US3256809A - Printing apparatus comprising two tables and printing machine transfer means - Google Patents

Printing apparatus comprising two tables and printing machine transfer means Download PDF

Info

Publication number
US3256809A
US3256809A US343439A US34343964A US3256809A US 3256809 A US3256809 A US 3256809A US 343439 A US343439 A US 343439A US 34343964 A US34343964 A US 34343964A US 3256809 A US3256809 A US 3256809A
Authority
US
United States
Prior art keywords
machine
printing
tables
transfer means
printing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US343439A
Inventor
Ernest A Gsell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GSELL TEXTILE PRINTING AND FINISHING CORP
Original Assignee
GSELL TEXTILE PRINTING AND FINISHING CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US274512A external-priority patent/US3246599A/en
Application filed by GSELL TEXTILE PRINTING AND FINISHING CORP filed Critical GSELL TEXTILE PRINTING AND FINISHING CORP
Priority to US343439A priority Critical patent/US3256809A/en
Application granted granted Critical
Publication of US3256809A publication Critical patent/US3256809A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • B41F15/0831Machines for printing webs
    • B41F15/0845Machines for printing webs with flat screens
    • B41F15/0859Machines for printing webs with flat screens movable on a long printing table

Definitions

  • This invention relates to printing apparatus and more particularly to apparatus for printing long lengths of ware each length being supported horizontally on one of a plurality of associated longitudinal work tables.
  • This machine simply automated the previously described manual operations, printing alternate blocks on one traverse of the table and then moving backward the length of the table to begin to print the previ ously passed-over blocks.
  • a further object is to provide an improved apparatus for printing lengths of ware and which avoids or minimizes the disadvantages mentioned above.
  • the invention departs from the prior concept of reciprocal motion of one machine associated with a particular table and provides means for operation of one machine in a continuous printing circuit including at least two tables.
  • FIGURE 1 is a plan view of apparatus incorporating my invention in a preferred form and indicating one position of the several elements in operation;
  • FIGURE 2 is a plan view similar to FIGURE 1 indicating another position of the elements in operation;
  • FIGURE 3 is an enlarged side view showing details of a preferred power driven transfer means and its interlocking relation with the end of an associated table;
  • FIGURE 4 is a plan view of the apparatus shown in FIGURE 3;
  • FIGURE 5 is an enlarged plan view of the transfer means indicating one preferred manner in which the transfer means is moved and guided;
  • FIGURE 6 is an enlarged end elevation view partly in cross-section of a work table supporting the printing machine
  • FIGURE 7 is an enlarged side elevation of stop means for positioning the printing machine on the transfer means;
  • FIGURE 8 is an enlarged end elevation view partly in cross-section taken on line 88 of FIGURE 7;
  • FIGURE 9 is an enlarged side elevation of limit switch means taken on line 9-9 of FIGURE 3, and
  • FIGURE 10 is a schematic diagram of a control circuit for operation of the transfer means.
  • FIGURES 1 and 2 of the drawings there is shown tables 1 and 2 having positioned respectively thereon wares 3 and 4 which are long lengths of ware such as fabrics to be printed.
  • Table 1 has attached thereto longitudinally disposed guide tracks 5, and 6 on which is movably supported an automatic self-propelled printing machine 7 adapted to tranverse the length of table 1 from its end 1a to its opposite end 1b and to print on the ware alternate or preselected blocks of design depending upon the selected indexing of the machine.
  • the printing machine is adapted to print only in its forwardly moving direction, i.e., toward end 112 of table 1.
  • the machine After printing selected blocks in one pass over the ware, the machine is then reversed to move back to its starting position, i.e., end In of table 1, and is then indexed to print the blocks which were not printed on the first pass. Indexing of the machine is accomplished by stops (not shown) positioned on table 1 and cooperative automatic timing mechanism (not shown) for controlling the dwell time necessary for printing at each stop position.
  • the machine 7 prints only in one direction of travel and does not print on it reverse to its initial starting position. Machines of this type are conventional, one such machine being described and disclosed in United States Patent No. 3,106,890 and sold in the United States by Societe Alsacienne de Constructions Mechaniques Mulhouse, France. Each machine is powered by an electric motor 7a mounted in the machine and receiving power from an electrified track (not shown) mounted on the associated table.
  • table 2 is positioned adjacent and longitudinally parallel with table 1 and is also provided with two tracks 8 and 9 affixed to the table 2 and dimensioned to guide machine 7 there along.
  • Table 2 is also provided with indexing stops (not shown) as described for table 1.
  • applicant provides a transfer means indicated in FIG- URES 1 and 2 as the transfer tables 10 and 11 having respectively guide tracks 12 and 13 on tables 10 and 14 and 15 on table 11, the pairs of guide rails 12 and 13 and 14 and 15 being parallel and spaced for alignment with the guide tracks 5 and 6 and 8 and 9, respectively, of the tables 1 and 2.
  • table 10 is supported on one sideby caster wheels 16 and 17, operating on a circularly curved track 18 and is supported on the other side by caster wheels 19 and 20 which, as will be described in detail later, follow a circularly curved track 21.
  • a pivoted guide arm 22 (FIGURES 1, 2, 4 and 5) is rigidly secured as by welding or other means to the side of table 10 adjacent the center line 23 between the tables 1 and 2.
  • the other end of arm 22 is curved downwardly to engage a pivot socket 22a mounted on the flood and to thereby provide a pivot point on the center line 23 from which the table 10 is guided in its movement to the position shown in FIGURE 2.
  • the table is also rotated 180 in its movement such that the guide rails 12 and 13 of table 10 will be aligned with the guide tracks 8 and 9 of table 2.
  • the transfer table 10 is provided with a reversible motor drive mechanism 24 mounted on brackets 25 and 26, connecting'the side frame portions of the transfer table 10 and is supplied with electrical energy through a retractable electric line 27, best seen in FIGURE 3 and through a conventional stop, forward and reverse push button station 28 which controls the operation of the reversible motor 24.
  • reversible motor 24 is connected to drive a wheel 29.spring biased as by spring 30 to provide traction between the wheel 29 and the track 21.
  • operation of motor- 27 in the forward direction causes the drive wheel 29 to move along the track 21 in a circular arc to pivot the table 10 about the pivot 22a to the position of table 10 as indicated at end 2b of table 2 in FIGURE 2.
  • the table 10 is moved back to its original position adjacent table 1 by pressing the reverse button of push button station 28 and may be manually stopped at any point by depressing the stop button of the station 28.
  • any suitable limit switch and stop means is provided.
  • I provide a limit switch. 31 bolted or otherwise fixed to one end of the innerside of the frame of the table 10 and having an operating arm 33 projecting beyond one end of the guide rail 13 to engage an inclined surfaced stop member 35 fixed by welding or other suitable means to the adjacent end of guide track 6 of table 1.
  • Limit switch 31 is electrically connected as by cable 38 to the reverse drivemechanism 24 to interrupt power to the drive mechanism when the arm 33 of switch 31 is pivoted by engagement with the incline-d surface of stop member 35.
  • the arm 33 of switch 31 is operated by the inclined stop 35 to stop movement of the table 10 when its guide tracks are aligned with the guide tracks of table 1.
  • the arm 33 may be made adjustable on the shaft 31a of switch 31 by securing the arm thereto with a set screw such that the arm 33 may be set to engage the stop at selected points along is inclined surface.
  • the drive means 24 may be equipped with brake mans responsive to interruption of current to the drive means.
  • the switch 32 is connected by cable 39 to the drive means 24.
  • transfer table 10 may be positioned as shown in FIGURE 1 to receive and support the printing machine 7 and thereafter swung to the position shown in FIGURE 2 to reverse the heading of machine 7 and position the machine to be moved to table 2.
  • I provide opposed depressible lockmeans 40 and 41 adapted to cooperate with stop means 42 on the machine 7 to fix the position of the machine on table 10 during transfer.
  • the lock means 40 and 41 may be depressed manually or by the solenoid means 43, 44 or by any other suitable means.
  • FIGURE 10 illustrates one suitable control circuit wherein the forward and reverse windings of the reversible drive motor mechanism 24 are indicated diagrammatically by the circles F and R, respectively.
  • the forward winding F is supplied with suitable electric power from supply lines 45 and 46, one side of winding F being connected by line 47 to line 46 and the other side thereof being connected by line 48, normally open power contacts 49 and line 50 to supply line 45.
  • the reverse winding R is also supplied with power from the supply lines 45 and 46.
  • one side of winding R is connected by a line 51 to line 46 and the other side thereof is connected by a line 52 to one side of normally open power contacts 53, the other side of which is connected by a line 54 to power supply line 45.
  • the previously mentioned push button station 28 includes a normally closed stop contactor 55, a normally open forward contactor S6 and a normally open reverse contactor 57 interlocked in the usual manner to prevent closing both the forward and reverse contacts at the same time.
  • One side of the stop contacts 55 is connected by a line 58 to line 45, the other side being connected by common line 59 to one side of the contacts 56 and 57.
  • the other side of forward contacts 56 is connected by lines 60, 61, 62 and 63 in series with an operating coil 64 for the contacts 49, the limit switch 32 (shown also in FIGURE 4) and normally closed contacts 65 operated by coil 44 (shown also in FIGURE 3).
  • One side of coil 44 is connected by line 66 to supply line 45, the other side being connected by line 67, a normally open position release switch 68 and a line 69 to the supply line 46;
  • the control circuit for operation of the reversing power contacts 53 is similar to the circuit described above for operating the forward power contacts 49.
  • an operating coil 70 for the contacts 53 has one side connected by line 71 to the normally open switch 57 and its other side connected by lines 72, 73 and 74, in series with the normally closed limit switch 31 (shown also in FIG- URE 4) and normally closed contacts 75, to the supply line 46.
  • Coil 43 (also shown in FIGURE 3) is connected between the supply lines 45 and 46 and in series with a normally open position release switch 76 by lines 77, 78 and 79.
  • Transfer table 11 shown in FIGURES 1 and 2 and located at the opposite end of tables 1 and 2 from transfer table need not be described in detail since in this preferred embodiment it is simply a duplication of table 10 and its associated stops, limit switches and controls.
  • table 1 is indexed for the printing of selected blocks such that adjacent blocks are not printed on the same pass.
  • the machine may be indexed to print every other block, which we shall call the odd blocks.
  • the machine 7 then is propelled normally by electric drive contained therein and automatically prints the odd blocks.
  • the machine may be manually pushed onto the transfer table 10 and locked in position by the lock means 40, 41.
  • forward push button of station 28 is pushed to rotate the table 10 to the position shown in FIGURE 2, the lock means 40, 41 is released and the machine is pushed onto table 2.
  • the machine having thus been rotated 180 is in a position to print in its normal direction of travel on table 2.
  • Table 2 is indexed for odd block printing and the machine moves along table 2 toward its end 2a. While the machine is printing on table 2, the printed blocks on table 1 are being allowed time to dry. 7
  • The. machine then prints the even numbered blocks on table 1, thereafter is transferred by table 10 to .table 2 and proceeds to print the even numbered blocks on table and the process thus becomes one continuous operation wherein the printing machine has no idle time.
  • Each of the tables 10 and 11 are operated back to receiving position of one table when they have discharged the machine to the other of the tables.
  • the tables need not be limited to a pair since continuous operation could be obtained from three tables in a triangle, four tables in a rectangle, etc. or a pair of in-line tables could be used with an adjacent pair of inline tables and still provide the advantages of continuous circuit and continuous printing.
  • Initial cost is reduced by enabling one machine to serve a plurality of work tables. Operating costs are reduced by eliminating delays otherwise required for drying time and ware changeover time. Also since safety requires one operator for each machine to keep constant watch for misprinting, loss of print paint or other fault, the operator cost per yardage of printed material is reduced by avoiding delay time in operation of the machine.
  • a ware to be printed is positioned on the upper horizontal surface of an elongate work table having longitudinally disposed guide tracks for guiding a unidirectionally traversable printing machine along and above said horizontal surface comprising a second elongate work table disposed in coplanar relation adjacent to said first mentioned iWOIk table,
  • a transfer means disposed to supportingly receive said printing machine at the end of its travel along said first mentioned work table
  • Printing apparatus as set forth in claim 1 including means to lock said printing machine on said transfer means during displacement thereof.
  • said transfer means includes a reversible motor drive mechanism mounted thereon to effect selective displacement thereof and a pivotal guide means connected to said transfer means and to a fixed object to determine the path of travel of said transfer means for selected alignment there of with said guide tracks.
  • said transfer means comprise a wheeled supporting platform, a pair of guide and support tracks supported by said platform and spaced for selective alignment with the guide means associated with each table, and means connected to said movable platform and adapted to guide said platform in a 180 are about a pivot point located substantially on a center line between the parallel tables for swinging said platform from an initial position in which the guide tracks thereof are aligned with one table to a position in which 8 the'guide tracks thereof are aligned with the guide tracks of an adjacent of the tables while the platform is simultaneously rotated 180 to face in the opposite direction from its initial position.

Description

June 21, 1966 E. A. GSELL 3,
PRINTING APPARATUS COMPRISING TWO TABLES AND PRINTING MACHINE TRANSFER MEANS Original Filed April 22. 1965 6 Sheets-Sheet l Q INVENTOR. Q flax Es 1- 4. Q's ELL ATTORNE Y June 21, 1966 E. A. GSELL PRINTING APPARATUS COMPRISING TWO TABLES AND PRINTING MACHINE TRANSFER MEANS Original Filed April 22. 1963 6 Sheets-Sheet 2 INVENTOR. fxewesr $9544 Wk ATTORNEYS June 21, 1966 E. A. GSELL 3,256,809
PRINTING APPARATUS COMPRISING TWO TABLES AND PRINTING MACHINE TRANSFER MEANS Original Filed April 22. 1963 6 Sheets-Sheet 5 %4 a 1: 1- @H' P- l ATTORNEYS June 21, 1966 E. A. GSELL PRINTING APPARATUS COMPRISING TWO TABLES AND PRINTING MACHINE TRANSFER MEANS Original Filed April 22, 1963 6 Sheets-Sheet 4 INVENTOR. fe/vss 7- ,4 W
ATTORNEYS June 21, 1966 E. A GSELL 3,256,809
PRINTING APPARATUS COMPRISING TWO TABLES AND PRINTING MACHINE TRANSFER MEANS Original Filed April 22. 1963 6 Sheets-Sheet 5 INVENTOR. m/5s?- 4. QsELL ATTORNEY S June 21, 1966 E. A GSELL PRINTING APPARATUS COMPRISING TWO TABLES AND PRINTING MACHINE TRANSFER MEANS Original Filed April 22. 1963 6 Sheets-Sheet 6' 9 9/. W 7 M 0 M 5/. w E a 4 W 5 w 7 6 i w 4 1. 4 J 4 w a 4 Y a y w 7/. H 7 W 0 a 7 75 M) M l l ul lw .IWHI nd Q1 W W l- L H m 2 6 W F M 5 6 0 8 5 4 5 5 INVENTOR. 60/55 7- ,4. 6'3 54 1.
ATTORNEY S United States Patent Divided and this application Jan. 27, 1964, Ser. No.
Claims. ((31. 101-123 This application is .a division of copending United States application Serial No. 274,512, filed Apr. 22, 1963.
This invention relates to printing apparatus and more particularly to apparatus for printing long lengths of ware each length being supported horizontally on one of a plurality of associated longitudinal work tables.
In the past such wares have been printed manually by the screen process of printing in which'a screen is placed over an area, usually called a block, which is to be printed, and a manually operated squeegee is drawn across the screen to deposit the printing paint on the block or area to be printed. The screen is then moved to an area one block removed from the last printed block and the process repeated until the end of the ware length is reached. Thereafter the operator moves the screen back to the original end of the table and begins to print the alternative blocks. This procedure is used to allow the first printed block time to dry sufiiciently such that printing an adjacent block will not smear the edge portions.
Subsequently, the process was automated by the provision of a printing machine indexed to print alternate blocks, automatically movable to succeeding alternate blocks and automatic as to paint feed and squeegee opera-tion.
This machine, however, simply automated the previously described manual operations, printing alternate blocks on one traverse of the table and then moving backward the length of the table to begin to print the previ ously passed-over blocks.
Thus, while this machine increased production and cut labor cost, certain disadvantages were inherent. One disadvantag is the cost of the machine and the requirement of one machine for each table. Another disadvantage is the loss of etfective use of the speed of the machine in that the drying time of the print paint was greater than the time required by the machine to print one table length of material. No suitable means were found to decrease the paint drying time to match the machine printing time and extension of the tables was impractical because of building limitations. The tables normally are about 85 yards in length. A further disadvantage is that the machine must remain idle after the completion of printing-on a ware and until the ware is removed and a new ware accurately positioned on the table. Another disadvantage is that for safety it is desirable to have one man watch each printing machine in operation. Otherwise should a machine mis-index, run out of paint or fault in some way a complete length of ware could be destroyed.
It is an object of this invention to provide an improved apparatus for printing lengths of ware associated with elongated work tables.
A further object is to provide an improved apparatus for printing lengths of ware and which avoids or minimizes the disadvantages mentioned above.
With this view in mind, the invention departs from the prior concept of reciprocal motion of one machine associated with a particular table and provides means for operation of one machine in a continuous printing circuit including at least two tables.
Other objects and advantages of the invention will be set forth in the following specification and claims will be "ice ' 2 ascertainable from the appended drawings which illustrate, by way of example, the principles of the invention as the Same are incorporated in a presently preferred embodiment thereof.
Referring to the drawings:
FIGURE 1 is a plan view of apparatus incorporating my invention in a preferred form and indicating one position of the several elements in operation;
FIGURE 2 is a plan view similar to FIGURE 1 indicating another position of the elements in operation;
FIGURE 3 is an enlarged side view showing details of a preferred power driven transfer means and its interlocking relation with the end of an associated table;
FIGURE 4 is a plan view of the apparatus shown in FIGURE 3;
FIGURE 5 is an enlarged plan view of the transfer means indicating one preferred manner in which the transfer means is moved and guided;
FIGURE 6 is an enlarged end elevation view partly in cross-section of a work table supporting the printing machine;
FIGURE 7 is an enlarged side elevation of stop means for positioning the printing machine on the transfer means; FIGURE 8 is an enlarged end elevation view partly in cross-section taken on line 88 of FIGURE 7;
FIGURE 9 is an enlarged side elevation of limit switch means taken on line 9-9 of FIGURE 3, and
FIGURE 10 is a schematic diagram of a control circuit for operation of the transfer means.
Referring to FIGURES 1 and 2 of the drawings there is shown tables 1 and 2 having positioned respectively thereon wares 3 and 4 which are long lengths of ware such as fabrics to be printed. Table 1 has attached thereto longitudinally disposed guide tracks 5, and 6 on which is movably supported an automatic self-propelled printing machine 7 adapted to tranverse the length of table 1 from its end 1a to its opposite end 1b and to print on the ware alternate or preselected blocks of design depending upon the selected indexing of the machine. In this arrangement for automatic printing, the printing machine is adapted to print only in its forwardly moving direction, i.e., toward end 112 of table 1. After printing selected blocks in one pass over the ware, the machine is then reversed to move back to its starting position, i.e., end In of table 1, and is then indexed to print the blocks which were not printed on the first pass. Indexing of the machine is accomplished by stops (not shown) positioned on table 1 and cooperative automatic timing mechanism (not shown) for controlling the dwell time necessary for printing at each stop position. The machine 7 prints only in one direction of travel and does not print on it reverse to its initial starting position. Machines of this type are conventional, one such machine being described and disclosed in United States Patent No. 3,106,890 and sold in the United States by Societe Alsacienne de Constructions Mechaniques Mulhouse, France. Each machine is powered by an electric motor 7a mounted in the machine and receiving power from an electrified track (not shown) mounted on the associated table.
In accordance with applicants invention, as shown in the preferred embodiment of FIGURES 1 and 2, table 2 is positioned adjacent and longitudinally parallel with table 1 and is also provided with two tracks 8 and 9 affixed to the table 2 and dimensioned to guide machine 7 there along. Table 2 is also provided with indexing stops (not shown) as described for table 1. In addition, applicant provides a transfer means indicated in FIG- URES 1 and 2 as the transfer tables 10 and 11 having respectively guide tracks 12 and 13 on tables 10 and 14 and 15 on table 11, the pairs of guide rails 12 and 13 and 14 and 15 being parallel and spaced for alignment with the guide tracks 5 and 6 and 8 and 9, respectively, of the tables 1 and 2.
As shown in FIGURES 1 and 2, table 10 is supported on one sideby caster wheels 16 and 17, operating on a circularly curved track 18 and is supported on the other side by caster wheels 19 and 20 which, as will be described in detail later, follow a circularly curved track 21.
In order to guide the transfer table 10 from the position shown in FIGURE 1 at the end 1b of table 1 to the position shown in FIGURE 2 at the end 2b of table 2 a pivoted guide arm 22 (FIGURES 1, 2, 4 and 5) is rigidly secured as by welding or other means to the side of table 10 adjacent the center line 23 between the tables 1 and 2. The other end of arm 22 is curved downwardly to engage a pivot socket 22a mounted on the flood and to thereby provide a pivot point on the center line 23 from which the table 10 is guided in its movement to the position shown in FIGURE 2. In the guiding of table 10 from its position shown in FIGURE 1 to the position shown in FIGURE 2, the table is also rotated 180 in its movement such that the guide rails 12 and 13 of table 10 will be aligned with the guide tracks 8 and 9 of table 2.
Referring to FIGURE 4, the transfer table 10 is provided with a reversible motor drive mechanism 24 mounted on brackets 25 and 26, connecting'the side frame portions of the transfer table 10 and is supplied with electrical energy through a retractable electric line 27, best seen in FIGURE 3 and through a conventional stop, forward and reverse push button station 28 which controls the operation of the reversible motor 24. As shown in FIGURE 3, reversible motor 24 is connected to drive a wheel 29.spring biased as by spring 30 to provide traction between the wheel 29 and the track 21. Thus, operation of motor- 27 in the forward direction causes the drive wheel 29 to move along the track 21 in a circular arc to pivot the table 10 about the pivot 22a to the position of table 10 as indicated at end 2b of table 2 in FIGURE 2. The table 10 is moved back to its original position adjacent table 1 by pressing the reverse button of push button station 28 and may be manually stopped at any point by depressing the stop button of the station 28.
To automatically stop movement of the table '10 when its guide rails 12 and 13 are aligned either with the guide rails 5 and 6 of table 1 or guide rails 8 and 9 of table 2 any suitable limit switch and stop means is provided. In the preferred embodiment, for example, (see FIG- URES 3 and 4), I provide a limit switch. 31 bolted or otherwise fixed to one end of the innerside of the frame of the table 10 and having an operating arm 33 projecting beyond one end of the guide rail 13 to engage an inclined surfaced stop member 35 fixed by welding or other suitable means to the adjacent end of guide track 6 of table 1. Limit switch 31 is electrically connected as by cable 38 to the reverse drivemechanism 24 to interrupt power to the drive mechanism when the arm 33 of switch 31 is pivoted by engagement with the incline-d surface of stop member 35. Thus, when the table 10 is rotated in a counterclockwise direction as viewed in FIGURE 4, the arm 33 of switch 31 is operated by the inclined stop 35 to stop movement of the table 10 when its guide tracks are aligned with the guide tracks of table 1. To provide for more accurate alignment should the need arise in a particular installation, the arm 33 may be made adjustable on the shaft 31a of switch 31 by securing the arm thereto with a set screw such that the arm 33 may be set to engage the stop at selected points along is inclined surface. Also, if desired, the drive means 24 may be equipped with brake mans responsive to interruption of current to the drive means.
To provide for stopping the table 10 when it is moved clockwise from the position shown in FIGURE 1 to the position shown in FIGURE 2, I provide a similar limit switch 32 having a projecting arm 34 and fixed to the 4 frame of table 10 adjacent the other end of guide track 13 as shown in FIGURE 4 and an additional inclined surface stop member 36 fixed to table 2 adjacent the end of its guide track 8 as shown in FIGURE 2. The switch 32 is connected by cable 39 to the drive means 24. Thus, transfer table 10 may be positioned as shown in FIGURE 1 to receive and support the printing machine 7 and thereafter swung to the position shown in FIGURE 2 to reverse the heading of machine 7 and position the machine to be moved to table 2.
To avoid the possibility of machine 7 rolling off the table It) during transfer, I provide opposed depressible lockmeans 40 and 41 adapted to cooperate with stop means 42 on the machine 7 to fix the position of the machine on table 10 during transfer. The lock means 40 and 41 may be depressed manually or by the solenoid means 43, 44 or by any other suitable means.
Insofar as operation of the reversible drive means 24 and the solenoids 44, 43 is concerned, any suitable conventional control circuit may be employed. FIGURE 10 illustrates one suitable control circuit wherein the forward and reverse windings of the reversible drive motor mechanism 24 are indicated diagrammatically by the circles F and R, respectively. The forward winding F is supplied with suitable electric power from supply lines 45 and 46, one side of winding F being connected by line 47 to line 46 and the other side thereof being connected by line 48, normally open power contacts 49 and line 50 to supply line 45. The reverse winding R is also supplied with power from the supply lines 45 and 46. Thus one side of winding R is connected by a line 51 to line 46 and the other side thereof is connected by a line 52 to one side of normally open power contacts 53, the other side of which is connected by a line 54 to power supply line 45.
To control the operation of the power contacts 49 and 53 and hence the power supply to the windings F and R,
the previously mentioned push button station 28 includes a normally closed stop contactor 55, a normally open forward contactor S6 and a normally open reverse contactor 57 interlocked in the usual manner to prevent closing both the forward and reverse contacts at the same time.
One side of the stop contacts 55 is connected by a line 58 to line 45, the other side being connected by common line 59 to one side of the contacts 56 and 57. The other side of forward contacts 56 is connected by lines 60, 61, 62 and 63 in series with an operating coil 64 for the contacts 49, the limit switch 32 (shown also in FIGURE 4) and normally closed contacts 65 operated by coil 44 (shown also in FIGURE 3). One side of coil 44 is connected by line 66 to supply line 45, the other side being connected by line 67, a normally open position release switch 68 and a line 69 to the supply line 46;
The control circuit for operation of the reversing power contacts 53 is similar to the circuit described above for operating the forward power contacts 49. Thus, an operating coil 70 for the contacts 53 has one side connected by line 71 to the normally open switch 57 and its other side connected by lines 72, 73 and 74, in series with the normally closed limit switch 31 (shown also in FIG- URE 4) and normally closed contacts 75, to the supply line 46.
Coil 43 (also shown in FIGURE 3) is connected between the supply lines 45 and 46 and in series with a normally open position release switch 76 by lines 77, 78 and 79.
In operation of the above described circuit power to either field winding is interrupted by opening the normally closed stop switch 55. Closing the forward switch 56 closes the stop switch 55 and supplies power to coil 64 to close the power contacts 49 providing the limit switch 32 in closed and the position contacts 65 are closed. Limit switch 32 is open only when the support table has reached the limit of its travel and position con tacts 65 are open only when switch 68 is depressed to move the printing machine off the transfer table. Operation of the drive mechanism in reverseis responsive to closing reverse switch 57 the effect of which is controlled by the limit switch 31 as regards travel of the support table and position contacts 75 controlled by the position release switch 76.
Transfer table 11 shown in FIGURES 1 and 2 and located at the opposite end of tables 1 and 2 from transfer table need not be described in detail since in this preferred embodiment it is simply a duplication of table 10 and its associated stops, limit switches and controls.
Operation In accordance with applicants invention, the above described apparatus provides for closed circuit operation of automatic printing machinery with attendant advantages as have been mentioned.
Thus, with printing machine 7 at end 1a. of table 1, table 1 is indexed for the printing of selected blocks such that adjacent blocks are not printed on the same pass. For example, the machine may be indexed to print every other block, which we shall call the odd blocks. The machine 7 then is propelled normally by electric drive contained therein and automatically prints the odd blocks. Having reached end 112 of table 1 the machine may be manually pushed onto the transfer table 10 and locked in position by the lock means 40, 41. forward push button of station 28 is pushed to rotate the table 10 to the position shown in FIGURE 2, the lock means 40, 41 is released and the machine is pushed onto table 2. The machine having thus been rotated 180 is in a position to print in its normal direction of travel on table 2. Table 2 is indexed for odd block printing and the machine moves along table 2 toward its end 2a. While the machine is printing on table 2, the printed blocks on table 1 are being allowed time to dry. 7
When the machine reaches end 2a of table 2 it is then rolled onto the aligned guide tracks of transfer table 11, locked in position as described with respect to table 10 and the reverse button of a control station (not shown) identical with station 28 is pushed to rotate table 11 for alignment of its guide tracks with the guide tracks of table 1. The printing machine is now rolled onto table 1 and the closed circuit is completed.
The. machine then prints the even numbered blocks on table 1, thereafter is transferred by table 10 to .table 2 and proceeds to print the even numbered blocks on table and the process thus becomes one continuous operation wherein the printing machine has no idle time. Each of the tables 10 and 11 are operated back to receiving position of one table when they have discharged the machine to the other of the tables.
. Modifications In the preferred embodiment disclosed above adjacent parallel tables have been employed on the basis that this arrangement is economical of floor space and of movement of an operator tending the machine. It is appreciated, however, that the advantages of closed circuit operation could be obtained even though the tables were not parallel or adjacent. For example, if the tables were not parallel the 180 pivot of the transfer tables would be modified to accommodate the non-parallel relation of the tables. Insofar as the tables being adjacent is concerned the pivot point could be moved to provide for a transfer from one table to a table, say two tables removed therefrom.
Thereafter the Also the tables need not be limited to a pair since continuous operation could be obtained from three tables in a triangle, four tables in a rectangle, etc. or a pair of in-line tables could be used with an adjacent pair of inline tables and still provide the advantages of continuous circuit and continuous printing.
It is also appreciated that automatic printing machines now on the market are designed to print on operation only in one direction, in view of the fact that operation of such machines has heretofore been limited to operation on one table and it is thus desirable to return the machine to the starting end of the table for the second pass, since the blocks at that end have had the most time to dry. However, for the situation where it is desirable to have the machine print in either direction of travel it becomes merely a matter of repositioning the general stop and limit switch means.
With the above in mind and for machines adapted to print in either direction, it will not be necessary to rotate the'machine in its transfer to an associate table. Under those circumstances the transfer means need be provided only with guide means for sideward movement in order to effect alignment of its tracks with the tracks of associated tables which could be accomplished with linear guide means, such as rails, positioned normal to the longitudinal axis of the elongated work tables. This arrange ment would also provide closed circuit continuous operation and its attendant advantages.
From the above description it should be apparent that applicants invention provides each of the advantages mentioned earlier in the specification, to wit:
Initial cost is reduced by enabling one machine to serve a plurality of work tables. Operating costs are reduced by eliminating delays otherwise required for drying time and ware changeover time. Also since safety requires one operator for each machine to keep constant watch for misprinting, loss of print paint or other fault, the operator cost per yardage of printed material is reduced by avoiding delay time in operation of the machine.
While I have illustrated in the attached drawing and described in the specification, by way of example, a preferred embodiment of the invention, it will be apparent to those skilled in the art from a reading of the specification and reference to the drawings that various changes and modifications may be made without departing from the true spirit and scope of the invention, and it is intended that all such changes and modifications be included in the attached claims.
I claim:
1. In printing apparatus of the type wherein a ware to be printed is positioned on the upper horizontal surface of an elongate work table having longitudinally disposed guide tracks for guiding a unidirectionally traversable printing machine along and above said horizontal surface comprising a second elongate work table disposed in coplanar relation adjacent to said first mentioned iWOIk table,
a transfer means disposed to supportingly receive said printing machine at the end of its travel along said first mentioned work table,
means for selectively displacing said transfer means from its printing machine receiving location at the terminal end of said first mentioned work table to a printing machine delivering location at the initial 3. Printing apparatus as set forth in claim 1 including means to lock said printing machine on said transfer means during displacement thereof.
4. Apparatusas set forth in claim 1 wherein said transfer means includes a reversible motor drive mechanism mounted thereon to effect selective displacement thereof and a pivotal guide means connected to said transfer means and to a fixed object to determine the path of travel of said transfer means for selected alignment there of with said guide tracks.
5. Apparatus as set forth in claim 1 wherein said transfer means comprise a wheeled supporting platform, a pair of guide and support tracks supported by said platform and spaced for selective alignment with the guide means associated with each table, and means connected to said movable platform and adapted to guide said platform in a 180 are about a pivot point located substantially on a center line between the parallel tables for swinging said platform from an initial position in which the guide tracks thereof are aligned with one table to a position in which 8 the'guide tracks thereof are aligned with the guide tracks of an adjacent of the tables while the platform is simultaneously rotated 180 to face in the opposite direction from its initial position.
References Cited by the Examiner UNITED STATES PATENTS ROBERT E. PULP-REY, Primary Examiner.
EUGENE R. CAPOZIO, Examiner.
20 HARLEIGH P. EVVELL, Assistant Examiner.

Claims (1)

1. IN PRINTING APPARATUS OF THE TYPE WHEREIN A WARE TO BE PRINTED IS POSITIONED ON THE UPPER HORIZONTAL SURFACE OF AN ELONGATE WORK TABLE HAVING LONGITUDINALLY DISPOSED GUIDE TRACKS FOR GUIDING A UNDIRECTIONALLY TRAVERSABLE PRINTING MACHINE ALONG AND ABOVE SAID HORIZONTAL SURFACE COMPRISING A SECOND ELONGATE WORK TABLE DISPOSED IN COPLANAR RELATION ADJACENT TO SAID FIRST MENTIONED WORK TABLE, A TRANSFER MEANS DISPOSED TO SUPPORTINGLY RECEIVE SAID PRINTING MACHINE OF THE END OF ITS TRAVEL ALONG SAID FIRST MENTIONED WORK TABLE, MEANS FOR SELECTIVELY DISPLACING SAID TRANSFER MEANS FROM ITS PRINTING MACHINE RECEIVING LOCATION AT THE TERMINAL END OF SAID FIRST MENTIONED WORK TABLE TO A PRINTING MACHINE DELIVERING LOCATION AT THE INTIAL END OF SAID SECOND WORK TABLE, AND MEANS RESPONSIVE TO THE PROXIMITY OF SAID TRANSFER MEANS TO SAID SECOND WORK TABLE FOR DEACTIVATING SAID DISPLACING MEANS.
US343439A 1963-04-22 1964-01-27 Printing apparatus comprising two tables and printing machine transfer means Expired - Lifetime US3256809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US343439A US3256809A (en) 1963-04-22 1964-01-27 Printing apparatus comprising two tables and printing machine transfer means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US274512A US3246599A (en) 1963-04-22 1963-04-22 Method of printing in a continuous circuit
US343439A US3256809A (en) 1963-04-22 1964-01-27 Printing apparatus comprising two tables and printing machine transfer means

Publications (1)

Publication Number Publication Date
US3256809A true US3256809A (en) 1966-06-21

Family

ID=26956872

Family Applications (1)

Application Number Title Priority Date Filing Date
US343439A Expired - Lifetime US3256809A (en) 1963-04-22 1964-01-27 Printing apparatus comprising two tables and printing machine transfer means

Country Status (1)

Country Link
US (1) US3256809A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779161A (en) * 1970-09-28 1973-12-18 Kurashiki Boseki Kk Screen printer with ink level sensing and control
US3830385A (en) * 1970-12-03 1974-08-20 Saginaw Prod Corp Baggage cart
US4389941A (en) * 1980-11-21 1983-06-28 Si Handling Systems Inc. Driverless vehicle conveyor system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE214462C (en) *
US1049550A (en) * 1913-01-07 Tremmel Art Glass Works Glass-beveling machine.
US1795846A (en) * 1929-06-27 1931-03-10 Libbey Owens Ford Glass Co Car or table transfer means
US2485289A (en) * 1945-09-12 1949-10-18 Jane Frantisek Apparatus for printing on fabrics, paper, or the like
US3106890A (en) * 1961-01-26 1963-10-15 Alsacienne Constr Meca Frame printing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE214462C (en) *
US1049550A (en) * 1913-01-07 Tremmel Art Glass Works Glass-beveling machine.
US1795846A (en) * 1929-06-27 1931-03-10 Libbey Owens Ford Glass Co Car or table transfer means
US2485289A (en) * 1945-09-12 1949-10-18 Jane Frantisek Apparatus for printing on fabrics, paper, or the like
US3106890A (en) * 1961-01-26 1963-10-15 Alsacienne Constr Meca Frame printing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779161A (en) * 1970-09-28 1973-12-18 Kurashiki Boseki Kk Screen printer with ink level sensing and control
US3830385A (en) * 1970-12-03 1974-08-20 Saginaw Prod Corp Baggage cart
US4389941A (en) * 1980-11-21 1983-06-28 Si Handling Systems Inc. Driverless vehicle conveyor system

Similar Documents

Publication Publication Date Title
US3044426A (en) Work-handling apparatus for quilting machines
US1369934A (en) Branding-machine
US3809303A (en) Device for guiding printed paper webs from a printing machine
US3256809A (en) Printing apparatus comprising two tables and printing machine transfer means
EP0314036A2 (en) Apparatus for laminating and cutting photoresist webs
US2919790A (en) Conveyer
US1836690A (en) Transfer apparatus for strip material
US1966869A (en) Apparatus for grinding the edges of glass sheets
US2079251A (en) Toy railway switch-throwing mechanism
GB1270357A (en) Tire ply server
US3246599A (en) Method of printing in a continuous circuit
US2908405A (en) Mechanism for the operation of the transfer table of a press
US3509826A (en) Conveyor system
DE2134375B2 (en) Automatic device for loading cutting machines with stacked goods and for removing and stacking the cut goods by means of two lift columns assigned to the machine, on which a movable carrier for receiving the cut goods is arranged
US2760654A (en) Sorting machine for paper forms
US3610017A (en) Apparatus for forming metal
US3977537A (en) Sheet piling method and apparatus
GB1385771A (en) Automatic scribing machine
US2976777A (en) Pattern for tracer controlled machine tool
US3391494A (en) Electrical control arrangement for a sandblasting machine
US3374733A (en) Card printing machine and type inking apparatus
US1723505A (en) Huston
US3540568A (en) Apparatus for turning and aligning of workpieces
US2009127A (en) Apparatus for transporting ingots
US3712105A (en) Method of forming metal