US3259470A - Apparatus for manufacturing shapes of uranium carbide - Google Patents
Apparatus for manufacturing shapes of uranium carbide Download PDFInfo
- Publication number
- US3259470A US3259470A US301215A US30121563A US3259470A US 3259470 A US3259470 A US 3259470A US 301215 A US301215 A US 301215A US 30121563 A US30121563 A US 30121563A US 3259470 A US3259470 A US 3259470A
- Authority
- US
- United States
- Prior art keywords
- shapes
- bodies
- uranium carbide
- uranium
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052770 Uranium Inorganic materials 0.000 title description 14
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title description 14
- 238000004519 manufacturing process Methods 0.000 title description 7
- 238000006243 chemical reaction Methods 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 description 2
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 2
- 229910000439 uranium oxide Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- -1 from uranium carbide Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/928—Carbides of actinides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/51—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on compounds of actinides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to a process for the production of shapes from metal carbides, particularly from uranium carbide, by thermal reaction of compacted bodies composed of a mixture of metal oxide and graphite.
- Uranium carbide in the form of cast rods, can serve as fuel for nuclear reactors.
- the rods can be made, for example, by melting and casting in an arc furnace.
- a uranium carbide is used which is produced by means of the reaction at 1700 C. in a vacuum induction furnace.
- uranium carbide It is known to produce uranium carbide by mixing and compacting uranium dioxide and graphite into bodies, introducing these bodies into a graphite crucible and heating them in this crucible in an induction furnace to temperatures of from 1600 to 1800 C.
- the operations must be carried out in a vacuum, because uranium dioxide and graphite react completely in accordance with the above equation only if the carbon monoxide pressure at all times is less than the equilibrium pressure for the reaction, which is approximately 5 Torr at 1700 C.
- the crucible filled with uranium carbide shapes must be cooled to room temperature in the furnace, because of the danger of oxidation at elevated temperatures.
- the process has the drawback that long heating times and even longer cooling times are required for each change. An increase in output is only possible to a certain extent, because the amount reactable per charge is limited by the size of the available pumps.
- the hot shapes then fall from the shaft-like reaction chamber into a cooling vessel located outside the furnace without coming into contact with the outside atmosphere. While the shapes are being cooled in this vessel, fresh compacted bodies can be introduced into and reacted in the shaft-like reaction chamber.
- compacted bodies consisting of a mixture of uranium oxide and graphite, are preferably introduced from an evacuatable container via a chute that leads the shapes into the upper aperture of the shaft-like reaction cham- 3,259,470 Patented July 5, 1966 ber.
- the evacuatable container is connected with the oven chamber.
- the reaction can be performed practically continuously, so that the amount that can be processed per time unit is a multiple of that reactable by the processes known heretofore.
- the drawing shows one embodiment of an apparatus for carrying out the process.
- the compacted bodies to be reacted are contained in a storage vessel A.
- a conveyor belt B the compacted bodies are transported from this vessel A through a gate C into a tubular chute D, through which they slide over a sieve into a shaft-like graphite crucible E, which acts as a reaction chamber.
- This graphite crucible is located in the evacuated furnace casing Q, whereby the vacuum produced through a suction pipe at the same time reaches the structural parts A, C and D.
- the graphite crucible E is heated by an induction coil F, and the heat is transferred to the compacted bodies in the crucible.
- the uranium carbide shapes produced are discharged from the crucible E in a downward direction by withdrawing the die-shaped bottom closure G of the crucible downwards.
- the uranium carbide shapes then fall into the cooling vessel I which is located outside the furnace. Between the cooling vessel I and the furnace casing Q there is a gate H.
- An apparatus for manufacturing shapes of uranium carbide by heating bodies of a mixture of uranium oxide plus graphite comprising a storage vessel for said bodies, a conveyor belt for receiving the bodies from the storage vessel, a gate for receiving the bodies from the conveyor belt, a tubular chute for receiving the bodies from the gate, a vertical cylindrical reaction chamber of graphite, an induction coil for heating said reaction chamber, means for evacuating said chamber, means for discharging said shapes formed from said bodies at the bottom of said reaction chamber comprising a downwardly retractable, die-shaped seal, a gate for receiving the bodies from the die-shaped seal and -a chamber for receiving the bodies from the gate and for cooling said shapes while maintaining them in a vacuum.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEE0023368 | 1962-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3259470A true US3259470A (en) | 1966-07-05 |
Family
ID=7071048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US301215A Expired - Lifetime US3259470A (en) | 1962-08-10 | 1963-08-09 | Apparatus for manufacturing shapes of uranium carbide |
Country Status (4)
Country | Link |
---|---|
US (1) | US3259470A (en(2012)) |
BE (1) | BE633729A (en(2012)) |
LU (1) | LU43986A1 (en(2012)) |
NL (1) | NL295928A (en(2012)) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753565A (en) * | 1985-07-27 | 1988-06-28 | Metallgesellschaft Aktiengesellschaft | Method of and apparatus for discharging solids from a pressurized container |
WO2003010477A1 (en) * | 2001-07-23 | 2003-02-06 | Inductotherm Corp. | Induction melting furnace with metered discharge |
US10457558B2 (en) * | 2017-06-22 | 2019-10-29 | Westinghouse Electric Company Llc | Method to produce uranium silicides |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US904991A (en) * | 1904-07-14 | 1908-11-24 | Union Carbide Corp | Process of smelting metallic compounds and producing carbids. |
US2869990A (en) * | 1956-04-02 | 1959-01-20 | Sam Tour | Process of producing carbides |
US3019275A (en) * | 1957-11-26 | 1962-01-30 | Heraeus Gmbh W C | Apparatus for heating molten metals in a vacuum chamber |
-
0
- BE BE633729D patent/BE633729A/xx unknown
- NL NL295928D patent/NL295928A/xx unknown
-
1963
- 1963-07-01 LU LU43986D patent/LU43986A1/xx unknown
- 1963-08-09 US US301215A patent/US3259470A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US904991A (en) * | 1904-07-14 | 1908-11-24 | Union Carbide Corp | Process of smelting metallic compounds and producing carbids. |
US2869990A (en) * | 1956-04-02 | 1959-01-20 | Sam Tour | Process of producing carbides |
US3019275A (en) * | 1957-11-26 | 1962-01-30 | Heraeus Gmbh W C | Apparatus for heating molten metals in a vacuum chamber |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753565A (en) * | 1985-07-27 | 1988-06-28 | Metallgesellschaft Aktiengesellschaft | Method of and apparatus for discharging solids from a pressurized container |
WO2003010477A1 (en) * | 2001-07-23 | 2003-02-06 | Inductotherm Corp. | Induction melting furnace with metered discharge |
US6600768B2 (en) * | 2001-07-23 | 2003-07-29 | Inductotherm Corp. | Induction melting furnace with metered discharge |
US10457558B2 (en) * | 2017-06-22 | 2019-10-29 | Westinghouse Electric Company Llc | Method to produce uranium silicides |
Also Published As
Publication number | Publication date |
---|---|
BE633729A (en(2012)) | |
NL295928A (en(2012)) | |
LU43986A1 (en(2012)) | 1963-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3872022A (en) | Sintering uranium oxide in the reaction products of hydrogen-carbon dioxide mixtures | |
US1835024A (en) | Preparation of metal hydrides | |
Williams et al. | Sintering of uranium oxides of composition UO2 to U3O8 in various atmospheres | |
GB2103414A (en) | Nuclear fuel preparation and recycling | |
US3930787A (en) | Sintering furnace with hydrogen carbon dioxide atmosphere | |
US3259470A (en) | Apparatus for manufacturing shapes of uranium carbide | |
US2937939A (en) | Method of producing niobium metal | |
US3845193A (en) | Production of uranium dioxide in a rotary kiln | |
US4200460A (en) | Alloys for gettering moisture and reactive gases | |
US2729542A (en) | Synthesis of silicon carbide | |
US3372213A (en) | Method of manufacturing oxide nuclear fuel containing a boride | |
US3198598A (en) | Methods and apparatus in which a mass of solid material is subjected to two successive treatments by gases | |
US2905528A (en) | Method for preparation of uo2 particles | |
US3258317A (en) | Preparation of dense uranium oxide | |
US3230278A (en) | Method of manufacture of uranium dioxide having a high density | |
US2890110A (en) | Production of plutonium from plutonium fluoride | |
GB949649A (en) | Improvements in or relating to methods and apparatus for forming semi-conductor materials | |
US3180702A (en) | Process for preparing uranium nitride | |
US3250588A (en) | Method of producing uranium carbide | |
Murbach | The Oxidation of" Reactive" Uranium Carbide | |
US3227514A (en) | Method and apparatus of continuously obtaining uranium dioxide with predetermined characteristics from uranium trioxide | |
US3351428A (en) | Process for the production of refractory hard metal materials | |
US3398098A (en) | Preparation of pure dense hypostoichiometric uranium carbide | |
US3463634A (en) | Carbon reduction process | |
US3804928A (en) | Method for preparing massive nitrides |