US3280168A - Catalytic acrylonitrile production - Google Patents
Catalytic acrylonitrile production Download PDFInfo
- Publication number
- US3280168A US3280168A US381434A US38143464A US3280168A US 3280168 A US3280168 A US 3280168A US 381434 A US381434 A US 381434A US 38143464 A US38143464 A US 38143464A US 3280168 A US3280168 A US 3280168A
- Authority
- US
- United States
- Prior art keywords
- acrylonitrile
- bis
- cyanoethylether
- adiponitrile
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 title claims description 42
- 230000003197 catalytic effect Effects 0.000 title description 4
- 238000004519 manufacturing process Methods 0.000 title description 4
- NTFJXDRAVMOYBG-UHFFFAOYSA-N 2-(2,2-dicyanoethoxymethyl)propanedinitrile Chemical compound N#CC(C#N)COCC(C#N)C#N NTFJXDRAVMOYBG-UHFFFAOYSA-N 0.000 claims description 31
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 claims description 23
- 239000003054 catalyst Substances 0.000 claims description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical group [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 15
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 claims description 10
- WSGYTJNNHPZFKR-UHFFFAOYSA-N 3-hydroxypropanenitrile Chemical compound OCCC#N WSGYTJNNHPZFKR-UHFFFAOYSA-N 0.000 claims description 8
- 239000000908 ammonium hydroxide Substances 0.000 claims description 7
- 239000006227 byproduct Substances 0.000 claims description 6
- 238000010924 continuous production Methods 0.000 claims description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical group [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 238000004821 distillation Methods 0.000 description 12
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- -1 bis-cyanoethylethylether Chemical compound 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QSLWRGQKZNBMOH-UHFFFAOYSA-N propanenitrile;prop-2-enenitrile Chemical compound CCC#N.C=CC#N QSLWRGQKZNBMOH-UHFFFAOYSA-N 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- NICLKHGIKDZZGV-UHFFFAOYSA-N 2-cyanopentanoic acid Chemical compound CCCC(C#N)C(O)=O NICLKHGIKDZZGV-UHFFFAOYSA-N 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 241001043922 Pensacola Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- IDJWOQHKOPTQIZ-UHFFFAOYSA-N hexane-1,1,6-tricarbonitrile Chemical compound N#CCCCCCC(C#N)C#N IDJWOQHKOPTQIZ-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
Definitions
- This invention relates to the production of acrylonitrile. More particularly, it relates to the catalytic production of acrylonitrile from bis-cyanoethylether.
- acrylonitrile can be electrohydrodimerized to adiponitrile.
- the electrohydrodimerization takes place in the cathode compartment of a dually compartmented electrolytic cell.
- the two compartments, anode and cathode, are separated by an ion exchange membrane.
- An aqueous mixture comprised of acrylonitrile and a quaternary ammonium salt is continuously fed to the cathode compartment.
- a solution of a strong mineral acid, usually sulfuric is circulated in the anode compartment.
- acrylonitrile is converted to adiponitrile and a minor amount of byproducts, among which is bis-cyanoethylether.
- the adiponitrile, byproducts and acrylonitrile contained in the eflluent from the cathode compartment are separated from the quaternary ammonium salt by an extraction procedure.
- Acrylonitrile and propionitrile, a byproduct are subsequently separated from the adiponitrile by distillation in an acrylonitrile-propionitrile stripping column.
- the tails from this distillation procedure comprised of adiponitrile and impurities, such as 3-hydroxypropioni-trile and bis-cyanoethylether, are passed to a distillation train to obtain a product of a least 99 weight percent adiponitrile.
- Bis-cyanoethylether produced in the electrohydrodimerization procedure represents a yield loss. Furthermore, biscyanoethylether is in part thermally decomposed to 3- hydroxypropionitrile and acrylonitrile in the distillation train, thereby making the purification of adiponitrile more difficult.
- An object of the invention is to provide a process for catalytically producing acrylonitrile from bis-cyanoethylether.
- the above objects are achieved in the provision of a procedure for catalytically converting bis-cyanoethylether to acrylonitrile and 3-hydroxypropionitrile.
- a small quantity of alkaline catalyst preferably a quaternary ammonium hydroxide, is intimately contacted with bis-cyanoethylether.
- the catalyst and bis-cyanoethylethylether mixture is then heated to decompose the bis-cyanoethylether to acrylonitrile and 3-hydroxypropionitrile.
- a process for catalytically converting to acrylonitrile and 3-hydroxypropionitrile the bis-cyanoethylether contained in a stream comprised of acrylonitrile, adiponitrile, propionitrile, bis-cyanoethylether, and 3-hydrox"'" nionitrile.
- the process basically, comprises heating tnc )am in the presence of an alkaline catalyst, preferably a quaternary ammonium hydroxide.
- any suitable strong base catalyzes the decomposition of bis-cyanoethylether.
- Quaternary ammonium hydroxide compounds are preferred because they decompose at elevated temperatures to form trialkyl amines and a monohydroxy alcohol or alkene, all of which can be separated from the adiponitrile by distillation.
- Metallic bases do not decompose as readily as do organic bases; thus, they remain in the crude adiponitrile as it is further purified in the hereinbefore noted distillation train. Distillation in the presence of a metallic base tends to increase the hydrolysis of adiponitrile and the formation of 2-cyanocylopentylideneimine.
- Alkaline catalyst concentration can vary over a rather wide range.
- a catalyst concentration of about one (1) percent based on the weight of bis-cyanoethylether substantially decomposes the bis-cyanoethylether contained in the feed to the distillation zone wherein acrylonitrile and propionitrile are separated from said feed.
- One-tenth (0.10) of one percent alkaline catalyst based on the weight of bis-cyanoethylether contatined in the feed mentioned next above decomposes about Weight percent of the bis-cyanoethylether.
- As low as one (1) part per million alkaline catalyst based on the weight of the entire feed to the acrylonitrile-propionitrile stripping column, decomposes a substantial portion of the bis-cyanoethylether contained therein.
- the drawing is a schematic flow diagram illustrating a specific embodiment of the invention.
- the drawing illustrates a convenient point in the adiponitrile separation and purification procedure where catalytic decomposition of biscyanoethylether can take place.
- the system represented in the drawing is a distillation column wherein acrylonitrile and propionitrile are stripped from a stripper feed similar to that described in Table I below.
- This column is preferably operated at about atmospheric pressure. Decomposition of bis-cyanoethylether can be accomplished at below atmospheric pressure; but, condensation and recovery of acrylonitrile is more difficult. This column is a convenient point to decompose biscyanoethylether, for one of its basic functions is to strip away acrylonitrile. It follows that at this point in the acrylonitrile recovery process very little new equipment would be necessary to practice the invention.
- Stripper feed is fed to stripper 18 through line 10.
- a small quantity of an alkaline catalyst for descriptive purposes hereinafter restricted to quaternary ammonium hydroxide, is metered from reservoir 12 through line 14 to feed line 10. It is to be noted that catalyst could also be metered into the column itself rather than the feed line.
- a typical stripper feed is set forth in the following table.
- Feed is introduced near the top of column 18.
- This column is operated at substantially atmospheric pressure and customarily has a base temperature from 200 to 220 C.
- the temperature across the column varies, i.e., the base temperature is greater than at the top.
- the base temperature of the column can range from 150 to 250 C.
- Bis-cyanoethylether is catalytically decomposed to acrylonitrile and 3-hydroxypropionitrile.
- Trialkylamine, monohydroxy alcohol or alkene, catalytically produced acrylonitrile, acrylonitrile already present in the feed, water and propionitrile are distilled overhead through line 20. After condensation the overhead stream separates in decanter 22 to produce an organic and an aqueous layer.
- the organic layer comprised of acrylonitrile, propionitrile and water
- the aqueous layer comprised of Water and a minor quantity of acrylonitrile
- a portion of the aqueous layer is recycled as reflux to column 18 via line 26 while the remainder flows by way of line 28 to an acrylonitrile recovery distillation column.
- a tails stream of crude adiponitrile treated in accordance with the invention is withdrawn from column 18 via line 32. This tails stream has a typical composition as shown in the following table.
- High boilers are primarily d cyanosuberonitrile and other higher molecular weight acrylonitrile oligomers.
- Example II A series of continuous distillations were performed in which feed of a composition shown in Table III was introduced onto the top tray of a lO-tray, 2-inch Oldershaw column. The still was mounted on an electrically heated reboiler having a weir arrangement for continuous withdrawal of still tails. Overhead vapors were condensed in a glass condenser and the condensate flowed to a decanter wherein an upper layer containing acrylonitrile, propionitrile, and water was separated from a lower aqueous layer containing about 7 weight percent acrylonitrile.
- Feed was pumped to the column at the rate of 1,675 grams per hour.
- the aqueous, lower layer from the decanter was returned to the top of the column as reflux at 360 grams per hour.
- the residence time of the tails in the reboiler at a tails withdrawal rate of 360 grams per hour was 2 hours.
- the reboiler temperature was maintained at 200-210 C. while the head temperature ranged from 80 to 85 C.
- Composition of Tails Stream Composition Component of Feed Strem With No With 13 p.p.m. With 310 p.p.m. With 130 p.p.m.
- TMAOH is tetramethylammonium hydroxide.
- TBAOH is tetrabutylammonium hydroxide.
- Example I Twenty-five (25) grams of bis-cyanoethylether and one (1) gram of an aqueous solution having a 25 weight perproduced from acrylonitrile. Furthermore, a process is provided for the effective removal of bis-cyanoethylether from the crude adiponitrile prior to its entering the adiponitrile purifying distillation train.
- a continuous process for producing acrylonitrile from bis-cyanoethylether produced as a by-product in the electrohydrodimerization of acrylonitrile to adiponithe heated zone contains at least 1 part per million alkaline catalyst based on the weight of the stream.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Cleaning In General (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US381434A US3280168A (en) | 1964-07-09 | 1964-07-09 | Catalytic acrylonitrile production |
IL23897A IL23897A (en) | 1964-07-09 | 1965-07-06 | Catalytic acrylonitrile production |
GB28643/65A GB1089054A (en) | 1964-07-09 | 1965-07-06 | Acrylonitrile production from dimerisation by products |
SE8993/65A SE312135B (de) | 1964-07-09 | 1965-07-07 | |
NO158853A NO116078B (de) | 1964-07-09 | 1965-07-08 | |
NL6508778A NL6508778A (de) | 1964-07-09 | 1965-07-08 | |
DE19651543213 DE1543213A1 (de) | 1964-07-09 | 1965-07-09 | Verfahren zur katalytischen Herstellung von Acrylnitril aus Biscyanoaethylaether |
CH965565A CH454119A (de) | 1964-07-09 | 1965-07-09 | Katalytische Herstellung von Acrylsäurenitril |
LU49032D LU49032A1 (de) | 1964-07-09 | 1965-07-09 | |
BE666700D BE666700A (de) | 1964-07-09 | 1965-07-09 | |
AT626065A AT264492B (de) | 1964-07-09 | 1965-07-09 | Verfahren zur Katalytischen Herstellung von Acrylnitril |
FR24071A FR1439659A (fr) | 1964-07-09 | 1965-07-09 | Production catalytique du nitrile acrylique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US381434A US3280168A (en) | 1964-07-09 | 1964-07-09 | Catalytic acrylonitrile production |
Publications (1)
Publication Number | Publication Date |
---|---|
US3280168A true US3280168A (en) | 1966-10-18 |
Family
ID=23505001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US381434A Expired - Lifetime US3280168A (en) | 1964-07-09 | 1964-07-09 | Catalytic acrylonitrile production |
Country Status (11)
Country | Link |
---|---|
US (1) | US3280168A (de) |
AT (1) | AT264492B (de) |
BE (1) | BE666700A (de) |
CH (1) | CH454119A (de) |
DE (1) | DE1543213A1 (de) |
GB (1) | GB1089054A (de) |
IL (1) | IL23897A (de) |
LU (1) | LU49032A1 (de) |
NL (1) | NL6508778A (de) |
NO (1) | NO116078B (de) |
SE (1) | SE312135B (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3429783A (en) * | 1965-02-10 | 1969-02-25 | Monsanto Co | Process for upgrading an acrylonitrile electrohydrodimerization effluent containing adiponitrile by distillation and alkaline treatment |
US3479389A (en) * | 1967-03-16 | 1969-11-18 | Monsanto Co | Production of olefinic nitriles by catalytic dehydration of monohydroxylated paraffinic nitriles and subsequent flash distillation |
US3674653A (en) * | 1969-05-01 | 1972-07-04 | Asahi Chemical Ind | Method of the purification of catholytes |
US4072713A (en) * | 1972-07-27 | 1978-02-07 | Phillips Petroleum Company | Method for separating tetraalkylammonium salts |
US4128571A (en) * | 1977-10-27 | 1978-12-05 | Monsanto Company | Thermal conversion of 4-cyano-suberonitrile to acrylonitrile |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8323961D0 (en) * | 1983-09-07 | 1983-10-12 | Bp Chem Int Ltd | Chemical process |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2382036A (en) * | 1941-01-10 | 1945-08-14 | Resinous Prod & Chemical Co | Bis(2-cyanoethyl) ether and process for making same |
US2448979A (en) * | 1940-06-19 | 1948-09-07 | Hopff Heinrich | Process for the production of beta, beta'-dicyano diethyl ether |
US2770640A (en) * | 1954-09-23 | 1956-11-13 | Monsanto Chemicals | Cyanoethylation of ketones |
US2790818A (en) * | 1954-09-23 | 1957-04-30 | Monsanto Chemicals | Cyanoethylation of organic sulfur compounds |
US2816130A (en) * | 1955-04-06 | 1957-12-10 | Monsanto Chemicals | Preparation of beta, beta'-oxydipropionitrile |
US2832798A (en) * | 1955-06-30 | 1958-04-29 | American Cyanamid Co | Preparation of acrylonitrile from beta, beta'-oxydipropionitrile |
US3024267A (en) * | 1959-09-03 | 1962-03-06 | Standard Oil Co | Preparation of hydracrylonitrile |
-
1964
- 1964-07-09 US US381434A patent/US3280168A/en not_active Expired - Lifetime
-
1965
- 1965-07-06 IL IL23897A patent/IL23897A/xx unknown
- 1965-07-06 GB GB28643/65A patent/GB1089054A/en not_active Expired
- 1965-07-07 SE SE8993/65A patent/SE312135B/xx unknown
- 1965-07-08 NO NO158853A patent/NO116078B/no unknown
- 1965-07-08 NL NL6508778A patent/NL6508778A/xx unknown
- 1965-07-09 LU LU49032D patent/LU49032A1/xx unknown
- 1965-07-09 CH CH965565A patent/CH454119A/de unknown
- 1965-07-09 AT AT626065A patent/AT264492B/de active
- 1965-07-09 DE DE19651543213 patent/DE1543213A1/de active Pending
- 1965-07-09 BE BE666700D patent/BE666700A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2448979A (en) * | 1940-06-19 | 1948-09-07 | Hopff Heinrich | Process for the production of beta, beta'-dicyano diethyl ether |
US2382036A (en) * | 1941-01-10 | 1945-08-14 | Resinous Prod & Chemical Co | Bis(2-cyanoethyl) ether and process for making same |
US2770640A (en) * | 1954-09-23 | 1956-11-13 | Monsanto Chemicals | Cyanoethylation of ketones |
US2790818A (en) * | 1954-09-23 | 1957-04-30 | Monsanto Chemicals | Cyanoethylation of organic sulfur compounds |
US2816130A (en) * | 1955-04-06 | 1957-12-10 | Monsanto Chemicals | Preparation of beta, beta'-oxydipropionitrile |
US2832798A (en) * | 1955-06-30 | 1958-04-29 | American Cyanamid Co | Preparation of acrylonitrile from beta, beta'-oxydipropionitrile |
US3024267A (en) * | 1959-09-03 | 1962-03-06 | Standard Oil Co | Preparation of hydracrylonitrile |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3429783A (en) * | 1965-02-10 | 1969-02-25 | Monsanto Co | Process for upgrading an acrylonitrile electrohydrodimerization effluent containing adiponitrile by distillation and alkaline treatment |
US3479389A (en) * | 1967-03-16 | 1969-11-18 | Monsanto Co | Production of olefinic nitriles by catalytic dehydration of monohydroxylated paraffinic nitriles and subsequent flash distillation |
US3674653A (en) * | 1969-05-01 | 1972-07-04 | Asahi Chemical Ind | Method of the purification of catholytes |
US4072713A (en) * | 1972-07-27 | 1978-02-07 | Phillips Petroleum Company | Method for separating tetraalkylammonium salts |
US4128571A (en) * | 1977-10-27 | 1978-12-05 | Monsanto Company | Thermal conversion of 4-cyano-suberonitrile to acrylonitrile |
Also Published As
Publication number | Publication date |
---|---|
DE1543213A1 (de) | 1969-08-14 |
NL6508778A (de) | 1966-01-10 |
NO116078B (de) | 1969-01-27 |
BE666700A (de) | 1966-01-10 |
SE312135B (de) | 1969-07-07 |
CH454119A (de) | 1968-04-15 |
LU49032A1 (de) | 1966-01-10 |
IL23897A (en) | 1969-06-25 |
GB1089054A (en) | 1967-11-01 |
AT264492B (de) | 1968-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7501045B2 (en) | Method of producing and separating dinitrile compounds | |
US2621204A (en) | Production of acrylonitrile | |
US20080230368A1 (en) | Process for the purification of lactams | |
US4430162A (en) | Process for purification of crude acetonitrile | |
US3267131A (en) | Product separation and recovery in adiponitrile manufacture | |
US3280168A (en) | Catalytic acrylonitrile production | |
US2672434A (en) | Purification of acrylonitrile by distillation | |
US3896007A (en) | PH Control of recycle water in the plural stage distillation of a crude acrylonitrile feed | |
US3201451A (en) | Purification of acetonitrile | |
US3406100A (en) | Purification of synthetic methanol by extractive distillation and subsequent distillation with plural side stream purges | |
US2869989A (en) | Method for the recovery of hydrogen peroxide | |
US3905875A (en) | Process for the purification of crude liquid vinyl acetate | |
US3210399A (en) | Method of preparing acrylonitrile free from acetonitrile | |
US2988573A (en) | Process for producing phenol | |
US3017331A (en) | Method for the purification of hexamethylenediamine | |
US3117992A (en) | Process for the production of cycloaliphatic amines | |
US3429783A (en) | Process for upgrading an acrylonitrile electrohydrodimerization effluent containing adiponitrile by distillation and alkaline treatment | |
US2987452A (en) | Method for the purification of hexamethylenediamine | |
US4342735A (en) | Stripping of aqueous ammonium carbonate solution | |
US3597331A (en) | Process for the recovery of adiponitrile from an electrolytic hydrodimerization by directly distilling the catholyte emulsion | |
US2827490A (en) | Mesityl oxide | |
US3647640A (en) | Process for recovering dimethylformamide by distillation with dimethylamine addition | |
GB731819A (en) | Improvements in or relating to the production of hexamethylene diamine and salts thereof | |
JPH11228464A (ja) | メチルイソブチルケトンおよび/またはメチルイソブチルカルビノールの製造方法 | |
EP0102935A1 (de) | Verfahren zur Herstellung von Nitrilotriacetonitril |