US3271544A - Precision electrical fuse - Google Patents

Precision electrical fuse Download PDF

Info

Publication number
US3271544A
US3271544A US359569A US35956964A US3271544A US 3271544 A US3271544 A US 3271544A US 359569 A US359569 A US 359569A US 35956964 A US35956964 A US 35956964A US 3271544 A US3271544 A US 3271544A
Authority
US
United States
Prior art keywords
fuse
metal
substrate
electrodes
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US359569A
Inventor
Randall C Ragan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electra Manufacturing Co
Original Assignee
Electra Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electra Manufacturing Co filed Critical Electra Manufacturing Co
Priority to US359569A priority Critical patent/US3271544A/en
Application granted granted Critical
Publication of US3271544A publication Critical patent/US3271544A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits

Definitions

  • This present invention relates generally to electrical fuses and, more particularly, to an improved precision electrical fuse.
  • a related object is to provide such a fuse which completely eliminates any arcing across the blown fuse element.
  • Still another object is toprovide such a fuse which fires fast enough to protect rapidly responding semiconductor devices.
  • a connected object is to provide such a fuse which can be produced in a wide range of current ratings.
  • a precision electrical fuse which is extremely stable, both electrically and physically, over extended periods of operation.
  • Another object is to provide such a fuse which is highly resistant to corrosion and abrasion.
  • Yet another object is to provide such a fuse which is capable of withstanding current spikes of short duration without changing its rated breaking current.
  • a still further object of the invention is to provide an improved miniature electrical fuse which can be used in multiple arrangements in either series or parallel.
  • it is an object to provide such fuses which, when connected in series in high voltage circuits, distribute the voltage evenly among the series connected units.
  • a related object is to provide such fuses which can be conveniently assembled in multiple arrangements on a single compact substrate.
  • FIGURE 1 is a plan view of a miniature electrical fuse embodying the present invention
  • FIG. 2 is a sectional elevation view showing the fuse of FIG. 1 housed in a suitable fuse capsule;
  • FIG. 3 is a perspective view of a series arrangement of fuses similar to the fuse of FIG. 1 formed on a single substrate;
  • FIG. 4 is an exploded view of the series arrangement of fuses shown in FIG. 3;
  • FIGS. 5a, 5b, 5c and 5d is a sequence of enlarged fragmentary plan views illustrating the various steps of a preferred method of forming the series arrangement of fuses shown in FIGS. 3 and 4;
  • FIG. 6 is a sequence of perspective views illustrating the various steps involved in forming a modified series arrangement of fuses embodying the invention.
  • FIG. 7 is a fragmentary perspective view of the final product made according to FIG. 6 and mounted on an insulating substrate.
  • FIGS. 1 and 2 there is shown a miniature electrical fuse including an elongated substrate 10 formed of an electrically insulating material, a pair of spaced apart electrically conductive fuse electrodes 11 and 12 supported on the substrate 10 in intimate contact therewith, and a fuse element 13 extending between and electrically connecting the leads 11 and 12.
  • the substrate 10 should have a low thermal conductivity and high surface and volume electrical resistivity, both before and after the blowing of the fuse element. The low thermal conductivity minimizes heat losses from the fuse element to the substrate.
  • the substrate concentrates all the effective resistance of the fuse in the fuse element 13, and insures a complete and decisive electrical break upon blowing of the fuse element, with no residual conductivity in the substrate.
  • the substrate should have a smooth surface so as to permit the deposition of substantially uniform films thereon.
  • the preferred substrate material is glass, such as sodalime glass or lead-boro-silicate glass. It has been found that these glasses have high surface and volume resistivity and provide excellent thermal insulation for the fuse element, even when used as extremely thin wafers having a thickness of approximately 0.030 inch for example. Moreover, these glasses provide a smooth surface for film deposition and are low in cost and easy to fabricate.
  • a typical glass which has been found to be especially useful as a substrate material in this invention is soda-limeglass having a composition as follows:
  • the substrate 10 may be made of any other suitable thermally stable insulating material such as, for example, electrical porcelain, steatite, fosterite, mica and other ceramic materials having the necessary chemical, electrical, and physical properties for the particular use intended.
  • the substrate must, of course, be capable of withstanding the action of any chemicals used in the deposition of the electrodes 11 and 12 and the fuse element 13, as well as any changes in temperature encountered during manufacture and use of the fuse.
  • Most organic plastics and certain ceramics such as alumina and beryllia are not satisfactory substrate materials because of their comparatively high thermal conductivity.
  • the fuse gap which is occupied by the fuse element 13 is formed by the spaced apart fuse electrodes 11 and 12 supported on the surface of the substrate 10.
  • the electrodes 11 and 12 should be made of a highly conductive metal so that their electrical resistance is as low as possible. If the leads 11 and 12 have any substantial electrical resistance, they represent another variable to be considered in manfacturing and testing the fuse, and also alter the timetemperature curve of the finished fuse.
  • each electrode 11 and 12 is composed of a base layer 14 of silver and an overlay 15 of gold.
  • the fuse gap between the two electrodes is defined by a pair of curved edges 15a which facilitate adjustment of the width of the fuse gap and also provide a convergent path of high conductivity.
  • the curved portions of the gold overlays 15 protrude beyond the silver layers 14, thereby providing a pair of gold electrode terminals which are compatible with proper operation of the fuse.
  • the silver should be kept at least about 0.025 inch away from thefuse element.
  • a composite metal-glass fuse element comprising an electrically conductive fuse metal extending between and electrically connecting the spaced apart fuse electrodes, and a layer of electrically insulating glass covering the metal layer in intimate contact therewith for quenching the fuse metal after it has been blowen by a current overload, whereby any arcs which tend to develop across the blown metal are effectively suppressed.
  • the fuse element 13 includes a metal layer 16 extending between and electrically connecting the electrodes 11 and 12, and a glass coating 17 which completely covers the metal 16 in intimate contacttherewith.
  • the glass coating also covers the adjacent end portions of the electrodes 11 and 12, and is bonded to the substrate 10 on both sides of the metal 16.
  • This invention stems in part from the unexpected discovery that if a composite metal-glass fuse element is made from certain compatible metal and glass components, the glass component completely suppresses any arcs which normally tend to develop after the blowing of a fuse in a high voltage circuit, without any inhibiting effect whatever on the rapid blowing of the fuse metal. Indeed, the glass coating has actually been found to increase the firing speed of the fuse. Thiseffect is especially surprising when one considers that the fuse metal is completely encased at the time of firing, i.e., there are no voids into which the fuse metal can be blown. Although the explanation for this phenomenon is not entirely clear, it is believed that the blowing of the fuse softens the glass coating and permits the blown metal to migrate or be absorbed within the glass coating.
  • the metal and glass components of the composite fuse element be such that the blown metal readily migrates into the glass coating, thereby effectively preventing subsequent vaporization and ionization of the blown metal.
  • the preferred metal component is gold. Gold not only migrates readily into most low melting glass coatings, but also has a high positive temperature coefiicient of electrical resistivity and, therefore, blows rapidly under overload conditions. In other words, the gold increases in resistivity as the temperature is increased, thereby providing an avalanche or snowballing effect which produces substantially instantaneous blowing.
  • gold has many properties which are desirable in the manufacture and normal operation of the fuse. Thus, for example, gold has good electrical conductivity, does not oxidize, is chemically and electrically stable, and is compatible with the ceramic processes which are preferably used in the manufacture of the fuse.
  • the silver electrodes must be provided with terminals made of gold or other nondeleterious metal which keep the silver at least about 0.025 inch away from the fuse element, as described above.
  • platinum Another metal which may be used as the metal component of the composite metal-glass fuse element is platinum. Although platinum has the disadvantages of a higher vaporization temperature and higher electrical re-' sitivity than gold, it has been found that platinum will blow and migrate into a glass coating the same as gold when subjected to a current overload.
  • the size and shape of the metal component of the composite metal-glass fuse may be adjusted to tailor the fuse to particular operating conditions and to provide different time-current curves. For example, a relatively thin and wide metal film covering a large substrate area will have greater immunity to current spikes of short duration than a relatively thick and narrow film covering a smaller substrate area, because of the difference in the heat dissipation capacities of the two types of film.
  • the exact size and shape of the metal film required in any given fuse depend not only on i the particular characteristics desired in the final fuse, but
  • a metal layer 0.005-inch square may be .0006 inch thick in a 5-ampere fuse and .0002 inch overload, generally decreases as the length and/or the- .width of the fuse metal layer is decreased. Also, the
  • the metal layer 16 is suitably five mils square.
  • the two electrodes 11, 12 and the fuse film 16 should be deposited with consistently uniform thicknesses and compositions.
  • suitable film deposition methods such as, for example, thermal decompositionof metal-containing compounds, electrodeposition, vacuum evaporation, cathode sputtering and the like.
  • One particularly preferred method of depositing the metal films is by thermal decomposition of metal resinates. In this method, the resinate is initially deposited in liquid form, being applied to the desired In some cases, the silver actually causes an explosion.
  • insulating materials are areas of the substrate by a suitable stencilling technique, such as silk screening for example, or by the application of ordinary printing, engraving, and lithographing techniques and the like.
  • a suitable stencilling technique such as silk screening for example
  • the liquid resinate After the liquid resinate has been deposited, it is heated to its decomposition temperature in an oxidizing atmosphere to drive off the volatile reaction products and deposit a solid metal film bonded firmly to the substrate.
  • This method permits accurate control of the thickness and other properties of the metal film and is capable of depositing extremely thin films which are uniform and continuous. The exact thickness of the various films will, of course, vary with different fuses,
  • the thickness of the fuse film 16 is generally in the range of about 0.0005 to 0.005 inch.
  • fine metal powder such as gold powder for example, may be mixed with the liquid resinate.
  • the coating is made of a low melting glass, i.e., an inorganic prodnot of fusion cooled to rigidity without crystallization. More particularly, the coating 17 should be made of a glass having a melting point below that of the substrate 10. As in the case of the substrate 10, the glass coating 17 should also have a low thermal conductivity and high surface and volume electrical resistivity, both before and after the blowing of the fuse metal 16. The low thermal conductivity minimizes heat losses from the fuse metal, while the high resistivity concentrates the effective resistance of the fuse in the metal layer 16.
  • the particular material employed for the insulating coating 17 remain electrically nonconductive upon extended operation at relatively high temperatures.
  • certain insulating materials are satisfactory when first applied, but tend to decompose or char and become conductive during use. This, of course, renders the fuse useless even though the metal layer has not blown. Examples of such unsatisfactory Teflon, ethyl cellulose, and epoxy resin.
  • Various powdered materials have also been tried as are suppressors, but the air spaces throughout the powdered material have been found to permit the formation of the conductive plasma which leads to destructive arcing in high voltage circuits.
  • the preferred material for the fuse coating 17 is a low melting point glass such as lead-boro-silicate glass (e.g., 1:8:1 ratio of B 0 PbO, and SiO respectively).
  • This glass provides effective thermal and electrical insulation, remains stable over extended periods of operation at elevated temperatures, and readily absorbs the blown fuse metal.
  • Other suitable glasses are the low melting sodalime glasses, phosphate glasses, and various modified leadboro-silicate glasses.
  • Certain water soluble alkali silicate glasses, such as sodium silicate and potassium silicate glass, may also be used, provided they are thoroughly dried in order to reduce the moisture content to a satisfactorily low level to provide high electrical resistivity.
  • the coefficient of thermal expansion of the coating should be adjusted to correspond with the coefficient of thermal expansion of the substrate to which the coating is bonded.
  • the coefficient of thermal expansion may be adjusted by the addition of zirconium oxide.
  • the arc-suppressingg-lass coating 17 may be formed by printing, spraying, or otherwise depositing a finely ground glass flux over the previously deposited fuse metal 16, and then heating the glass flux to its fusing temperature.
  • the fused flux for-m s a continuous impervious glassy coating which is bonded firmly to the substrate 10 on both sides of the metal 16.
  • the flux In order to achieve the desired glassy coating, the flux must be fired to its fusing point, but overfiring has been found to produce an uncontrollable increase in the resistance of the underlying metal. Also, overfiring causes bubbling or blistering of the glass which may destroy the continuity of the arcsuppressing coating.
  • the firing temperature and time employed in any given case depends on the particular coating composition used, and it will be understood that a number of different firing procedures may be devised for any given coating.
  • the flux may be fired at about 830 F. for a period of about 5 to 10 minutes.
  • the thickness of the coating will vary for different applications, but in general the glass coating should have a thickness of at least about one mil, preferably at least 2 to 3 mils.
  • the voltage rating of the fuse is increased by providing a plurality of the composite fuse elements in series with each other, preferably on a single substrate, as illustrated in FIGS. 3-5.
  • an elongated glass substrate 20 is initially provided with a plurality of small spaced apart films 21 of silver, as shown in FIG. 5a, by the thermal decomposition of silver resinate.
  • a plurality of corresponding gold overlay films 22 are deposited on top of the silver films.
  • alternate pairs of the gold films 22 have opposed curved edges 22a which define a plurality of fuse gaps 23.
  • the silver films 21 and the gold films 22 form a plurality of highly conductive composite silver-gold electrodes having terminals 22a of pure gold.
  • the gold films 22 are preferably deposited from a mixture of gold resinate and fine gold powder. In the case of relatively high amperage devices, it may be neces sary to deposit the gold in multiple coatings to achieve the desired conductivity. Alternatively highly conductive gold films may be deposited by electrodeposition.
  • each fuse gap 23 is inspected to insure that all the gaps are of the desired uniform width, typically about five mils. In actual production, the gaps are originally made somewhat less than the width actually required in the final product, and then adjusted to the exact required width by a scribing technique under a magnifying device.
  • the metal component of the composite metal-glass fuse element is deposited in the form of a narrow strip 24 of gold film which bridges the Various fuse gaps 23, as shown in FIG. 50, so as to electrically connect the curved gold terminals 22a. 24 is preferably deposited by thermal decomposition of gold resinate.
  • a small strip 25 of low melting glass is deposited over each fuse gap and that portion of the gold strip 24 bridging the gap, as in FIG. 5d.
  • the glass strips 25 form the arc-suppressing coatings of the respective fuses, and are firmly bonded to the substrate 20 on opposite sides of each fuse gap between the gold films 22.
  • the glass strips 25 may be formed by stencilling a suitable glass flux onto the desired areas and then fusing the deposited flux to form smooth glassy coatings. This completes a multi-element series fuse ready for encapsulation in the manner described hereinafter.
  • FIG. 6 and 7 A modified series arrangement of fuses which is especially adapted to carry relatively high currents and simplify production procedures is shown in FIG. 6 and 7.
  • a small gold wire 30 is initially provided with a plurality of annular plastic spacers 31 equally spaced along the axis of the wire.
  • the wire 30 is electroplated or otherwise coated with a gold coating 32 which is broken only by the spacers 31.
  • the plastic spacers are then dissolved by means of a suitable solvent, thereby providing a plurality of spaced fuse gaps 33 occupied only by the exposed portions of the gold wire.
  • a pair of leads is connected to the fuse electrodes, and the entire assembly is placed in a standard form package that will fit conventional circuit hardware.
  • a pair of wire leads 40 and 41 is soldered to the fuse electrodes on the surface of a glass substrate 10, and then both the fuse and the leads are embedded in a solid insulating cylinder 42 with ends of the leads 40, 41.
  • the cylinder 42 In order for the insulating cylinder 42. to protect the fuse without affecting its operation, the cylinder 42 must have high dielectric-strength and high electrical resistance. In addition, the cylinder should be made of a material which is resistant to moisture, thermal shock, vibration, or any other environmental hazards which may be encountered in use.
  • a preferred material for the encapsulating cylinder is epoxy casting resin, or an epoxy compression or transfer molding material, which may be formed in a molding shell fitted around the fuse assembly.
  • the encapsulating package is not limited to the cylindrical form shown in the drawing, but may be formed in any suitable shape.
  • a precision electrical fuse for protecting an electric circuit comprising the combination of an electrically insulating substrate which has a low thermal conductivity and is resistant to high temperatures, a pair of.-
  • a composite metal-glass fuse element extending between said electrodes and including a thin layer of electrically conductive fuse metal selected from the group consisting of gold and platinum on the surface of said substrate, said metal layer extending between and electrically connecting said electrodes, said fuse metal being adapted to blow when the electrical current therethrough exceeds a predetermined level, and a layer of electrically insulating glass having a melting point below that of said substrate bonded to said substrate on opposite sides of said fuse metal and covering said fuse metal in intimate contact therewith for quenching and absorbing the fuse metal as it is blown whereby any arcs which tend to develop between the fuse electrodes are effectively suppressed, said substrate and said f-use element being adapted to maintain an electrical connection between said electrodes until the current through said metal layer increases .sufiiciently to vaporize the same.
  • a precision electrical fuse for protecting an electric circuit comprising the combination of a glass substrate having low thermal conductivity and high surface and volume electrical resistivity, a pair of spaced apart silver electrode films deposited on the surface of said substrate in intimate contact therewith, the opposed ends of said silver films being provided with a pair of spaced apart gold terminal films deposited on the surface of said substrate, a composite metal-glass fuse element comprising a thin film of electrically conductive fuse metal selected from the group consisting of gold and platinum on the surface of said substrate, said metal layer extending between and electrically connecting said gold terminal films on the surface of said substrate, said fuse metal being adapted to blow when the electrical current therethrough exceeds a predetermined level, and a coating of lead-boro-silicate glass having a melting point below that of said substrate bonded to said substrate on opposite sides of said fuse metal and covering said fuse metal in intimate contact therewith for quenching and absorbing the fuse metal as it is blown whereby any arcs which tend to develop across the blown fuse metal are effectivelysuppressed, said lead-
  • a precision electrical fuse for protecting an electric circuit comprising the combination of a glasssubstrate having low thermal conductivity and high surface and volume electrical resistivity, a pair of spaced apart electrically conductive fuse electrodes deposited on the surface of said substrate in intimate contact therewith, a composite metal-glass fuse element comprising a thin layer of electrically conductive fuse metal selected from the group consisting of gold and platinum on the surface of said substrate, said metal layer extending between and electrically connecting said electrodes, said fuse metal being adapted to blow when the electrical current therethrough'exceeds a predetermined level, the length and width of said fuse metal being substantially equal, and a coating of low melting electrically insulating glass having a melting point below that of said substrate covering said fuse rnetal in intimate contact therewith for quenching said metal layer increases sufliciently to vaporize the same, at least the end portions of said fuse electrodes being made of a metal which does not substantially increase the electrical conductivity of said coating upon the blowing of said fuse metal, and a pair of electrical leads
  • a precision electrical fuse for protecting an electric circuit comprising the combination of an elongated glass substrate having low thermal conductivity and high surface and volume electrical resistivity, a plurality of pairs of spaced apart electrically conductive fuse electrodes deposited on the surface of said substrate in intimate contact therewith, the opposed edges of alternate pairs of said electrodes having gold terminals thereon to define a plurality of predetermined fuse gaps in series along the surface of said substrate, a thin layer of electrically conductive fuse metal selected from the group consisting of gold and platinum deposited within each of said fuse gaps so as to extend between and electrically connect said gold terminals, said fuse met-a1 being adapted to blow when the electrical current therethrough exceeds a predetermined level, and a layer of electrically insulating glass covering said fuse metal at each fuse gap in .intimate cont-act therewith for quenching and absorbing the fuse metal as it is blown, whereby any arcs which tend to develop between the fuse electrodes upon the blowing of said fuse metal are effectively suppressed.
  • a precision electrical fuse comprising the combination of an elongated glass substrate having low thermal 3O conductivity and high surface and volume electrical resistivity, an elongated gold wire having an electrically conductive metal coating around axially spaced portions of said wire so as to form a plurality of fuse electrodes with the exposed portions of said gold wire between said electrodes forming a series of metal fuse elements adapted to blow when the electrical current therethrough exceeds a predetermined level, said coated wire being supported on the surface of said glass substrate, and a layer of electrically insulating glass having a melting point below that of said substrate bonded to said substrate on opposite sides of said fuse metal and covering the exposed portion of said gold wire between each pair of said electrodes for quenching and absorbing the fuse rnetal as it is blown, whereby any arcs which tend to develop between the fuse electrodes upon the blowing of said fuse are effectively suppressed, said substrate and said fuse element being adapted to maintain an electrical connection between said electrodes until the current through said met-a1 layer increases sufliciently to vapor

Description

Sept. 6, 1966 R. c. RAGAN 3,271,544
PRECISION ELECTRICAL FUSE Filed April 14, 1964 2 Sheets-Sheet 1 Q5 F/G 4 @w INVENTOR.
BY Randaflfl Raga/7 W 2% 6 W. 2/% AM ms Sept. 6, 1966 R. C. RAGAN PRECISION ELECTRICAL FUSE 2 Sheets-Sheet 2 Filed April 14, 1964 INVENTOR. BY Panda/M Raga/7 United States Patent 3,271,544 PRECISION ELECTRICAL FUSE Randall C. Ragan, Tarzana, Calif., assignor to Electra Manufacturing Company, Independence, Kans., a corporation of Missouri Filed Apr. 14, 1964, Ser. No. 359,569 Claims. (Cl. 200-135) I This application is a continuation-in-part of my copending application Serial No. 779,605, Precision Electrical Circuit Elements, filed December 11, 1958, which in turn is a continuation-in-part of my application Serial No. 618,- 728, Precision Electrical Circuit Elements, filed October 29, 1956, now abandoned.
This present invention relates generally to electrical fuses and, more particularly, to an improved precision electrical fuse.
It is a primary object of this invention to provide an improved miniature electrical fuse which produces a fast and decisive break at the rated breaking current. A related object is to provide such a fuse which completely eliminates any arcing across the blown fuse element. Thus, it is another object to provide such a fuse which may be used in high voltage circuits with assured reliability of current cut off. Still another object is toprovide such a fuse which fires fast enough to protect rapidly responding semiconductor devices.
It is another object of the invention to provide an improved miniature electrical fuse which is precise and accurately reproducible for the most exacting applications, and yet is inherently simple and economical to manufacture. A connected object is to provide such a fuse which can be produced in a wide range of current ratings.
It is a further object of the invention to provide a precision electrical fuse which is extremely stable, both electrically and physically, over extended periods of operation. Thus, it is an object to provide such a fuse which maintains its rated breaking current even when operated for extended periods at relatively high temperatures. Another object is to provide such a fuse which is highly resistant to corrosion and abrasion. Yet another object is to provide such a fuse which is capable of withstanding current spikes of short duration without changing its rated breaking current.
A still further object of the invention is to provide an improved miniature electrical fuse which can be used in multiple arrangements in either series or parallel. In this connection, it is an object to provide such fuses which, when connected in series in high voltage circuits, distribute the voltage evenly among the series connected units. A related object is to provide such fuses which can be conveniently assembled in multiple arrangements on a single compact substrate.
Other object-s and advantages of the invention will become apparent upon reading the following description and appended claims and upon reference to the drawings, in which:
FIGURE 1 is a plan view of a miniature electrical fuse embodying the present invention;
FIG. 2 is a sectional elevation view showing the fuse of FIG. 1 housed in a suitable fuse capsule;
FIG. 3 is a perspective view of a series arrangement of fuses similar to the fuse of FIG. 1 formed on a single substrate;
FIG. 4 is an exploded view of the series arrangement of fuses shown in FIG. 3;
FIGS. 5a, 5b, 5c and 5d is a sequence of enlarged fragmentary plan views illustrating the various steps of a preferred method of forming the series arrangement of fuses shown in FIGS. 3 and 4;
FIG. 6 is a sequence of perspective views illustrating the various steps involved in forming a modified series arrangement of fuses embodying the invention; and
' FIG. 7 is a fragmentary perspective view of the final product made according to FIG. 6 and mounted on an insulating substrate.
While the invention will be described in connection with a preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment but, on the contrary, it is intended to cover the various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Turning now to the drawings, in FIGS. 1 and 2 there is shown a miniature electrical fuse including an elongated substrate 10 formed of an electrically insulating material, a pair of spaced apart electrically conductive fuse electrodes 11 and 12 supported on the substrate 10 in intimate contact therewith, and a fuse element 13 extending between and electrically connecting the leads 11 and 12. In order to insure a rapid and decisive electrical break in the fuse element 13 when the current exceeds the rated maximum load, the substrate 10 should have a low thermal conductivity and high surface and volume electrical resistivity, both before and after the blowing of the fuse element. The low thermal conductivity minimizes heat losses from the fuse element to the substrate. Thus, when an overload in the electric circuit increases the temperature of the fuse element, practically all the heat is retained in the fuse element, and the fuse is heated to its blowing point instantaneously. The high surface and volume electrical resistivity of the substrate concentrates all the effective resistance of the fuse in the fuse element 13, and insures a complete and decisive electrical break upon blowing of the fuse element, with no residual conductivity in the substrate. In addition to the low thermal conductivity and high electrical resistivity, the substrate should have a smooth surface so as to permit the deposition of substantially uniform films thereon.
The preferred substrate material is glass, such as sodalime glass or lead-boro-silicate glass. It has been found that these glasses have high surface and volume resistivity and provide excellent thermal insulation for the fuse element, even when used as extremely thin wafers having a thickness of approximately 0.030 inch for example. Moreover, these glasses provide a smooth surface for film deposition and are low in cost and easy to fabricate. A typical glass which has been found to be especially useful as a substrate material in this invention is soda-limeglass having a composition as follows:
Percent Silicon dioxide 71.96 Iron oxide 0.037 Aluminum oxide 1.42 Calcium oxide 8.11 Magnesium oxide 4.23 Sodium oxide 13.62 Potassium oxide 0.29 Sulfur trioxide 0.29
Alternatively, the substrate 10 may be made of any other suitable thermally stable insulating material such as, for example, electrical porcelain, steatite, fosterite, mica and other ceramic materials having the necessary chemical, electrical, and physical properties for the particular use intended. The substrate must, of course, be capable of withstanding the action of any chemicals used in the deposition of the electrodes 11 and 12 and the fuse element 13, as well as any changes in temperature encountered during manufacture and use of the fuse. Most organic plastics and certain ceramics such as alumina and beryllia are not satisfactory substrate materials because of their comparatively high thermal conductivity.
The fuse gap which is occupied by the fuse element 13 is formed by the spaced apart fuse electrodes 11 and 12 supported on the surface of the substrate 10. In order to concentrate substantially all the effectiveresistance of the fuse in the fuse element 13, the electrodes 11 and 12 should be made of a highly conductive metal so that their electrical resistance is as low as possible. If the leads 11 and 12 have any substantial electrical resistance, they represent another variable to be considered in manfacturing and testing the fuse, and also alter the timetemperature curve of the finished fuse.
The preferred electrode material is silver, because it requires the minimum amount of material for any given conductivity, but any other suitable highly conductive metal may be employed. When silver is used for the entire electrode, however, it has been found to have a deleterious effect upon the blowing of the fuse, as described in more detail hereinafter. Thus, in the preferred embodiment of FIG. 1, each electrode 11 and 12 is composed of a base layer 14 of silver and an overlay 15 of gold. The fuse gap between the two electrodes is defined by a pair of curved edges 15a which facilitate adjustment of the width of the fuse gap and also provide a convergent path of high conductivity. It should be noticed that the curved portions of the gold overlays 15 protrude beyond the silver layers 14, thereby providing a pair of gold electrode terminals which are compatible with proper operation of the fuse. In general, the silver should be kept at least about 0.025 inch away from thefuse element.
In the practice of the present invention, there is provided a composite metal-glass fuse element comprising an electrically conductive fuse metal extending between and electrically connecting the spaced apart fuse electrodes, and a layer of electrically insulating glass covering the metal layer in intimate contact therewith for quenching the fuse metal after it has been blowen by a current overload, whereby any arcs which tend to develop across the blown metal are effectively suppressed. Thus, referring to FIGS. 1 and 2, the fuse element 13 includes a metal layer 16 extending between and electrically connecting the electrodes 11 and 12, and a glass coating 17 which completely covers the metal 16 in intimate contacttherewith. In the particular embodiment illustrated, the glass coating also covers the adjacent end portions of the electrodes 11 and 12, and is bonded to the substrate 10 on both sides of the metal 16.
This invention stems in part from the unexpected discovery that if a composite metal-glass fuse element is made from certain compatible metal and glass components, the glass component completely suppresses any arcs which normally tend to develop after the blowing of a fuse in a high voltage circuit, without any inhibiting effect whatever on the rapid blowing of the fuse metal. Indeed, the glass coating has actually been found to increase the firing speed of the fuse. Thiseffect is especially surprising when one considers that the fuse metal is completely encased at the time of firing, i.e., there are no voids into which the fuse metal can be blown. Although the explanation for this phenomenon is not entirely clear, it is believed that the blowing of the fuse softens the glass coating and permits the blown metal to migrate or be absorbed within the glass coating. Consequently, little or no metal vapor remains within the fuse junction, and there is no opportunity for a conductive plasma or highly ionized gas path to develop between the fuse electrodes. Furthermore, the softening of the glass permits migration of the metal into the glass thereby slightly derating the unit so that it breaks decisively. This effect, combined with the added thermal insulation provided by the glass coating, leads to a rapid firing rate so that the fuse does not hang on at a current near the breaking point.
In order to insure that arcing is completely suppressed upon blowing of the fuse metal, it is important that the metal and glass components of the composite fuse element be such that the blown metal readily migrates into the glass coating, thereby effectively preventing subsequent vaporization and ionization of the blown metal. The preferred metal component is gold. Gold not only migrates readily into most low melting glass coatings, but also has a high positive temperature coefiicient of electrical resistivity and, therefore, blows rapidly under overload conditions. In other words, the gold increases in resistivity as the temperature is increased, thereby providing an avalanche or snowballing effect which produces substantially instantaneous blowing. In addition, gold has many properties which are desirable in the manufacture and normal operation of the fuse. Thus, for example, gold has good electrical conductivity, does not oxidize, is chemically and electrically stable, and is compatible with the ceramic processes which are preferably used in the manufacture of the fuse.
In'contrast with gold, silver has been found to be completely useless as a metal component in the composite fuse element of this invention, in spite of the fact that silver is generally considered a close relative of gold. In-
deed, when silver is used as the fuse metal in this invention and is blown by a current overload, it causes the surrounding glass to become highly conductive and to support higher and higher current until suificient heat is generated to melt all parts of the circuit in the immediate vicinity of the fuse.
the silver electrodes must be provided with terminals made of gold or other nondeleterious metal which keep the silver at least about 0.025 inch away from the fuse element, as described above.
Another metal which may be used as the metal component of the composite metal-glass fuse element is platinum. Although platinum has the disadvantages of a higher vaporization temperature and higher electrical re-' sitivity than gold, it has been found that platinum will blow and migrate into a glass coating the same as gold when subjected to a current overload.
It will be recognized that the size and shape of the metal component of the composite metal-glass fuse may be adjusted to tailor the fuse to particular operating conditions and to provide different time-current curves. For example, a relatively thin and wide metal film covering a large substrate area will have greater immunity to current spikes of short duration than a relatively thick and narrow film covering a smaller substrate area, because of the difference in the heat dissipation capacities of the two types of film. Of course, the exact size and shape of the metal film required in any given fuse depend not only on i the particular characteristics desired in the final fuse, but
also on the particular materials employed. In the case of pure gold used as the fuse metal in a fuse suitable for most conventional applications, a metal layer 0.005-inch square may be .0006 inch thick in a 5-ampere fuse and .0002 inch overload, generally decreases as the length and/or the- .width of the fuse metal layer is decreased. Also, the
minimum response time for any given fuse is achieved when the length and width of the exposed portion of the fuse metal layer are substantially equal, as illustrated in FIG. 1. For example, in a typical fuse rated at 3 to 5 amperes, the metal layer 16 is suitably five mils square.
In order to provide a precise and accurately reproducible fuse, the two electrodes 11, 12 and the fuse film 16 should be deposited with consistently uniform thicknesses and compositions. suitable film deposition methods such as, for example, thermal decompositionof metal-containing compounds, electrodeposition, vacuum evaporation, cathode sputtering and the like. One particularly preferred method of depositing the metal films is by thermal decomposition of metal resinates. In this method, the resinate is initially deposited in liquid form, being applied to the desired In some cases, the silver actually causes an explosion. It is for this reason that- This may be accomplished by a number of insulating materials are areas of the substrate by a suitable stencilling technique, such as silk screening for example, or by the application of ordinary printing, engraving, and lithographing techniques and the like. After the liquid resinate has been deposited, it is heated to its decomposition temperature in an oxidizing atmosphere to drive off the volatile reaction products and deposit a solid metal film bonded firmly to the substrate. This method permits accurate control of the thickness and other properties of the metal film and is capable of depositing extremely thin films which are uniform and continuous. The exact thickness of the various films will, of course, vary with different fuses,
but the thickness of the fuse film 16 is generally in the range of about 0.0005 to 0.005 inch. In certain cases where it is desired to increase the conductivity of the film deposited from the resinate, such as in forming gold overlays or terminals on silver electrodes for example, fine metal powder, such as gold powder for example, may be mixed with the liquid resinate. Also, it is often desirable to metallize the substrate surface, as with a thin silver coating, prior to the application of the resinate for the purpose of providing an electrically conductive and mechanically stable base for the subsequent welding of wire leads to the fuse.
In order to insure that the blown fuse metal migrates quickly into the arc-suppressing glass coating 17, the coating is made of a low melting glass, i.e., an inorganic prodnot of fusion cooled to rigidity without crystallization. More particularly, the coating 17 should be made of a glass having a melting point below that of the substrate 10. As in the case of the substrate 10, the glass coating 17 should also have a low thermal conductivity and high surface and volume electrical resistivity, both before and after the blowing of the fuse metal 16. The low thermal conductivity minimizes heat losses from the fuse metal, while the high resistivity concentrates the effective resistance of the fuse in the metal layer 16.
In order for the composite fuse element 13 to remain useful over extended periods of operation, it is important that the particular material employed for the insulating coating 17 remain electrically nonconductive upon extended operation at relatively high temperatures. In this connection, it has been found that certain insulating materials are satisfactory when first applied, but tend to decompose or char and become conductive during use. This, of course, renders the fuse useless even though the metal layer has not blown. Examples of such unsatisfactory Teflon, ethyl cellulose, and epoxy resin. Various powdered materials have also been tried as are suppressors, but the air spaces throughout the powdered material have been found to permit the formation of the conductive plasma which leads to destructive arcing in high voltage circuits.
The preferred material for the fuse coating 17 is a low melting point glass such as lead-boro-silicate glass (e.g., 1:8:1 ratio of B 0 PbO, and SiO respectively). This glass provides effective thermal and electrical insulation, remains stable over extended periods of operation at elevated temperatures, and readily absorbs the blown fuse metal. Other suitable glasses are the low melting sodalime glasses, phosphate glasses, and various modified leadboro-silicate glasses. Certain water soluble alkali silicate glasses, such as sodium silicate and potassium silicate glass, may also be used, provided they are thoroughly dried in order to reduce the moisture content to a satisfactorily low level to provide high electrical resistivity.
In order to prevent cracking and craZing of the glass coating 17 during alternate heating and cooling of the fuse either in the process of manufacture or in use, the coefficient of thermal expansion of the coating should be adjusted to correspond with the coefficient of thermal expansion of the substrate to which the coating is bonded. For example, in the case of the preferred lead-boro-silicate glass, the coefficient of thermal expansion may be adjusted by the addition of zirconium oxide.
The arc-suppressingg-lass coating 17 may be formed by printing, spraying, or otherwise depositing a finely ground glass flux over the previously deposited fuse metal 16, and then heating the glass flux to its fusing temperature. The fused flux for-ms a continuous impervious glassy coating which is bonded firmly to the substrate 10 on both sides of the metal 16. In order to achieve the desired glassy coating, the flux must be fired to its fusing point, but overfiring has been found to produce an uncontrollable increase in the resistance of the underlying metal. Also, overfiring causes bubbling or blistering of the glass which may destroy the continuity of the arcsuppressing coating. The firing temperature and time employed in any given case depends on the particular coating composition used, and it will be understood that a number of different firing procedures may be devised for any given coating. For example, in the case of the preferred lead-bor-o-silicate (l :8: 1) glass coating, the flux may be fired at about 830 F. for a period of about 5 to 10 minutes. The thickness of the coating will vary for different applications, but in general the glass coating should have a thickness of at least about one mil, preferably at least 2 to 3 mils.
In one aspect of the invention, the voltage rating of the fuse is increased by providing a plurality of the composite fuse elements in series with each other, preferably on a single substrate, as illustrated in FIGS. 3-5. In a preferred method of forming this construction, an elongated glass substrate 20 is initially provided with a plurality of small spaced apart films 21 of silver, as shown in FIG. 5a, by the thermal decomposition of silver resinate. After the silver films 21 have been deposited and solidified, a plurality of corresponding gold overlay films 22 are deposited on top of the silver films. As shown in FIG. 5b, alternate pairs of the gold films 22 have opposed curved edges 22a which define a plurality of fuse gaps 23. 1 It will be appreciated that the silver films 21 and the gold films 22 form a plurality of highly conductive composite silver-gold electrodes having terminals 22a of pure gold. In order to achieve high conductivity in the terminals 22a, the gold films 22 are preferably deposited from a mixture of gold resinate and fine gold powder. In the case of relatively high amperage devices, it may be neces sary to deposit the gold in multiple coatings to achieve the desired conductivity. Alternatively highly conductive gold films may be deposited by electrodeposition.
After the deposition of the gold films 22 has been completed, each fuse gap 23 is inspected to insure that all the gaps are of the desired uniform width, typically about five mils. In actual production, the gaps are originally made somewhat less than the width actually required in the final product, and then adjusted to the exact required width by a scribing technique under a magnifying device. Next, the metal component of the composite metal-glass fuse element is deposited in the form of a narrow strip 24 of gold film which bridges the Various fuse gaps 23, as shown in FIG. 50, so as to electrically connect the curved gold terminals 22a. 24 is preferably deposited by thermal decomposition of gold resinate.
To complete the composite fuse element, a small strip 25 of low melting glass is deposited over each fuse gap and that portion of the gold strip 24 bridging the gap, as in FIG. 5d. The glass strips 25 form the arc-suppressing coatings of the respective fuses, and are firmly bonded to the substrate 20 on opposite sides of each fuse gap between the gold films 22. The glass strips 25 may be formed by stencilling a suitable glass flux onto the desired areas and then fusing the deposited flux to form smooth glassy coatings. This completes a multi-element series fuse ready for encapsulation in the manner described hereinafter.
A modified series arrangement of fuses which is especially adapted to carry relatively high currents and simplify production procedures is shown in FIG. 6 and 7.
The gold strip In this construction, a small gold wire 30 is initially provided with a plurality of annular plastic spacers 31 equally spaced along the axis of the wire. To provide the desired fuse electrodes, the wire 30 is electroplated or otherwise coated with a gold coating 32 which is broken only by the spacers 31. The plastic spacers are then dissolved by means of a suitable solvent, thereby providing a plurality of spaced fuse gaps 33 occupied only by the exposed portions of the gold wire. These exposed portions of the gold wire form the metal components of the series arrangement of composite fuse elements, while the highly conductive coated sections of the rod form the fuse electrodes. This entire assembly is then seated in a groove 34a of an insulating glass substrate 34, and each fuse gap 33 is coated with an arc-suppressing glass coating 35. It will be appreciated that the relatively large metallic cross section achieved by this construction provides a large current-carrying capacity.
In accordance with one aspect of this invention, a pair of leads is connected to the fuse electrodes, and the entire assembly is placed in a standard form package that will fit conventional circuit hardware. Thus, referring to FIG. 2, a pair of wire leads 40 and 41 is soldered to the fuse electrodes on the surface of a glass substrate 10, and then both the fuse and the leads are embedded in a solid insulating cylinder 42 with ends of the leads 40, 41.
protruding from the ends of the cylinder. This construction not only provides additional mechanical support for the leads 40, 41, but also insures that any arcs or other effects from an accidental failure of the arc suppressor are contained within the encapsulating package. The package is finished by fitting .a pair of end caps 43 and 44 over the ends of the cylinder 42 and soldering them to the protruding ends of the wire leads.
In order for the insulating cylinder 42. to protect the fuse without affecting its operation, the cylinder 42 must have high dielectric-strength and high electrical resistance. In addition, the cylinder should be made of a material which is resistant to moisture, thermal shock, vibration, or any other environmental hazards which may be encountered in use. A preferred material for the encapsulating cylinder is epoxy casting resin, or an epoxy compression or transfer molding material, which may be formed in a molding shell fitted around the fuse assembly. Of course, it will be appreciated that the encapsulating package is not limited to the cylindrical form shown in the drawing, but may be formed in any suitable shape.
While various specific forms of the present invention have been illustrated and described herein in some detail, it will be understood that the same are susceptible of numerous modifications within the spirit and scope of the invention. Thus, although the multiple arrangements cisive break at the rated breaking current. The effective thermal insulation provided on both sides of the fuse metal by the nonconductive substrate and the arc-suppressing coating, combined with the high positive temperature coefficient of electrical resistivity of gold, pro-- duce an avalanche effect which causes practically instantaneous blowing at the breaking current. Moreover, the arc-suppressing coating completely eliminates any arcing across the blown fuse, thereby providing a fuse which may be used in high voltage circuits with assured reliability of current cut off. What is claimed is:
1. A precision electrical fuse for protecting an electric circuit, said fuse comprising the combination of an electrically insulating substrate which has a low thermal conductivity and is resistant to high temperatures, a pair of.-
spaced apart electrically conductive fuse electrodes deposited on the surface of said substrate in intimate contact therewith, a composite metal-glass fuse element extending between said electrodes and including a thin layer of electrically conductive fuse metal selected from the group consisting of gold and platinum on the surface of said substrate, said metal layer extending between and electrically connecting said electrodes, said fuse metal being adapted to blow when the electrical current therethrough exceeds a predetermined level, and a layer of electrically insulating glass having a melting point below that of said substrate bonded to said substrate on opposite sides of said fuse metal and covering said fuse metal in intimate contact therewith for quenching and absorbing the fuse metal as it is blown whereby any arcs which tend to develop between the fuse electrodes are effectively suppressed, said substrate and said f-use element being adapted to maintain an electrical connection between said electrodes until the current through said metal layer increases .sufiiciently to vaporize the same.
2. A precision electrical fuse for protecting an electric circuit, said fuse comprising the combination of a glass substrate having low thermal conductivity and high surface and volume electrical resistivity, a pair of spaced apart silver electrode films deposited on the surface of said substrate in intimate contact therewith, the opposed ends of said silver films being provided with a pair of spaced apart gold terminal films deposited on the surface of said substrate, a composite metal-glass fuse element comprising a thin film of electrically conductive fuse metal selected from the group consisting of gold and platinum on the surface of said substrate, said metal layer extending between and electrically connecting said gold terminal films on the surface of said substrate, said fuse metal being adapted to blow when the electrical current therethrough exceeds a predetermined level, and a coating of lead-boro-silicate glass having a melting point below that of said substrate bonded to said substrate on opposite sides of said fuse metal and covering said fuse metal in intimate contact therewith for quenching and absorbing the fuse metal as it is blown whereby any arcs which tend to develop across the blown fuse metal are effectivelysuppressed, said lead-boro-silicate coating having a coefficient of thermal expansion corresponding to the coefiicient of thermal expansion of said glass substrate, said substrate and said fuse element being adapted to maintain an electrical connection between said electrodes until the current through said metal layer increases sufficiently to vaporize the same, and a pair of electrical leads connected to said silver films for connecting the fuse into the electric circuit to be protected.
3. A precision electrical fuse for protecting an electric circuit, said fuse comprising the combination of a glasssubstrate having low thermal conductivity and high surface and volume electrical resistivity, a pair of spaced apart electrically conductive fuse electrodes deposited on the surface of said substrate in intimate contact therewith, a composite metal-glass fuse element comprising a thin layer of electrically conductive fuse metal selected from the group consisting of gold and platinum on the surface of said substrate, said metal layer extending between and electrically connecting said electrodes, said fuse metal being adapted to blow when the electrical current therethrough'exceeds a predetermined level, the length and width of said fuse metal being substantially equal, and a coating of low melting electrically insulating glass having a melting point below that of said substrate covering said fuse rnetal in intimate contact therewith for quenching said metal layer increases sufliciently to vaporize the same, at least the end portions of said fuse electrodes being made of a metal which does not substantially increase the electrical conductivity of said coating upon the blowing of said fuse metal, and a pair of electrical leads connected to said fuse electrodes for connecting the fuse into the electric circuit to be protected.
4. A precision electrical fuse for protecting an electric circuit, said fuse comprising the combination of an elongated glass substrate having low thermal conductivity and high surface and volume electrical resistivity, a plurality of pairs of spaced apart electrically conductive fuse electrodes deposited on the surface of said substrate in intimate contact therewith, the opposed edges of alternate pairs of said electrodes having gold terminals thereon to define a plurality of predetermined fuse gaps in series along the surface of said substrate, a thin layer of electrically conductive fuse metal selected from the group consisting of gold and platinum deposited within each of said fuse gaps so as to extend between and electrically connect said gold terminals, said fuse met-a1 being adapted to blow when the electrical current therethrough exceeds a predetermined level, and a layer of electrically insulating glass covering said fuse metal at each fuse gap in .intimate cont-act therewith for quenching and absorbing the fuse metal as it is blown, whereby any arcs which tend to develop between the fuse electrodes upon the blowing of said fuse metal are effectively suppressed.
5. A precision electrical fuse comprising the combination of an elongated glass substrate having low thermal 3O conductivity and high surface and volume electrical resistivity, an elongated gold wire having an electrically conductive metal coating around axially spaced portions of said wire so as to form a plurality of fuse electrodes with the exposed portions of said gold wire between said electrodes forming a series of metal fuse elements adapted to blow when the electrical current therethrough exceeds a predetermined level, said coated wire being supported on the surface of said glass substrate, and a layer of electrically insulating glass having a melting point below that of said substrate bonded to said substrate on opposite sides of said fuse metal and covering the exposed portion of said gold wire between each pair of said electrodes for quenching and absorbing the fuse rnetal as it is blown, whereby any arcs which tend to develop between the fuse electrodes upon the blowing of said fuse are effectively suppressed, said substrate and said fuse element being adapted to maintain an electrical connection between said electrodes until the current through said met-a1 layer increases sufliciently to vaporize the same.
References Cited by the Examiner UNITED STATES PATENTS 1,426,827 8/1922 Eustice 29-155.5 2,157,906 5/1939 Lohausen 200-12O X 2,302,820 12/ 1942 Van Liernpt. 2,576,405 11/1951 McAlister 200-131 2,827,532 3/1958 Kozacka 200131 2,864,917 12/1958 Sundt 200-135 2,948,953 8/1960 Rayburn 29l55.5
FOREIGN PATENTS 499,816 1/1939 Great Britain.
BERNARD A. GILHEANY, Primary Examiner.
H. B. GILSON, Assistant Examiner.

Claims (1)

1. A PRECISION ELECTRICAL FUSE FOR PROJECTING AN ELECTRIC CIRCUIT, SAID FUSE COMPRISING THE COMBINATION OF AN ELECTRICALLY INSULATING SUBSTRATE WHICH HAS A LOW THERMAL CONDUCTIVITY AND IS RESISTANT TO HIGH TEMPERATURES, A PAIR OF SPACED APART ELECTRICALLY CONDUCTIVE FUSE ELECTRODES DEPOSITED ON THE SURFACE OF SAID SUBSTRATE IN INTIMATE CONTACT THEREWITH, A COMPOSITE METAL-GLASS FUSE ELEMENT EXTENDING BETWEEN SAID ELECTRODES AND INCLUDING A THIN LAYER OF ELECTRICALLY CONDUCTIVE FUSE METAL SELECTED FROM THE GROUP CONSISTING OF GOLD AND PLATINUM ON THE SURFACE OF SAID SUBSTRATE, SAID METAL LAYER EXTENDING BETWEEN AND ELECTRICALLY CONNECTING SAID ELECTRODES, SAID FUSE METAL BEING ADAPTED TO BLOW WHEN THE ELECTRICAL CURRENT THERETHROUGH EXCEEDS A PREDETERMINED LEVEL, AND A LAYER OF ELECTRICALLY INSULATING GLASS HAVING A MELTING POINT BELOW THAT OF SAID SUBSTRATE BONDED TO SAID SUBSTRATE ON OPPOSITE SIDES OF SAID FUSE METAL AND COVERING SAID FUSE METAL IN INTIMATE CONTACT THEREWITH FOR QUENCHING AND ABSORBING THE FUSE METAL AS IT IS BLOWN WHEREBY ANY ARCS WHICH TEND TO DEVELOP BETWEEN THE FUSE ELECTRODES ARE EFFECTIVELY SUPPRESSED, SAID SUBSTRATE AND SAID FUSE ELEMENT BEING ADAPTED TO MAINTAIN AN ELECTRICAL CONNECTION BETWEEN SAID ELECTRODES UNTIL THE CURRENT THROUGH SAID METAL LAYER INCREASES SUFFICIENTLY TO VAPORIZE THE SAME.
US359569A 1964-04-14 1964-04-14 Precision electrical fuse Expired - Lifetime US3271544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US359569A US3271544A (en) 1964-04-14 1964-04-14 Precision electrical fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US359569A US3271544A (en) 1964-04-14 1964-04-14 Precision electrical fuse

Publications (1)

Publication Number Publication Date
US3271544A true US3271544A (en) 1966-09-06

Family

ID=23414378

Family Applications (1)

Application Number Title Priority Date Filing Date
US359569A Expired - Lifetime US3271544A (en) 1964-04-14 1964-04-14 Precision electrical fuse

Country Status (1)

Country Link
US (1) US3271544A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2478369A1 (en) * 1977-05-28 1981-09-18 Knudsen Nordisk Elect ELECTRICAL FUSED CIRCUIT BREAKER AND METHOD FOR MANUFACTURING THE SAME
US4494104A (en) * 1983-07-18 1985-01-15 Northern Telecom Limited Thermal Fuse
DE3725438A1 (en) * 1987-03-24 1988-10-13 Cooper Ind Inc METHOD FOR PRODUCING A WIRED MICRO FUSE
US5091712A (en) * 1991-03-21 1992-02-25 Gould Inc. Thin film fusible element
US5095297A (en) * 1991-05-14 1992-03-10 Gould Inc. Thin film fuse construction
US5115220A (en) * 1991-01-03 1992-05-19 Gould, Inc. Fuse with thin film fusible element supported on a substrate
DE4200072A1 (en) * 1991-01-03 1992-07-09 Gould Inc ELECTRICAL FUSE WITH A THICK LAYER MELT LADDER ON A SUBSTRATE
US5572181A (en) * 1993-04-30 1996-11-05 Koa Kabushiki Kaisha Overcurrent protection device
US5774037A (en) * 1994-04-13 1998-06-30 Cooper Industries, Inc. Circuit protector and method for making a circuit protector
WO1999016097A1 (en) * 1997-09-25 1999-04-01 Wickmann-Werke Gmbh Electrical fuse element
US20130009745A1 (en) * 2010-03-11 2013-01-10 Auto Kabel Managementgesellschaft Mbh Fuse for a Motor Vehicle Power Line

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1426827A (en) * 1918-03-07 1922-08-22 Alfred L Eustice Method of making fuse links
GB499816A (en) * 1937-07-26 1939-01-26 Allen West & Co Ltd Improvements in or relating to electric circuit interrupters
US2157906A (en) * 1935-06-24 1939-05-09 Gen Electric Electric fuse
US2302820A (en) * 1938-09-01 1942-11-24 Hartford Nat Bank & Trust Co Safety fuse for electric circuits
US2576405A (en) * 1948-05-01 1951-11-27 Mcgraw Electric Co Protector for electric circuits
US2827532A (en) * 1955-10-28 1958-03-18 Frederick J Kozacka Current-limiting low impedance fuses for small current intensities
US2864917A (en) * 1954-12-23 1958-12-16 Edward V Sundt Short-time delay fuse
US2948953A (en) * 1956-02-02 1960-08-16 Illinois Tool Works Method for forming a wire connector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1426827A (en) * 1918-03-07 1922-08-22 Alfred L Eustice Method of making fuse links
US2157906A (en) * 1935-06-24 1939-05-09 Gen Electric Electric fuse
GB499816A (en) * 1937-07-26 1939-01-26 Allen West & Co Ltd Improvements in or relating to electric circuit interrupters
US2302820A (en) * 1938-09-01 1942-11-24 Hartford Nat Bank & Trust Co Safety fuse for electric circuits
US2576405A (en) * 1948-05-01 1951-11-27 Mcgraw Electric Co Protector for electric circuits
US2864917A (en) * 1954-12-23 1958-12-16 Edward V Sundt Short-time delay fuse
US2827532A (en) * 1955-10-28 1958-03-18 Frederick J Kozacka Current-limiting low impedance fuses for small current intensities
US2948953A (en) * 1956-02-02 1960-08-16 Illinois Tool Works Method for forming a wire connector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2478369A1 (en) * 1977-05-28 1981-09-18 Knudsen Nordisk Elect ELECTRICAL FUSED CIRCUIT BREAKER AND METHOD FOR MANUFACTURING THE SAME
US4331947A (en) * 1977-05-28 1982-05-25 Aktieselkabet Laur. Knudsen Nordisk Electricitets Electric safety fuse
US4494104A (en) * 1983-07-18 1985-01-15 Northern Telecom Limited Thermal Fuse
DE3725438A1 (en) * 1987-03-24 1988-10-13 Cooper Ind Inc METHOD FOR PRODUCING A WIRED MICRO FUSE
DE3725438C2 (en) * 1987-03-24 1994-06-01 Cooper Ind Inc Fuse
US5115220A (en) * 1991-01-03 1992-05-19 Gould, Inc. Fuse with thin film fusible element supported on a substrate
DE4200072A1 (en) * 1991-01-03 1992-07-09 Gould Inc ELECTRICAL FUSE WITH A THICK LAYER MELT LADDER ON A SUBSTRATE
US5091712A (en) * 1991-03-21 1992-02-25 Gould Inc. Thin film fusible element
US5095297A (en) * 1991-05-14 1992-03-10 Gould Inc. Thin film fuse construction
US5572181A (en) * 1993-04-30 1996-11-05 Koa Kabushiki Kaisha Overcurrent protection device
US5774037A (en) * 1994-04-13 1998-06-30 Cooper Industries, Inc. Circuit protector and method for making a circuit protector
WO1999016097A1 (en) * 1997-09-25 1999-04-01 Wickmann-Werke Gmbh Electrical fuse element
US20130009745A1 (en) * 2010-03-11 2013-01-10 Auto Kabel Managementgesellschaft Mbh Fuse for a Motor Vehicle Power Line
US9425010B2 (en) * 2010-03-11 2016-08-23 Auto Kabel Managementgesellschaft Mbh Fuse for a motor vehicle power line

Similar Documents

Publication Publication Date Title
US3401452A (en) Method of making a precision electric fuse
EP0275980B1 (en) Sub-miniature fuse
US6034589A (en) Multi-layer and multi-element monolithic surface mount fuse and method of making the same
US4417226A (en) Electrical fuse
WO2010084817A1 (en) Protection element
US6384708B1 (en) Electrical fuse element
US3271544A (en) Precision electrical fuse
US4751489A (en) Subminiature fuses
GB2173054A (en) Subminiature fuses
GB1513932A (en) Protector for electric circuit
US4988969A (en) Higher current carrying capacity 250V subminiature fuse
US2927048A (en) Method of making electrical resistors
US2856488A (en) Current-limiting fuses for small current intensities
US3445798A (en) Short-time melting fuse
US3913050A (en) Fuse assembly for current limiting fuses
US3213242A (en) Current limiting fuse
US3348007A (en) Protectors for electric circuits
US3755769A (en) Modularized fuse with precise gap
US4926543A (en) Method of making a sub-miniature fuse
US4860437A (en) Method of making a sub-miniature fuse
USRE33137E (en) Subminiature fuse
US5122774A (en) Sub-miniature electrical component, particularly a fuse
US3733572A (en) Current limiting fuse
US3222479A (en) High voltage current limiting fuse
US5032817A (en) Sub-miniature electrical component, particularly a fuse