US3254496A - Natural gas liquefaction process - Google Patents
Natural gas liquefaction process Download PDFInfo
- Publication number
- US3254496A US3254496A US270109A US27010963A US3254496A US 3254496 A US3254496 A US 3254496A US 270109 A US270109 A US 270109A US 27010963 A US27010963 A US 27010963A US 3254496 A US3254496 A US 3254496A
- Authority
- US
- United States
- Prior art keywords
- natural gas
- gas
- liquid
- cycle
- refrigeration cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 150
- 239000003345 natural gas Substances 0.000 title claims description 73
- 238000000034 method Methods 0.000 title claims description 50
- 239000007789 gas Substances 0.000 claims description 120
- 230000007935 neutral effect Effects 0.000 claims description 66
- 239000003949 liquefied natural gas Substances 0.000 claims description 56
- 239000007788 liquid Substances 0.000 claims description 49
- 238000005057 refrigeration Methods 0.000 claims description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 238000009835 boiling Methods 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 239000001307 helium Substances 0.000 claims description 9
- 229910052734 helium Inorganic materials 0.000 claims description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 7
- 239000007792 gaseous phase Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000000110 cooling liquid Substances 0.000 claims description 3
- 230000000063 preceeding effect Effects 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000001914 filtration Methods 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- MXBCYQUALCBQIJ-RYVPXURESA-N (8s,9s,10r,13s,14s,17r)-13-ethyl-17-ethynyl-11-methylidene-1,2,3,6,7,8,9,10,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ol;(8r,9s,13s,14s,17r)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.C1CC[C@@H]2[C@H]3C(=C)C[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 MXBCYQUALCBQIJ-RYVPXURESA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0085—Ethane; Ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0082—Methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0207—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as at least a three level SCR refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/028—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
- F25J3/029—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/0605—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
- F25J3/061—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0635—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/066—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0685—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases
- F25J3/069—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases of helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/84—Processes or apparatus using other separation and/or other processing means using filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Definitions
- this gas which contains the ma or part of' the more volatile neutral gases present 1n the natural gas, is employed as combustible gas after the sensible heat of the latter has been recovered if desired.
- the object of the present invent-ion is to provide a process for liquefying natural gases containing more or less large amounts of more volatile neutral gases of the cascade type comprising a plurality of successive refrigeration cycles, said process comprising adding to said cascade an additional refrigeration cycle of the natural gas in which there is utilized as refrigerating fluid, in an open circuit, the combustible gas containing the major part of the more volatile neutral gases separated from the natural gas current in the course of the preceding liquefaction operations of this cascade.
- More volatile neutral gases is intended to mean gases such as nitrogen, helium, argon etc. contained in the natural gas. In order to simplify the disclosure, they will be designated hereinafter by the simplified expression of neutral gases it being understood that carbon dioxide is not included therein since it is less volatile than the natural gas obtained at the end of the process.
- FIG. 1 is a diagram of a plant for carrying out the process of the invention when the amount of neutral gas ice which remains in the liquefied natural gas at the outlet is not limited;
- FIGS. 2 and 3 are plant diagrams of utility when the amount of neutral gas in the liquefied natural gas is limited to a given value
- FIG. 4 is a diagram of a plant identical to that shown in FIG. 3 but including the separation of the neutral gas;
- FIGS. 5 and 6 are plant diagrams for carrying out the invention comprising a stage for eliminating CO in the course of liquefaction;
- FIG. 7 is a diagram of a plant for carrying out the process of the invention comprising a stage regulating the amount of nitrogen contained in the liquefied natural gas, and
- FIGS. 8, 9, 10 and 11 represent diagrammatically a plant for storing the liquefied natural gas.
- the current of natural gas under pressure is previously cooled, then condensed at a temperature in the neighbourhood of C. by conventional cascade or other processes, the pressure of the current of natural gas being determined so as to obtain the latter in the liquid state in the neighbourhood of this temperature. It enters the plant shown in FIGS. 1-4 and 6 at 1.
- FIGS. 1, 2 and 3 Depending on the amount of more volatile neutral gas contained in the current of natural gas and that it is desired to maintain in the liquefied natural gas obtained by the process, one or the other of the plants shown in FIGS. 1, 2 and 3 is used.
- the current of natural gas under pressure in theliquid state arriving at 1 is cooled in an exchanger E, which is the high pressure stage of the methane cycle for example of the aforementioned conventional cascade cycle, and passes through a point 2 before being expanded in a flash flask B
- the expansion occurs between the pressure of point 2 and a presssure between 15 and 20 'kg./sq.cm.
- This pressure is determined by the amount of neutral gas contained in the current of natural gas and by the amount of neutral gas maintained in the liquid natural gas.
- the liquid part (issuing at 3) of the flask B is cooled in exchangers E and E which are the medium and low pressure stages of the same refrigerating cycle as the preceding one.
- exchangers E and E which are the medium and low pressure stages of the same refrigerating cycle as the preceding one.
- the natural gas is at a pressure of the same order of magnitude as that prevailing in the flash flask B and at a temperature in the neighbourhood of, but higher than, that of the methane boiling at the pressure of the exchanger E
- the natural gas then passes through an exchanger E in shell 41: constituting an expansion zone and is obtained, at the outlet of this exchanger at 5, at a pressure in the neighbourhood of that prevailing in the flask flash B 15-20 kg.) and at a temperature equal to, or lower than, the boiling temperature of this same natural gas at atmospheric pressure.
- the gaseous part of the flash leaving the flask B at 6 and which will be subsequently used as combustible gas passes through the exchanger E and the exchanger or liquefier E which are the medium and low pressure stages of the selected refrigeration cycle, and is partially or completely condensed at a point 7.
- the gas-liquid mixture obtained at point 7 in a more or less large proportion passes through an exchanger E in shell or expansion zone 4a at the outlet of which at 8 the gas is already completely condensed and subcooled at the pressure substantially corresponding to that of the flash flask B
- the liquid obtained is then expanded in the exchangers E and E to atmospheric pressure or a pressure slightly higher, depending on the amount of neutral gas containedin the combustible gas and the temperature conditions that are desired of the liquid natural gas issuing from the plant at 5.
- the boiling temperature of this expanded liquid will vary continually in accordance with the liquid-vapour states 'of equilibrium obtained in the exchangers E and E
- These exchangers are consequently of the vapour recycling and counter-current type. They are divided into successive compartments, the number of compartments being selected in accordance with the minimum approach speeds to be maintained between the current of liquid natural gas and the boiling liquid.
- the vapours are mixed with the liquid overflowing from the compartment so that the gasliquid mixture feeding the following compartment is in a liquid-vapour equilibrium state.
- the combustible gas in gaseous phase is conducted by a pipe 9 to the point of its use as fuel.
- FIGS. 2 and 3 are practically identical, to within a few details, to the high pressure stage of the refrigeration cycle, for example the methane cycle, of the conventional cascade.
- the current of natural gas under pressure in the liquid state arriving at 1 is cooled in the exchanger E, for example the high pressure stage of the methane cycle, then expanded in a denitrogenizing column V The expansion occurs between the pressure of point 2 and a pressure between 15 and 20 kg./sq.cm. This pressure is determined by the amount of neutral gas maintained in the liquid natural gas.
- the liquid part of the bottom of the column V issuing at 3 is cooled in the exchangers E and E which are the medium pressure and low pressure stages of the same refrigeration cycle, for example methane cycle.
- the natural gas is at a pressure of the same order of magnitude as that prevailing in the de-nitrogenizing column V and at a temperature in the neighbourhood of, but higher than, that of the methane boiling at the pressure of the exchanger E 1
- the natural gas then passes through the exchanger E and is obtained at the outlet of this exchanger at 5 at a pressure in the neighbourhood of that prevailing in the de-nitrogenizing column V and at a temperature equal to or lower than the boiling temperature of this natural gas at atmospheric pressure.
- the reflux from the column V issuing at 6, and which will subsequently be used as combustible gas, passes through the exchanger E and the exchanger or liquefier E which are the medium and low pressure stages of the selected refrigeration cycle.
- the combustible gas is partially or entirely condensed at point 7, it is liquid and subcooled in the exchanger E
- the entirely liquid combustible gas is expanded in the exchangers E and E, which are constituted in a manner similar to that previously described.
- the plant shown in FIG. 3 differs from that shown in FIG.
- the de-nitrogenizing column V by the operation of the de-nitrogenizing column V the latter being so calculated that the amount of neutral gas remaining in the bottom of the column and issuing at 3 is substantially nil, the totality of neutral gas being contained in the gaseous phase issuing at 6.
- the high-pressure stage of the methane cycle is replaced for the natural gas by the redistillers of the denitrogenizing column V a flash flask B is used to obtain i the cooling of the methane of the refrigeration cycle for its utilization at the medium pressure stage.
- the three plants (FIGS. 1, 2 and 3) just described permit obtaining by means of the process of the invention the natural gas liquefied under pressure and at a temperature which is equal to, or lower than, the boiling temperature of this natural gas at atmospheric pressure.
- the advantage of the process is to increase the operational pressures of the low pressure and medium pressure stages of the refrigeration cycle preceding the cycle of the process.
- the pressure of the liquefied natural gas permits transferring the liquid current from the works to the storage plant.
- the subcooling of this liquid permits, by variation of its sensible heat, compensating the exterior supplies of heat, on one hand, in the transfer line and, on the other, in the storage plants, as will be explained hereinafter.
- FIG. 4 shows a plant for carrying out the process of the invention which permits separating the neutral gases contained in the natural gas current and, if desired, increasing the helium content in the neutral gas so as to facilitate the subsequent separation thereof.
- This plant is partly identical to that shown in FIG. 3, but the new elements could just as well [be combined with the plan-ts shown in FIG. 1 or FIG. 2.
- the combustible gas extracted from the de-nitrogenizing column, at point 6 is partially recondensed in the exchanger E .fed by the low pressure stage of the refrigeration circuit, for example a methane circuit.
- the liquid-vapour current is treated in a column V where the combustible gas is separated from the major part of the neutral gases it contains.
- the Ibottom of the column V issuing at 10 passes through the exchanger or liquefier E which is the low pressure stage of the methane refrigeration circuit, and, in passing through the point 7, passes through the exchanger E7 of FIGS. 1-3 which is in this case constituted by two elements E and E
- the liquid obtained at the outlet of the element Eq at 8 is separated into two currents, one of which supplies the head condenser of the column V through the point 11, Whereas the other directly supplies the exchangers E and Eq as well as E.,.
- vapours of the neutral gases available at the outlet of this process are at the pressure chosen for the fractionation of the natural gas ⁇ current of the combustible gas (pressure of column contemplated concentration and temperature.
- the process of the invention also permits eliminating by filtration in the course of liquefaction the CO present in the natural gas entering the plant.
- the current of natural gas under pressure contains, in addition to the more volatile neutral gases, more or less large amounts of CO
- this CO is eliminated from the natural gas current before liquefaction by washing with sodium hydroxide or ethanolamine.
- the utilization of such processes for eliminating CO apart from their cost price, increases the working costs of the liquefaction of the natural gas.
- the natural gas current is saturated with water at a temperature exceeding the surrounding temperature; therefore the plants for dehydrating the gas are considerably increased.
- the process of the invention does not concern the formation of this precipitate but its elimination from the liquid current. It comprises eliminating by filtration the.
- precipitate obtained by expansion of preferably the liquid in a flash flask.
- the formation of the precipitate is continuous from the point of formation of the first crystal when the temperature of the liquid continues to drop.
- the precipitate formed has a tendency to agglomerate into a mass which is compact but, however, fragile owing to the presence in the precipitate of heavier hydrocarbons,
- the liquid obtained upon expansion in the flash flask contains a large amount of CO in the liquid state. This precipitate only decants when the speeds are substantially nil and it is filtered by passing it through a pad of glass wool, a plate of sintered metal or any other filtering material which resists the contemplated temperature conditions and stresses.
- FIG. 5 shows a detail of the plant
- Operation of the valves 17, 17a, 20, 28, 2-2, 25,27, 29, 26, 35 permits the alternative operation of the flash flask B or E
- the flask B regenerating: the valve 17 is open, 17a closed, the liquid expanded in B is cooled and separates into a liquid fraction and a gaseous fraction.
- all the CO precipitates, the CO being retained inside a filter 1-8 placed at the lower part of the flash flask.
- the liquid natural gas is recovered toward the second expansion stage through the collector 19 through the medium of a valve '20 :which is open.
- the gaseous phase issuing from flask B at 21 is conducted through an open valve 22 to a condenser 23.
- the recondensed vapours issuing at 24 from the condenser 2-3 are re-injected into the expanding means 1'6 feeding the flask flask B through the valve 17.
- valves .17, 20 and 22 are open
- valves 25, 26, 27 and 28 being closed.
- the flask B being in the regenerating condition, the regeneration is effected .by a supply of combustible gas heated to around 50 C. coming from the pipe 8 and passing, through an open valve 29, the filter of the flash flask B at counter-current.
- the hot gas sublimates the CO deposited on the filter; the mixture gas-combustible+CO being sent toward the point of utilization through the pipe 31, a valve 35 being open, the end of the regeneration of the filter is '5 effected when the temperature at 34 tends to reach C.
- FIG. 6 With reference to FIG. 6, there is shown a complete plant comprising the filtration of the carbon dioxide in two successive expansions.
- Each expansion flaskor filter B and B provided with filters is diagrammatically represented by a single flask, whereas the device shown in FIG. 5 is adapted to one and the other.
- the filtered liquid part is evacuated through the pipe 36 to the flash flask B and through the expansion orifice 37, the latter is expanded.
- the filtered liquid issuing at 38 is the liquefied natural gas.
- the vapour part of the flash flask B issuing at 39 passes through the exchanger E then E issues at 40 and a flask B permits the separation of non-condensed gas if desired, the liquid of the flask being sent into the flash flask B through a pipe 41 directly into the expanding means 16.
- the flash vapour produced in the flask B is recondensed through a pipe 42 in theexchanger E reintroduced through a pipe 43 directly into the expanding means 37.
- the whole of the diagram, apart from this additional element, is in conformity with that of the plant shown inFIG. 4.
- the expansion can be effected in one or a plurality of stages depending on the amount of CO contained in the entering gas, the available heat in the refrigerating cycles and the temperatures at which these calories are available, thus fixing the vapour condensation pressures and the value of the expansion in the flash flask.
- the condensation of the vapours of the flash is for its part a direct function of the percentage of nitrogen contained in the current of the entering natural gas.
- the more these vapours are charged with neutral gas the more the recondensation of the vapours will require a refrigerating liquid having a low boiling point; now, the low boiling points are a direct function of the amountof neutral gases remaining in the combustible gas.
- percentages of neutral gases in the entering natural gas of the order of 7% in mole the amount in the liquid gas cannot exceed 0.5%.
- the reinjection of the condensed vapours through an injection nozzle placed at the expansion of the liquid to be cooled and filtered has for purpose to avoid the formation of solid deposits at the expansion orifice and consequently stopping up and to instantaneously reestablish the liquid-vapour equilibriumin the flask and thereby decrease to the maximum extent the neutral gas content of the formed vapour, which thus facilitates the recondensation of the latter.
- the combustible gas which is entirely liquid at Point 8 is no longer expanded in the exchanger Eq but in a flash flask B the vapour part of the flash being conducted through a pipe 44 into the exchanger Eq
- the liquid part is divided into three currents, one feeding through the pipe 11 the head condenser of the column V the second feeding the exchanger Eq the third mixed with the liquid coming from the flash flask B in a pipe 45 through a valve 46 being evacuated from the process through the pipe line 38.
- a part of the liquid of the flash flask is thus mixed with the liquid issuing from the last filtration stage so that, by the mixture of these two liquids, the neutral gas content in the liquefied natural gas is increased.
- a precise regulation of the amount of neutral gas mixed with the liquefied natural gas can thus be obtained, and this permits reducing by more than 50% the natural gas losses when storing.
- FIGS. 8-11 show diagrammatically liquefied natural gas storage plants.
- the liquefied natural gas feeds a storage reservoir from below at 51.
- a buffer or layer of neutral gas such as that produced by the fractionating column V of the preceding plants.
- This neutral gas, arriving at 52, is stored in a buifer reservoir constituted by a normal gasometer 53 connected to the liquid reservoir 51 at the upper end of the reservoir where an overpressure valve 54 permits moreover sending to the torch through 55 the over-pressure of neutral gas due to the filling or the overpressure of natural gas when the storage reservoir 51 is full; at this moment, the heat losses are no longer compensated by the sensible heat provided by the subcooled liquefied natural gas.
- the collector 60 is connected to a gasometer 61 (FIG. 10) which receives neutral gases, such as those obtained by the process of the invention, the pressure excess in this gasometer 61 being sent to the torch through a pipe '62.
- a gasometer 61 FIG. 10
- Such a device is applicable to plants provided with a single storage reservoir or with a plurality of storage reservoirs fed in parallel.
- a device of the type shown in FIG. 11 comprising a common collector 63 which connects the points 60 of the reservoir 51, 51 the gasometer 61.
- the first reservoir is completely full, it is no longer possible to compensate the evaporations by the supply of sensible heat of the subcooled liquid natural gas.
- the vapours produced in the course of the heating of the storage are therefore $61.11 9 the common collector whence they are drawn off in major part by the reservoir which is in course of being filled and reliquefied by the subcooled liquid natural gas inside this same reservoir.
- This process of liquefaction of the vapours produced is applicable in the course of lodging a methane transporting ship.
- the vaporations are in this case directed to the common collector of the storage reservoirs, the liquid natural gas produced by the works being then cooled at such temperature that these vapours can be in large part reliquefied in the storage reservoirs during the loading of a ship. Apart from the emanation at the start of loading, almost all the vapours can thus be reliquefied.
- the liquefaction process of the invention thus permits materially improving the liquefaction, the refining, and the storage of natural gases.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR893475A FR1331960A (fr) | 1962-04-05 | 1962-04-05 | Procédé de liquéfaction des gaz naturels |
Publications (1)
Publication Number | Publication Date |
---|---|
US3254496A true US3254496A (en) | 1966-06-07 |
Family
ID=8776187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US270109A Expired - Lifetime US3254496A (en) | 1962-04-05 | 1963-04-02 | Natural gas liquefaction process |
Country Status (7)
Country | Link |
---|---|
US (1) | US3254496A (pt) |
BE (1) | BE630256A (pt) |
DE (1) | DE1267236B (pt) |
FR (1) | FR1331960A (pt) |
GB (1) | GB996929A (pt) |
LU (1) | LU43449A1 (pt) |
NL (1) | NL291145A (pt) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312073A (en) * | 1964-01-23 | 1967-04-04 | Conch Int Methane Ltd | Process for liquefying natural gas |
US3331213A (en) * | 1964-06-17 | 1967-07-18 | Conch Int Methane Ltd | Process for the separation of gaseous mixtures employing a product as refrigerant |
US3340699A (en) * | 1965-06-11 | 1967-09-12 | Little Inc A | Cryogenic condenser with liquid level sensing and control |
US3377812A (en) * | 1964-03-10 | 1968-04-16 | British Oxygen Co Ltd | Rearrangement of flow-thru serial adsorbers to remove gaseous constituents |
US3407614A (en) * | 1966-12-19 | 1968-10-29 | Phillips Petroleum Co | Helium purification |
US3596472A (en) * | 1967-12-20 | 1971-08-03 | Messer Griesheim Gmbh | Process for liquefying natural gas containing nitrogen |
US3653220A (en) * | 1969-05-09 | 1972-04-04 | Airco Boc Cryogenic Plants Cor | Process for helium recovery and purification |
US3815376A (en) * | 1969-07-31 | 1974-06-11 | Airco Inc | Process and system for the production and purification of helium |
JPS4945053B1 (pt) * | 1969-02-28 | 1974-12-02 | ||
US4032337A (en) * | 1976-07-27 | 1977-06-28 | Crucible Inc. | Method and apparatus for pressurizing hot-isostatic pressure vessels |
US4824732A (en) * | 1983-05-11 | 1989-04-25 | Cinpres Limited | Process and apparatus for injection moulding and mouldings produced thereby |
EP1478874A1 (en) * | 2002-02-27 | 2004-11-24 | Bechtel BWXT Idaho, LLC | Apparatus for the liquefaction of natural gas and methods relating to same |
US20060213223A1 (en) * | 2001-05-04 | 2006-09-28 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20070017250A1 (en) * | 2001-05-04 | 2007-01-25 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
US20070137246A1 (en) * | 2001-05-04 | 2007-06-21 | Battelle Energy Alliance, Llc | Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium |
US20090071634A1 (en) * | 2007-09-13 | 2009-03-19 | Battelle Energy Alliance, Llc | Heat exchanger and associated methods |
US7591150B2 (en) | 2001-05-04 | 2009-09-22 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US20110094263A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US20110094262A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
WO2016060777A3 (en) * | 2014-10-16 | 2016-06-16 | General Electric Company | System and method for natural gas liquefaction |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
RU2615862C2 (ru) * | 2015-05-19 | 2017-04-11 | Ооо "Зиф" | Малогабаритная установка сжижения природного газа |
US9719024B2 (en) | 2013-06-18 | 2017-08-01 | Pioneer Energy, Inc. | Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture |
IT201700103870A1 (it) * | 2017-09-18 | 2019-03-18 | Criotec Impianti S P A | Impianto e procedimento per l'upgrading di biogas. |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
FR3127557A1 (fr) | 2021-09-28 | 2023-03-31 | Cryo Pur | Procédé de givrage du dioxyde de carbone contenu dans du méthane liquide |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1913805A (en) * | 1927-01-24 | 1933-06-13 | Hausen Helmuth | Process for separating gas mixtures more particularly coke oven gas |
US2122238A (en) * | 1934-03-23 | 1938-06-28 | Union Carbide & Carbon Corp | Process and apparatus for the separation of gas mixtures |
US2386297A (en) * | 1943-10-07 | 1945-10-09 | Air Reduction | Separation of the constituents of gaseous mixtures by liquefaction and rectification |
US2557171A (en) * | 1946-11-12 | 1951-06-19 | Pritchard & Co J F | Method of treating natural gas |
US2582148A (en) * | 1947-05-15 | 1952-01-08 | Pritchard & Co J F | Method of recovering desirable liquefiable hydrocarbons |
US2679145A (en) * | 1951-12-08 | 1954-05-25 | Union Stock Yards & Transit Co | Regenerative method and apparatus for liquefying natural gas |
US2940271A (en) * | 1959-03-24 | 1960-06-14 | Fluor Corp | Low temperature fractionation of natural gas components |
US3026682A (en) * | 1960-01-27 | 1962-03-27 | Kellogg M W Co | Separation of hydrogen and methane |
US3057167A (en) * | 1959-10-12 | 1962-10-09 | Union Carbide Corp | Process and apparatus for separating helium from helium-air mixtures |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3162519A (en) * | 1958-06-30 | 1964-12-22 | Conch Int Methane Ltd | Liquefaction of natural gas |
US2960837A (en) * | 1958-07-16 | 1960-11-22 | Conch Int Methane Ltd | Liquefying natural gas with low pressure refrigerants |
-
0
- NL NL291145D patent/NL291145A/xx unknown
- BE BE630256D patent/BE630256A/xx unknown
-
1962
- 1962-04-05 FR FR893475A patent/FR1331960A/fr not_active Expired
-
1963
- 1963-03-29 LU LU43449D patent/LU43449A1/xx unknown
- 1963-04-01 GB GB12766/63A patent/GB996929A/en not_active Expired
- 1963-04-02 US US270109A patent/US3254496A/en not_active Expired - Lifetime
- 1963-04-04 DE DEP1267A patent/DE1267236B/de active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1913805A (en) * | 1927-01-24 | 1933-06-13 | Hausen Helmuth | Process for separating gas mixtures more particularly coke oven gas |
US2122238A (en) * | 1934-03-23 | 1938-06-28 | Union Carbide & Carbon Corp | Process and apparatus for the separation of gas mixtures |
US2386297A (en) * | 1943-10-07 | 1945-10-09 | Air Reduction | Separation of the constituents of gaseous mixtures by liquefaction and rectification |
US2557171A (en) * | 1946-11-12 | 1951-06-19 | Pritchard & Co J F | Method of treating natural gas |
US2582148A (en) * | 1947-05-15 | 1952-01-08 | Pritchard & Co J F | Method of recovering desirable liquefiable hydrocarbons |
US2679145A (en) * | 1951-12-08 | 1954-05-25 | Union Stock Yards & Transit Co | Regenerative method and apparatus for liquefying natural gas |
US2940271A (en) * | 1959-03-24 | 1960-06-14 | Fluor Corp | Low temperature fractionation of natural gas components |
US3057167A (en) * | 1959-10-12 | 1962-10-09 | Union Carbide Corp | Process and apparatus for separating helium from helium-air mixtures |
US3026682A (en) * | 1960-01-27 | 1962-03-27 | Kellogg M W Co | Separation of hydrogen and methane |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312073A (en) * | 1964-01-23 | 1967-04-04 | Conch Int Methane Ltd | Process for liquefying natural gas |
US3377812A (en) * | 1964-03-10 | 1968-04-16 | British Oxygen Co Ltd | Rearrangement of flow-thru serial adsorbers to remove gaseous constituents |
US3331213A (en) * | 1964-06-17 | 1967-07-18 | Conch Int Methane Ltd | Process for the separation of gaseous mixtures employing a product as refrigerant |
US3340699A (en) * | 1965-06-11 | 1967-09-12 | Little Inc A | Cryogenic condenser with liquid level sensing and control |
US3407614A (en) * | 1966-12-19 | 1968-10-29 | Phillips Petroleum Co | Helium purification |
US3596472A (en) * | 1967-12-20 | 1971-08-03 | Messer Griesheim Gmbh | Process for liquefying natural gas containing nitrogen |
JPS4945053B1 (pt) * | 1969-02-28 | 1974-12-02 | ||
US3653220A (en) * | 1969-05-09 | 1972-04-04 | Airco Boc Cryogenic Plants Cor | Process for helium recovery and purification |
US3815376A (en) * | 1969-07-31 | 1974-06-11 | Airco Inc | Process and system for the production and purification of helium |
US4032337A (en) * | 1976-07-27 | 1977-06-28 | Crucible Inc. | Method and apparatus for pressurizing hot-isostatic pressure vessels |
US4824732A (en) * | 1983-05-11 | 1989-04-25 | Cinpres Limited | Process and apparatus for injection moulding and mouldings produced thereby |
US7637122B2 (en) | 2001-05-04 | 2009-12-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US20100186446A1 (en) * | 2001-05-04 | 2010-07-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US20070017250A1 (en) * | 2001-05-04 | 2007-01-25 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
US20070137246A1 (en) * | 2001-05-04 | 2007-06-21 | Battelle Energy Alliance, Llc | Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium |
US20060213223A1 (en) * | 2001-05-04 | 2006-09-28 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US7591150B2 (en) | 2001-05-04 | 2009-09-22 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
US7594414B2 (en) | 2001-05-04 | 2009-09-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of natural gas and methods relating to same |
EP1478874A4 (en) * | 2002-02-27 | 2007-09-12 | Bechtel Bwxt Idaho Llc | NATURAL GAS LIQUEFACTION APPARATUS AND ASSOCIATED METHODS |
EP1478874A1 (en) * | 2002-02-27 | 2004-11-24 | Bechtel BWXT Idaho, LLC | Apparatus for the liquefaction of natural gas and methods relating to same |
US8544295B2 (en) | 2007-09-13 | 2013-10-01 | Battelle Energy Alliance, Llc | Methods of conveying fluids and methods of sublimating solid particles |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US8061413B2 (en) | 2007-09-13 | 2011-11-22 | Battelle Energy Alliance, Llc | Heat exchangers comprising at least one porous member positioned within a casing |
US20090071634A1 (en) * | 2007-09-13 | 2009-03-19 | Battelle Energy Alliance, Llc | Heat exchanger and associated methods |
US8555672B2 (en) | 2009-10-22 | 2013-10-15 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US20110094263A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094262A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US8899074B2 (en) | 2009-10-22 | 2014-12-02 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
US10000704B2 (en) | 2013-06-18 | 2018-06-19 | Pioneer Energy Inc. | Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture |
US9719024B2 (en) | 2013-06-18 | 2017-08-01 | Pioneer Energy, Inc. | Systems and methods for controlling, monitoring, and operating remote oil and gas field equipment over a data network with applications to raw natural gas processing and flare gas capture |
WO2016060777A3 (en) * | 2014-10-16 | 2016-06-16 | General Electric Company | System and method for natural gas liquefaction |
US10465982B2 (en) | 2014-10-16 | 2019-11-05 | General Electric Company | Method for natural gas liquefaction and filtration of solidified carbon dioxide |
RU2615862C2 (ru) * | 2015-05-19 | 2017-04-11 | Ооо "Зиф" | Малогабаритная установка сжижения природного газа |
IT201700103870A1 (it) * | 2017-09-18 | 2019-03-18 | Criotec Impianti S P A | Impianto e procedimento per l'upgrading di biogas. |
EP3456810A1 (en) * | 2017-09-18 | 2019-03-20 | Criotec Impianti S.p.A. | Plant and process for biogas upgrading |
FR3127557A1 (fr) | 2021-09-28 | 2023-03-31 | Cryo Pur | Procédé de givrage du dioxyde de carbone contenu dans du méthane liquide |
WO2023052983A1 (fr) | 2021-09-28 | 2023-04-06 | Cryo Pur | Procédé de givrage du dioxyde de carbone contenu dans du méthane liquide |
Also Published As
Publication number | Publication date |
---|---|
BE630256A (pt) | |
FR1331960A (fr) | 1963-07-12 |
DE1267236B (de) | 1968-05-02 |
GB996929A (en) | 1965-06-30 |
NL291145A (pt) | |
LU43449A1 (pt) | 1963-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3254496A (en) | Natural gas liquefaction process | |
US1913805A (en) | Process for separating gas mixtures more particularly coke oven gas | |
US3292380A (en) | Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery | |
SU1358794A3 (ru) | Способ получени окиси углерода | |
US4311496A (en) | Preliminary condensation of methane in the fractionation of a gaseous mixture | |
US3902329A (en) | Distillation of methane and hydrogen from ethylene | |
US3524897A (en) | Lng refrigerant for fractionator overhead | |
US2475957A (en) | Treatment of natural gas | |
US2849371A (en) | Separation and recovery of hydrocarbons from gaseous mixtures thereof | |
US2777305A (en) | Separation and recovery of ethylene | |
US3373574A (en) | Recovery of c hydrocarbons from gas mixtures containing hydrogen | |
US1773012A (en) | Process for the separation of gas mixtures | |
US4270939A (en) | Separation of hydrogen containing gas mixtures | |
US4230469A (en) | Distillation of methane from a methane-containing crude gas | |
US5114694A (en) | Ammonia recovery from purge gas | |
US3306057A (en) | Process for the cold separation of gaseous mixtures with solidliquid slurry heat exchange | |
US3318103A (en) | Process for liquefaction of c2 and heavier hydrocarbons from natural gas with removal of co2 and h2o impurities | |
US3026682A (en) | Separation of hydrogen and methane | |
EP0968959A1 (fr) | Procédé de production de monoxyde de carbone | |
US2769321A (en) | Separation of ethylene from a gaseous mixture | |
US3160489A (en) | Nitrogen removal from natural gas | |
US2214790A (en) | Process and apparatus for separating gases | |
US2250949A (en) | Process for the separation of hydrocarbons from gases containing them | |
US2270852A (en) | Separating of gas mixtures | |
US2959926A (en) | Generation of cold or cooling by evaporation of a liquid evaporating at a very low temperature |