US3284146A - Roller-bearing cages - Google Patents

Roller-bearing cages Download PDF

Info

Publication number
US3284146A
US3284146A US424383A US42438365A US3284146A US 3284146 A US3284146 A US 3284146A US 424383 A US424383 A US 424383A US 42438365 A US42438365 A US 42438365A US 3284146 A US3284146 A US 3284146A
Authority
US
United States
Prior art keywords
cage
sectors
roller
sector
pockets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US424383A
Inventor
John B Ripple
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US424383A priority Critical patent/US3284146A/en
Application granted granted Critical
Publication of US3284146A publication Critical patent/US3284146A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/50Cages for rollers or needles formed of interconnected members, e.g. chains
    • F16C33/508Cages for rollers or needles formed of interconnected members, e.g. chains formed of links having an H-shape, i.e. links with a single stay placed between two rollers and with two end portions extending along the end faces of the two rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4629Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from metal, e.g. cast or machined window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4664Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages with more than three parts, e.g. two end rings connected by individual stays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/50Cages for rollers or needles formed of interconnected members, e.g. chains
    • F16C33/502Cages for rollers or needles formed of interconnected members, e.g. chains formed of arcuate segments retaining one or more rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/91Powders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof
    • Y10T29/49691Cage making

Definitions

  • This invention relates to a new method of manufacturing a roller-bearing cage and the cage so manufactured.
  • a roller-bearing cage comprises an outer rim, an inner rim and webs connecting the two.
  • the inner rim is formed with an inner-bore flange.
  • the webs divide the space between the two rims into pockets. The shape of these pockets depends upon the shape of the roller bearingthat is, whether it is cylindrical, barrel shaped or tapered.
  • the cage is made from sectors molded from powdered metal which may be steel, brass, aluminum, etc. These sectors are then adhered to one another, as by welding, or by the use of an adhesive, such as an epoxy resin, etc. All of the sectors are preferably identical.
  • Each sector includes a portion of the inner rim, a portion of the outer rim, and at least one complete web, whether the web be in one piece or in two parts, as will be explained in what follows.
  • the number of sectors is at least equal to the number of pockets. Generally the parts of each sector will be only those required to form one complete pocket, and this is particularly true in the application of the invention to the manufacture of larger cages.
  • a sector may include two or more pockets, and this is particularly true if the sectors are small. In no case will a sector be larger than a 90'- degree section of the cage.
  • the cage is built up from sectors each of which is formed in a mold in which the ram pressure is applied over the whole inner or outer face of each sector. This avoids transmitting the pressure from one portion of the product to another through a web or other restricted area which interferes with the free flow of the metal powder.
  • the cage is made in sectors, each of which constitutes such a small portion of the inner or outer surface of the entire cage that during the molding operation it readily retains the metal powder distributed over the mold surface with sufficient uniformity to produce a cage sector of uniform density. If the cage is a large cage, for instance a cage inches in diameter, the molded sectors may measure up to several inches across.
  • each sector should not measure more than a fraction of an inch across.
  • a cage measuring 15 inches in diameter may be made by welding many sectors together, and a cage measuring only 3 inches in diameter may be made up of only a relatively few sectors. The foregoing is only illustrative, but explains why it is possible to manufacture bearing cages from powdered metal sectors which are subsequently united, whereas it is impossible to compress a complete cage from powdered metal.
  • the side edges of the roller pockets be radial, and in cages made according to this invention, only some may be radial. If the sector comprises a sufiiciently large fraction of an entire cage it may be impossible to make all of the side edges radial. Some may be radial, with others not radial because the ram which applies pressure to the powder in the mold must reciprocate vertically against the mold contents and the finished product must be separated vertically from the mold. It is possible to design such molds with the sides of all of the openings tapered at the same anglebut not radial. The top and bottom edges may be radial.
  • FIGURE 1 is a flow sheet which illustrates the usual steps of the process
  • FIGURE 2 is a vertical section of a mold, containing powdered metal, with the ram raised;
  • FIGURE 3 illustrates the same, but after the ram has been lowered
  • FIGURE 4 is a plan View of the mold
  • FIGURE 5 is a view in perspective of a usual form of sector
  • FIGURE 6 shows a portion of a completed bearing formed from such sectors, broken away to show the various parts of the bearing in cross section;
  • FIGURE 7 is a perspective view of a sector which embraces two pockets.
  • the sectors are molded from powdered metal.
  • the edges of the sectors may be perpendicular, beveled or stepped.
  • the edges of adjacent sectors, which are tobe united, are complementary to one another. They may touch before welding, or they may be spaced a short distance from one another-the space being filled with metal used for welding them together.
  • the sectors may be small and thin, for a cage that measures no more than a few inches across, and in this cage it may be desirable to provide a number of pockets in each sector. However, the size of the cage is unimportant and it may measure fifteen or twenty inches or more across.
  • edges which are to be welded together usually abut one another or they may be slightly spaced. It is the edges of the sectors for larger cages, which are relatively thick, which are stepped or beveled.
  • the cages of thinner material may be shaped after the sectors are united, but thicker sectors must be carefully placed before welding, and the resulting cage will not thereafter be shaped.
  • a fixture suitable for this purpose is shown in my copending application Serial No. 394,793 filed September 8, 1964. That application is hereby incorporated as a part of this dis-closure by this reference thereto. Unwanted excess metal formed by welding will be removed in any suitable manner.
  • FIGURE 1 is a flow sheet which represents the usual steps involved in molding sectors and welding these into a bearing cage. The sintering and sizing of the metal may be repeated several times, particularly to prevent brittleness.
  • the molding operation is usual.
  • the mold of FIG- URES 24 is of the type generally used for sectors of smaller bearings.
  • the cavity 10 for the web is provided with a kink at 11 which is straightened out when pressure is applied to the cone-roll-cage assembly to force the roller into place.
  • the upper part of the mold is provided with openings 12 and 13 to apply pressure to the inner and outer rims as well as the web. Pressure is applied by the ram 15, and FIGURE 3 shows the ram in contact with the pressed metal.
  • FIGURE 5 illustrates a sector such as is commonly used for a larger cage.
  • the web 20 is perfectly straight, being angled to facilitate molding and withdrawal from the mold.
  • the ends of the rims are shown stepped, in dotted lines to indicate how complementary ends can be formed for subsequent overlapping and spot welding.
  • the sector includes a portion of the outer rim 22, a portion of the inner rim 23, and the web 20.
  • the inner rim includes the inner-bore flange 24.
  • the sector of the outer rim is, of course, somewhat longer than the sector of the inner rim because the outer rim is of larger diameter. Any desired number of such sectors are welded together along the lines (FIGURE 6) to form the complete cage.
  • a r-oller 30 (FIGURE 6) is inserted in each of the pockets 31 and the cage, rollers and cone are assembled together.
  • the cone and cup are identified as 33 and 34.
  • cages especially the larger cages
  • forgings it is common practice to make cages by machining castings or forgings. It is also common practice to make cages by cupping a sheet of metal, stamping out the bottom of the cup, and cutting openings for the rollers.
  • the method of the present invention requires little or no machining and no scra is formed except the dust that may be formed by machining imperfections away, and this may be reused.
  • a suitable fixture will ordinarily be employed and the welding or adhesive treatment may be carried out in any desired manner.
  • FIGURE 6 are designed for a tapered roller, it is to be understood that the pockets may 'be of any shape, depending upon the shape of the roller.
  • each sector may comprise one or more complete pockets. Then the web portions may be welded together.
  • FIGURE 7 illustrates a sector which comprises two complete pockets. It is noted that the outside webs 40 and 41 are each only about half as wide as the center web 42. This is so that when such portions of adjacent sectors are welded together the web that is formed will be only as wide as web 42.
  • the cage of a roller bearing is not subjected to any substantial strain; however, the cages formed according to this invention are strong and will last as long as cages produced in the usual manner when subjected to comparable wear.
  • An annular roller-hearing cage which comprises spaced rims with interconnecting webs which are generally axial, the rims and webs defining pockets for rollers, the cage being composed of sectors adhered to one another circumferentially side by side, each sector being molded from powdered metal, the number of sectors being no more than the number of pockets in the cage, and the cage comprising at least four such sectors.
  • An annular roller-bearing cage of claim 1 in which the number of sectors is equal to the number of pockets in the cage.
  • An annular roller-bearing cage of claim 1 composed of sectors adhered to one another at the rims only.
  • An annular roller-bearing cage of claim 1 formed of sectors adhered to one another through the length of at least some of the webs between the edges thereof, the lines of adhrence which extend through the Webs continuing through the rims.

Description

Nov. 8, 1966 J. B. RIPPLE 3,
ROLLER-BEARING CAGES Filed Jan. 8, 1965 2 Sheets-Sheet l FORMlNG SECTORS OF BEARING CAGE FROM POWDERED METAL FIG. 3
Y SINTERING i '1 SIZING gi WELDING PLURALITY OF SUCH SECTORS INTO BEARING CAGE FIG. I
km HHMI FIG. 4
INVENTOR. JOHN B. RIPPLE BY awe/1M ATTO R N EY FIG. 2
Nov. 8, 1966 J. B. RIPPLE 3,284,146
ROLLER-BEARING CAGES Filed Jan. 8, 1965 2 Sheets-Sheet 2 INVENTOR JOHN B. RIPPLE FIG. 7 BY GM 6. MM
ATTORNEY United States Patent 3,284,146 ROLLER-BEARING CAGES John B. Ripple, 229 Lake Ave. NE., Massillon, Ohio Filed Jan. 8, 1965, Ser. No. 424,383 4 Claims. (Cl. 308-417) This application is a continuation-in-part of my application Serial No. 198,814 filed May 31, 1962 (aban doned).
This invention relates to a new method of manufacturing a roller-bearing cage and the cage so manufactured.
A roller-bearing cage comprises an outer rim, an inner rim and webs connecting the two. The inner rim is formed with an inner-bore flange. The webs divide the space between the two rims into pockets. The shape of these pockets depends upon the shape of the roller bearingthat is, whether it is cylindrical, barrel shaped or tapered.
According to this invention the cage is made from sectors molded from powdered metal which may be steel, brass, aluminum, etc. These sectors are then adhered to one another, as by welding, or by the use of an adhesive, such as an epoxy resin, etc. All of the sectors are preferably identical. Each sector includes a portion of the inner rim, a portion of the outer rim, and at least one complete web, whether the web be in one piece or in two parts, as will be explained in what follows. The number of sectors is at least equal to the number of pockets. Generally the parts of each sector will be only those required to form one complete pocket, and this is particularly true in the application of the invention to the manufacture of larger cages. A sector may include two or more pockets, and this is particularly true if the sectors are small. In no case will a sector be larger than a 90'- degree section of the cage.
It is not possible to make a complete roller-bearing cage from powdered metal in a single operation. The difiiculty is that in a compacting die in which pressure would be applied to the ends of the web, the powder would not completely fill the web and be uniformly compressed throughout the web. As a result, the density of the molded part would vary too much to yield a uniformly strong product.
This is overcome by the present procedure in which the cage is built up from sectors each of which is formed in a mold in which the ram pressure is applied over the whole inner or outer face of each sector. This avoids transmitting the pressure from one portion of the product to another through a web or other restricted area which interferes with the free flow of the metal powder. Thus, the cage is made in sectors, each of which constitutes such a small portion of the inner or outer surface of the entire cage that during the molding operation it readily retains the metal powder distributed over the mold surface with sufficient uniformity to produce a cage sector of uniform density. If the cage is a large cage, for instance a cage inches in diameter, the molded sectors may measure up to several inches across. On the other hand, if the cage measures only 3 inches in diameter, the curvature is so great that each sector should not measure more than a fraction of an inch across. To illustrate: A cage measuring 15 inches in diameter may be made by welding many sectors together, and a cage measuring only 3 inches in diameter may be made up of only a relatively few sectors. The foregoing is only illustrative, but explains why it is possible to manufacture bearing cages from powdered metal sectors which are subsequently united, whereas it is impossible to compress a complete cage from powdered metal.
It is not necessary that the side edges of the roller pockets be radial, and in cages made according to this invention, only some may be radial. If the sector comprises a sufiiciently large fraction of an entire cage it may be impossible to make all of the side edges radial. Some may be radial, with others not radial because the ram which applies pressure to the powder in the mold must reciprocate vertically against the mold contents and the finished product must be separated vertically from the mold. It is possible to design such molds with the sides of all of the openings tapered at the same anglebut not radial. The top and bottom edges may be radial.
Thus, there will always be at least four sectors which are fastened together to form the cage and there may be as many as twenty or thirty or more, depending upon the number of pockets and whether each sector includes more than one pocket.
The invention is further described in connection with the accompanying drawings, in which FIGURE 1 is a flow sheet which illustrates the usual steps of the process;
FIGURE 2 is a vertical section of a mold, containing powdered metal, with the ram raised;
FIGURE 3 illustrates the same, but after the ram has been lowered;
FIGURE 4 is a plan View of the mold;
FIGURE 5 is a view in perspective of a usual form of sector;
FIGURE 6 shows a portion of a completed bearing formed from such sectors, broken away to show the various parts of the bearing in cross section; and
FIGURE 7 is a perspective view of a sector which embraces two pockets.
The sectors are molded from powdered metal. The edges of the sectors may be perpendicular, beveled or stepped. The edges of adjacent sectors, which are tobe united, are complementary to one another. They may touch before welding, or they may be spaced a short distance from one another-the space being filled with metal used for welding them together.
The sectors may be small and thin, for a cage that measures no more than a few inches across, and in this cage it may be desirable to provide a number of pockets in each sector. However, the size of the cage is unimportant and it may measure fifteen or twenty inches or more across.
In the manufacture of the thiner cages, the edges which are to be welded together usually abut one another or they may be slightly spaced. It is the edges of the sectors for larger cages, which are relatively thick, which are stepped or beveled.
The cages of thinner material may be shaped after the sectors are united, but thicker sectors must be carefully placed before welding, and the resulting cage will not thereafter be shaped. A fixture suitable for this purpose is shown in my copending application Serial No. 394,793 filed September 8, 1964. That application is hereby incorporated as a part of this dis-closure by this reference thereto. Unwanted excess metal formed by welding will be removed in any suitable manner.
FIGURE 1 is a flow sheet which represents the usual steps involved in molding sectors and welding these into a bearing cage. The sintering and sizing of the metal may be repeated several times, particularly to prevent brittleness.
The molding operation is usual. The mold of FIG- URES 24 is of the type generally used for sectors of smaller bearings. The cavity 10 for the web is provided with a kink at 11 which is straightened out when pressure is applied to the cone-roll-cage assembly to force the roller into place. The upper part of the mold is provided with openings 12 and 13 to apply pressure to the inner and outer rims as well as the web. Pressure is applied by the ram 15, and FIGURE 3 shows the ram in contact with the pressed metal.
FIGURE 5 illustrates a sector such as is commonly used for a larger cage. The web 20 is perfectly straight, being angled to facilitate molding and withdrawal from the mold. The ends of the rims are shown stepped, in dotted lines to indicate how complementary ends can be formed for subsequent overlapping and spot welding.
The sector includes a portion of the outer rim 22, a portion of the inner rim 23, and the web 20. The inner rim includes the inner-bore flange 24. The sector of the outer rim is, of course, somewhat longer than the sector of the inner rim because the outer rim is of larger diameter. Any desired number of such sectors are welded together along the lines (FIGURE 6) to form the complete cage. A r-oller 30 (FIGURE 6) is inserted in each of the pockets 31 and the cage, rollers and cone are assembled together. The cone and cup are identified as 33 and 34.
At present, it is common practice to make cages, especially the larger cages, by machining castings or forgings. It is also common practice to make cages by cupping a sheet of metal, stamping out the bottom of the cup, and cutting openings for the rollers. The method of the present invention requires little or no machining and no scra is formed except the dust that may be formed by machining imperfections away, and this may be reused. In assembling the sectors, a suitable fixture will ordinarily be employed and the welding or adhesive treatment may be carried out in any desired manner.
Although the pockets in FIGURE 6 are designed for a tapered roller, it is to be understood that the pockets may 'be of any shape, depending upon the shape of the roller.
It is to be noted that all of the sectors -in FIGURE 2 are identical. It is not necessary that they be identical, although this simplifies their manufacture. The sectors are shown as symmetrical, but the web of each sector need not be joined to the rim sectors at this midpoints.
Alternatively, each sector may comprise one or more complete pockets. Then the web portions may be welded together. FIGURE 7 illustrates a sector which comprises two complete pockets. It is noted that the outside webs 40 and 41 are each only about half as wide as the center web 42. This is so that when such portions of adjacent sectors are welded together the web that is formed will be only as wide as web 42.
The cage of a roller bearing is not subjected to any substantial strain; however, the cages formed according to this invention are strong and will last as long as cages produced in the usual manner when subjected to comparable wear.
The invention is defined in the claims which follow.
What I claim is:
1. An annular roller-hearing cage which comprises spaced rims with interconnecting webs which are generally axial, the rims and webs defining pockets for rollers, the cage being composed of sectors adhered to one another circumferentially side by side, each sector being molded from powdered metal, the number of sectors being no more than the number of pockets in the cage, and the cage comprising at least four such sectors.
2. An annular roller-bearing cage of claim 1 in which the number of sectors is equal to the number of pockets in the cage.
3. An annular roller-bearing cage of claim 1 composed of sectors adhered to one another at the rims only.
4. An annular roller-bearing cage of claim 1 formed of sectors adhered to one another through the length of at least some of the webs between the edges thereof, the lines of adhrence which extend through the Webs continuing through the rims.
References Cited by the Examiner UNITED STATES PATENTS 2,038,010 4/1936 Smith.
2,534,379 12/1950 Schreiber 308-217 2,566,421 9/1951 La Pointe 308-235 X 2,569,531 10/1951 Kunzog.
2,591,160 4/1952 Kilian 29-1484 2,706,693 4/1955 Haller 29-1495 2,725,265 11/1955 Daniels et al. 29-1495 3,004,809 10/1961 Bratt 308-235 X 3,199,935 8/1965 Pitner 308-217 DAVID J. WILLIAMOWSKY, Primary Examiner.
FRANK SUSKO, Examiner.

Claims (1)

1. AN ANNULAR ROLLER-BEARING CAGE WHICH COMPRISES SPACED RIMS WITH INTERCONNECTING WEBS WHICH ARE GENERALLY AXIAL, THE RIMS AND WEBS DEFINING POCKETS FOR ROLLERS, THE CAGE BEING COMPOSED OF SECTORS ADHERED TO ONE ANOTHER CIRCUMFERENTIALLY SIDE BY SIDE, EACH SECTOR BEING MOLDED FROM POWDERED METAL, THE NUMBER OF SECTORS BEING NOR MORE THAN THE NUMBER OF POCKETS IN THE CAGE, AND THE CAGE COMPRISING AT LEAST FOUR SUCH SECTORS.
US424383A 1965-01-08 1965-01-08 Roller-bearing cages Expired - Lifetime US3284146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US424383A US3284146A (en) 1965-01-08 1965-01-08 Roller-bearing cages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US424383A US3284146A (en) 1965-01-08 1965-01-08 Roller-bearing cages

Publications (1)

Publication Number Publication Date
US3284146A true US3284146A (en) 1966-11-08

Family

ID=23682433

Family Applications (1)

Application Number Title Priority Date Filing Date
US424383A Expired - Lifetime US3284146A (en) 1965-01-08 1965-01-08 Roller-bearing cages

Country Status (1)

Country Link
US (1) US3284146A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164063A (en) * 1978-02-23 1979-08-14 General Motors Corporation Process for making bearing locking collar
WO2009056310A2 (en) * 2007-11-02 2009-05-07 Ab Skf Rolling bearing cage formed of a plurality of interconnected sector elements and web elements
EP2213893A1 (en) * 2009-01-30 2010-08-04 Aktiebolaget SKF Roller bearing cage made of a plurality of parts
US8926190B2 (en) 2010-12-27 2015-01-06 The Timken Company Segmented bearing retainer
US9039289B2 (en) 2012-06-01 2015-05-26 The Timken Company Segmented bearing retainer
EP3153728A1 (en) * 2015-10-08 2017-04-12 Nakanishi Metal Works Co., Ltd. Outer ring guided resin cage, injection molding die, and method for manufacturing outer ring guided resin cage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038010A (en) * 1934-11-20 1936-04-21 Fed Bearings Co Inc Ball bearing
US2534379A (en) * 1945-10-01 1950-12-19 John H Schreiber Bearing
US2566421A (en) * 1948-11-23 1951-09-04 Donald H Lapointe Antifriction bearing-retaining strip
US2569531A (en) * 1947-02-04 1951-10-02 Gen Motors Corp Ball-bearing structure
US2591160A (en) * 1947-12-01 1952-04-01 Rollway Bearing Company Inc Roller bearing and manufacture thereof
US2706693A (en) * 1951-02-10 1955-04-19 Allied Prod Corp Process of impregnating metal bearings
US2725265A (en) * 1951-11-26 1955-11-29 Thompson Prod Inc Valve stem guides
US3004809A (en) * 1957-12-19 1961-10-17 Skf Svenska Kullagerfab Ab Thrust roller bearings
US3199935A (en) * 1961-07-31 1965-08-10 Roulements A Aiguilles Sa Segmented cage for roller or needle bearings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038010A (en) * 1934-11-20 1936-04-21 Fed Bearings Co Inc Ball bearing
US2534379A (en) * 1945-10-01 1950-12-19 John H Schreiber Bearing
US2569531A (en) * 1947-02-04 1951-10-02 Gen Motors Corp Ball-bearing structure
US2591160A (en) * 1947-12-01 1952-04-01 Rollway Bearing Company Inc Roller bearing and manufacture thereof
US2566421A (en) * 1948-11-23 1951-09-04 Donald H Lapointe Antifriction bearing-retaining strip
US2706693A (en) * 1951-02-10 1955-04-19 Allied Prod Corp Process of impregnating metal bearings
US2725265A (en) * 1951-11-26 1955-11-29 Thompson Prod Inc Valve stem guides
US3004809A (en) * 1957-12-19 1961-10-17 Skf Svenska Kullagerfab Ab Thrust roller bearings
US3199935A (en) * 1961-07-31 1965-08-10 Roulements A Aiguilles Sa Segmented cage for roller or needle bearings

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164063A (en) * 1978-02-23 1979-08-14 General Motors Corporation Process for making bearing locking collar
WO2009056310A2 (en) * 2007-11-02 2009-05-07 Ab Skf Rolling bearing cage formed of a plurality of interconnected sector elements and web elements
WO2009056310A3 (en) * 2007-11-02 2009-07-09 Skf Ab Rolling bearing cage formed of a plurality of interconnected sector elements and web elements
US20100329599A1 (en) * 2007-11-02 2010-12-30 Aktiebolaget Skf Rolling Bearing Cage
US9347490B2 (en) * 2007-11-02 2016-05-24 Aktiebolaget Skf Rolling bearing cage
DE102007052507B4 (en) * 2007-11-02 2016-06-02 Ab Skf Rolling bearing cage
EP2213893A1 (en) * 2009-01-30 2010-08-04 Aktiebolaget SKF Roller bearing cage made of a plurality of parts
US8926190B2 (en) 2010-12-27 2015-01-06 The Timken Company Segmented bearing retainer
US9039289B2 (en) 2012-06-01 2015-05-26 The Timken Company Segmented bearing retainer
EP3153728A1 (en) * 2015-10-08 2017-04-12 Nakanishi Metal Works Co., Ltd. Outer ring guided resin cage, injection molding die, and method for manufacturing outer ring guided resin cage

Similar Documents

Publication Publication Date Title
US4429926A (en) Thin-walled bearing bushings manufactured by a deep drawing process
US2493053A (en) Method of making pulleys
US3284146A (en) Roller-bearing cages
US3881790A (en) One piece molded plastic retainer for cylindrical roller bearings and method of manufacture
US2796659A (en) Bearing making method
US3387901A (en) Plastic bearing retainer
US2836853A (en) Mold for the manufacture of artificial thermoplastic bearing cages for antifriction bearings
US10718371B1 (en) Method of manufacturing connecting rod module
US4437214A (en) Non-machining method of manufacturing a solid-bottomed or internally flanged bearing race
US4343072A (en) Method of manufacturing composite rings for bearings
JPH11169980A (en) Formation of flanged and stepped cup like-product
US3256585A (en) Method of making a roller bearing cage
US4409715A (en) Method for making a castor assembly
US3860301A (en) Rolling bearing with sheet metal rings and two rows of rolling bodies
US2501629A (en) Print roll
JPS5852733B2 (en) Outer lace processing method and equipment
JPH01317638A (en) Method and device for manufacturing hub unit bearing outer ring for automobile
US3922037A (en) Rotary member holding assembly
JPH02107705A (en) Manufacture of sintered bearing material
JP4572644B2 (en) Manufacturing method of high precision ring
US3287797A (en) Method of making a flanged hub by casting and coining
US3204323A (en) Method for production of thin walled cylindrical cages
US3269785A (en) Flanged bearing
US1236470A (en) Method of making copper and similar bands.
US5744175A (en) Device for expanding rotationally symmetrical shaped parts