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
US9089622B2 (en) 2008-03-24 2015-07-28 S.C. Johnson & Son, Inc. Volatile material dispenser
US20090254770A1 (en) * 2008-04-02 2009-10-08 Gene Sipinski Low voltage reset determination and operational flow modification for microprocessor-controlled devices
US8051282B2 (en) 2008-04-02 2011-11-01 S.C. Johnson & Son, Inc. Low voltage reset determination and operational flow modification for microprocessor-controlled devices
US8668115B2 (en) 2009-10-26 2014-03-11 S.C. Johnson & Son, Inc. Functional operation and timing control improvements for dispensers
US8459499B2 (en) 2009-10-26 2013-06-11 S.C. Johnson & Son, Inc. Dispensers and functional operation and timing control improvements for dispensers
US20110109413A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Electric coil and method of manufacture
US20110109174A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Electric generator
US8742633B2 (en) 2009-11-09 2014-06-03 Nucleus Scientific, Inc. Rotary drive with linear actuators having two degrees of linear movements
US8362660B2 (en) * 2009-11-09 2013-01-29 Nucleus Scientific, Inc. Electric generator
US8519575B2 (en) 2009-11-09 2013-08-27 Nucleus Scientific, Inc. Linear electric machine with linear-to-rotary converter
US20110109051A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Tunable pneumatic suspension
US8624699B2 (en) 2009-11-09 2014-01-07 Nucleus Scientific, Inc. Electric coil and method of manufacture
US8585062B2 (en) 2009-11-09 2013-11-19 Nucleus Scientific, Inc. Tunable pneumatic suspension
US9934904B2 (en) 2009-11-09 2018-04-03 Nucleus Scientific, Inc. Method and manufacturing an electric coil assembly
US20110108339A1 (en) * 2009-11-09 2011-05-12 Nucleus Scientific Electric motor
US8766493B2 (en) 2011-07-01 2014-07-01 Nucleus Scientific, Inc. Magnetic stator assembly
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities
US10476360B2 (en) 2016-09-13 2019-11-12 Indigo Technologies, Inc. Axial flux motor having rotatably coupled coil stator assemblies and methods of using same
US10483832B2 (en) 2016-09-13 2019-11-19 Indigo Technologies, Inc. Multi-bar linkage electric drive system
US10644578B2 (en) 2016-09-13 2020-05-05 Indigo Technologies, Inc. Guided multi-bar linkage electric drive system
US10938285B2 (en) 2016-09-13 2021-03-02 Indigo Technologies, Inc. Multi-bar linkage electric drive system
US11368076B2 (en) 2016-09-13 2022-06-21 Indigo Technologies, Inc. Multi-bar linkage electric drive system

Similar Documents

Publication Publication Date Title
US3289886A (en) Timing device and method
US3726437A (en) Aerosol spray dispenser
US4063664A (en) Device for indicating when automatic, periodic operation has emptied an aerosol container
US5105992A (en) Soapdispenser having a squeeze pump
US3739944A (en) Automatic periodically actuated spray dispenser
US3543122A (en) Automatic aerosol dispenser
US3719307A (en) Ice dispensing device
US3615041A (en) Periodically actuated aerosol dispenser
US3187949A (en) Spray dispenser for pressurized liquid having timer control
US5988440A (en) Soap dispenser
US4641692A (en) Beverage dispenser with automatic cup-filling control
US3351240A (en) Automatic aerosol dispenser
US3643836A (en) Programmed timer device and dispensing apparatus incorporating same
JPS63500357A (en) Methods and equipment for dispensing flowable materials
US3900007A (en) Automatic animal food dispenser
NO952420L (en) The portioning device
US3915207A (en) High-speed, automatic, powdered food and heated water dispenser
US2667990A (en) Dispensing mechanism with time controlled flow
US3599684A (en) Container-dispenser unit
US2725852A (en) Time operated fish feeding device
EP3356053B1 (en) All-purpose dispenser for spraying and funnelled dosing of liquids
WO1990012530A1 (en) Soap dispenser
US3839645A (en) Automatic liquid level control means
US2387359A (en) Soap dispenser
US2376944A (en) Paste or cream dispenser