US3253782A - Spray gun - Google Patents

Spray gun Download PDF

Info

Publication number
US3253782A
US3253782A US526973A US52697366A US3253782A US 3253782 A US3253782 A US 3253782A US 526973 A US526973 A US 526973A US 52697366 A US52697366 A US 52697366A US 3253782 A US3253782 A US 3253782A
Authority
US
United States
Prior art keywords
duct
gun
valve
nozzle
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US526973A
Inventor
Warren G Fischer
Robert C Schlinger
Arvid C Walberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HG Fischer and Co Inc
Original Assignee
HG Fischer and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HG Fischer and Co Inc filed Critical HG Fischer and Co Inc
Priority to US526973A priority Critical patent/US3253782A/en
Application granted granted Critical
Publication of US3253782A publication Critical patent/US3253782A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/035Discharge apparatus, e.g. electrostatic spray guns characterised by gasless spraying, e.g. electrostatically assisted airless spraying

Definitions

  • This invention relates to a spray gun, and more particularly to a spray gun of the airless type.
  • Guns of this type are old and have been used to some extent. Such guns operate on the principle that liquid coating material under high pressure of the order of a thousand pounds per square inch or more when suddenly released into atmosphere will atomize into separate particles. Such guns operate under severe handicaps.
  • Hydraulic pressure generatingmeans particularly for pressures of the order of a thousand pounds or more, are quite expensive both with regard to rst cost and with regard to maintenance. Then coating material must be discharged under such high pressure through nozzles having extremely line orifices. For example, .an orifice of the order of .010" or thereabouts is quite common. Wear on thev orifice increases the orifice diameter and results in a very substantial increase in the amount of coating material passed by the orifice. This impairs the operation of the gun.
  • the quantity of coat-ing material must be carefully controlled and the thickness of the nished coating material must be uniform.
  • Airless guns of present design can not meet these requirements. Feathering is not possible.
  • a coating having a desired thickness is the minimum thickness obtainable. The difficulty has been in completing the coating by additional passes without overlap.
  • Airless guns of this character use discharge orifices of material having a high degree of hardness.
  • tungsten carbide is frequently used for a discharge nozzle in guns of this type.
  • Tungsten carbide while being very hard, is also quite brittle, and is dfiicult to fabricate, particularly with regard to control over the fneness of the orifice.
  • guns of the prior art require the use of high pressures of the order of a thousand pounds or more. While electrostatic coating procedures are well known and are widely used, the advantage-s incident to such procedures have not accrued to airless types of guns. One reason may be due to the fact that conventional high pressure airless gun construction has been retained when electrifying spraying systems. Whatever change has been made has consisted of the superfici-al addition of one or more electrodes. This has consisted of the addition of large sharp spikes or spears radiating from a conventional gun and charged to high potential. v
  • This invention provides an airless spray gun which has such great increase in the efiiciency of operation as to make it possible to effect remarkable economies in the 3 ,253,7 82 Patented May 31, 1966 lCC operation of the gun.
  • it is possible to reduce the amount of hydraulic pressure neces-sary for operating the new gun as compared to a conventional airless gun of the prior art.
  • Such -a great reduction in hydraulic pressure makes possible the use of discharge nozzle with a larger discharge orifice. This imposes less of a requirement upon the accuracy of the discharge nozzle and the cost of manufacture thereof.
  • the new gun not only provides fo-r operation at lower hydraulic pressure, but also makes it possible to create a much more intense electric field adjacent the discharge region of the gun to add to the atomiz-ing efficiency of the gun.
  • the major Work Vinvolved in atomizing coating material is accomplished by mechanical means.
  • the intensity of the electric field simply superimposes some additional atomization and in particular, aids in charging the atomized particles more completely so that the effectiveness of the entire coating operation is greatly enhanced.
  • the new gun embodying the present invention provides for the creation of an electric field which greatly increases the efficiency of operation of the gun.
  • air discharge guns can handle coating material so that a comparatively small quantity of such material can be discharged and the thickness of coating material sprayed on can therefore be easily controlled and the gun can be quite efficiently managed.
  • a spray gun embodying the present invention provides a construction which not only permits of the efficient operation of the gun as an airless type of gun, but, in addition, also permits of the application of an electric field thereto greatly to increase the operating efiiciency of the gun.
  • the new gun resembles conventional airless guns in that a discharge nozzle or tip of refractory material such as tungsten carbide Iis used.
  • a separate ionizing electrode having excellent electrical conductivity is provided, this electrode being located close to the discharge region of the gun.
  • the new gun utilizes the principle disclosed in United States Patent No. 3,056,557, issued on October 2, 1962.
  • a gun is disclosed wherein substantially all of the metal at high potential present in the gun is electrically insulated or shielded from atmosphere by solid insulation except for a sharp tip or edge at the region of discharge.
  • a new gun embodying the present invention is to be held by an operator, it is desirable to have metallic parts of the handle portion of the gun at ground potential.
  • This same requirement may also be desirable with automatic guns if the mounting of the automatic gun is to be on a -reciproc-ator or other support which is desired to be at ground potential.
  • FIGURE 1 shows a view partly in section and partly in elevation of a gun embodying the present invention, the handle portion thereof being cut short.
  • FIGURE 2 is a sectional vie-w of the remaining handle portion of the gun of FIGURE 1.
  • ⁇ FIGURE 3 is a front view looking toward the nozzle of the gun with the gun cap removed and a view omitting the handle and other portions of the gun.
  • FIGURE 4 is a partialy section and partial elevation of the nozzle portion illustrated in FIGURE 3.
  • FIGURE 5 is an exploded view showing the various parts partly in elevation and partly in section of the valve rod Iand valve portions of the'gunvernbodying the invention.
  • FIGURE 6 is a top view of the gun illustrated in FIG- URE l.
  • FIGURES 7, 8 and 9 are detaiis illustrating the action of the valve rod rotating means.
  • Thel gun preferably consists of a casting or moulding of a suitable plastic.
  • plas-tics such as polypropylene, polyethylene and nylon are three -of a large number of plastics which may be used. Such plastics maye be moulded quite easily, have excellent electrical resistance characteristics and are suiiiciently strong mechanically for use in a gun of this character.
  • the gun comprises barrel 10 and handle portion 11.
  • Handle portion 11 is provided with straight ducts or channels 14 and 15 respectively.
  • the free end of handle 11 carries metal fittings 17 and 18 which are threaded into handle 11 and constitute duct terminals for ducts 14 and 15.
  • Fittings 17 and 18 are externally threaded as indicated and are useful respectively for adapting the ducts to be used for a high potential electric cable and for conducting' coating material under high pressure.
  • high potential cable 19 is fitted in duct 14.
  • This cable includes stranded conductor 20 of copper or other wire and high potential insulation of polyethylene or similar material.
  • the high potential cable outside of handle 11 is provided with outer sheath 21 of braided copper or the like for grounding and this outer sheath is electrically connected to metal fitting 17. Grounded sheath 21 does not extend inside of duct 14.
  • Metal fitting 18 is adapted to be connected to a flexible high pressure hose, not shown, for providing a supply of coating material to the gun.
  • the fitting and coating material hose should be of the pressure type capable of resisting pressures of the order of about 1000- 2000 pounds per square inch.
  • Cable duct 14 in the handle Iterminates in the general region where the handle merges into the gun body.
  • Conductor 20 of the cable is provided with terminal tipv 23 of brass or other metal, this consisting of a conical shell with a spike which may be pushed into conductor 20.
  • intersecting duct 14 is resistor duct 24 which extends Ilongitudinally of the gun at the lower portion of gun barrel 10.
  • Duct 24 extends forwardly of the gun body and terminates in threaded portion 25 adapted to receive threaded plug 26 of insulating material, preferably of the same material used in the gun body.
  • resistor 27 Disposed within resistor duct 24 is dropping resistor 27 having terminal 28 in electrical contact with terminal tip 23 of the cable and the resistor having remaining -terminal 29 in contact with metal coiL spring 30 within the duct.
  • Metal coil spring 30 carries conical metal terminal tip 31, this being, in the assembled position of thegun, at a position within the duct near threaded plug 26.
  • transverse passage 33 suitably threaded for access from the exterior of the gun body to the duct. Access passage 33 is normally closed by threaded plug 34 also of electrically insulating material Iwhich may be of the same plastic as the gun body.
  • Passage 33 extends Within the interior -of the gun body from resistor duct 24 to a recess Within the gun barrel proper. Passage 33 contains a metal rod connector 35 of brass or other metal for electrically connecting terminal tip 31 with the metal parts of the gun at the discharge portion thereof.
  • Plugs 26 and 34 are provided so that the dropping resistor and spring may be inserted in duct 24 and metal connector 35 may be disposed within the interior connecting passage previously referred to.
  • this duct extends into the rear end of the barrel of the gun body and intersects cylindrical bore 40 of the gun.
  • metal fitting 41 is provided, this fitting being threaded into the body material of the gun.
  • Fitting 41 is somewhat larger in diameter than bore 40 and is cup-shaped and has a portion of the interior threaded to receive packing nut 42.
  • packing nut 42 and the bottom of the chamber defined by fitting 41 is a region filled with soft packing material 43 such as felt, or the like.
  • Packing nut 42 and the bottom of fitting 41 are provided with coaxial apertures therethrough to accommodate operating ⁇ rod 45 of metal.
  • This arrangement provides a packing gland for rod 45.
  • This operating rod is used for operating the valve member in the forward part of the gun and is adapted to be moved longitudinally of the gun by suitable trigger means.
  • yoke 46 is pivotally secured by bolts 46A on opposite sides of the gun body.
  • Yoke 46 includes as a part thereof trigger handle 46B.
  • Yoke 46 has operating portion 47 which is at all times above (as seen in FIG- URE 1) rod 45.
  • Portion 47 of the yoke carries pin 48 parallel to and laterally offset from rod 45.
  • the yokev is biased to a valve closing position by coil spring 51 extending lbetween yoke portion 47 and bolt 52 threaded into a portion of the gun body.
  • metal strap 53 is rigidly secured to the end of handle portion 11 by fittings 17 and 18, this strap 53 alsoextending up and being secured to v the gun body by bolt 52.
  • valve operating rod 45 Backward travel of valve operating rod 45 is secured by yoke portion 47 moving pin 48 (see FIGURE 6), this pressing against disk 56 locked on threaded rod 57 by nut 58. Threaded rod 57 is coupled to operating rod 45 by cooperating threaded portions. The backward travel of operating rod 45 is limited yby metal fitting 60 threaded into the gun body material, this last named fitting being coaxial with threaded rod 57 and having a recess within the fit-ting for permitting the rod to move longitudinally therein. As is explained later, valve operating rod 45 is normally spring biased toward the dischargeend of the gun. This bias results in disk 56 being urged against offset pin 48.
  • pin 48 When trigger handle 46B is pressed toward gun handle 11, pin 48 not only moves against disk 56 to open the valve, but the upward cornponent of the movement of pin 48 (as illustrated in FIGURE 8) creates a turning force for moving disk 56 clockwise as seen in FIGURE 8, this resulting in turning the valve operating rod.
  • valve operating rod 45 In the normal condition of the gun, valve operating rod 45 is biased to a forward position so that normally the Valve for the gun is closed. Pressing trigger 46B will result in longitudinal movement of rod 45 rearwardly of the gun, this opening the valve to permit coating material under high pressure to be discharged.
  • Valve operating rod 45 has portion 62 threaded into one end of valve operating rod portion 63 of electrically insulating material.
  • This material may be of any material rwhich can stand tension.
  • the rod may be of Bakelite, fiber, or any other material.
  • Rod 63 is subject to tension-the amount need not be very greatto that this rod need not be very heavy or large in cross section. Rod 63 fits loosely within bore 40 of the gun barrel, leaving enough space around the rod within bore 40 to permit the flow of coating material under pressure when the gun is discharging.
  • Metal insert 64 is generally cylindrical in shape a-nd has passage 65 through the end wall thereof for accommodating operating rod portion 63. Inasmuch as coating material must pass around the outside of rod portion 63 into the interior of metal insert 64, it is desirable to provide sufficient clearance between the operating rod and passage 65 for accomlmodating the flow of coating material.
  • Metal insert 64 has a substantial portion thereof, beginning from the rear end, externally threaded at 66 so that this insert may be turned into a correspondingly threaded recess Within the gun barrel.
  • the wall thickness of the gun bar-rel between the exterior thereof and bore 40 will be sufficiently l-arge to wit-hstand the pressure and it is also understood that the length of threaded portion 66 of met-al fitting insert 64 is sufficiently long so that a pressure-tight seal will be provided.
  • electrical connecting member 35 of metal is adapted to engage externaly threaded portion 66 for applying a high potential to the various metal parts of the gun at the discharge end.
  • Coil spring 69 biases valve retainer 72 to a valve closing position.
  • Metal insert 64 has cylindrical chamber 68 into which the forward end of operating rod portion- 63 projects. Disposed within cylindrical chamber 68 is helical coil spring 69 which has its coils around operating rod portion 63. The forward end of operating rod portion 63 is recessed and threaded, as illustrated in FIG- URE 5, to accommodate externally threaded shank 71 of metal form-ing part of metal ball valve retainer 72. Metal collar 73 is disposed around threaded shank 7,1 and collar 73 is large enough so that the forward end coilof spring 69 can rest against collar 73.
  • Collar 73 is disposed forwardly of cylindrical chamber 68 and is surrounded by the threads of internally threaded portion 75 of the forward portion of metal insert 64.
  • This internally threaded portion 75 has a somewhat larger diameter than chamber 68 so that in the open or closed valve position, collar 73 will have some clearance around the outside by way of threads 75 to permit flow of coating material under pressure.
  • Ball valve retainer 72 may have any desired shape and is here shown as having a generally square cross section with rounded edges.
  • Ball valve lretainer 72 has its forward end tapering at 76 and set in this tapered end is ball valve 77, of hard material. This ball m-ay be of tungsten carbide or other refractory tough material and is cemented into the end of the retainer to be firmly attached thereto.
  • Ball valve member 77 cooperates with the end of cylindrical valve seat 79 ofhard material such as tungsten carbide. rBhe end of the valve seat is tapered and is adapted to cooperate with ball 77 to form a tight closure. Both valve pa-rts are ground to smooth finishes.
  • Valve seat 79 is secured -in cylindrical chamber 80 of metal valve retainer 81.
  • the forward end of insert 64 has a conically tapered seat which can cooperate with a correspondingly shaped seat on retainer 81 to form a high pressure seal.
  • Ball valve retainer 72 operates within chamber S0 of the valve seatretainer. In view of the generally square shape of ba-ll valve retainer 72, there will be regions where coating material can flow past ball valve retainer 72 toward the valve seat when the valve is opened. By having a square shape with the corners of ball valve retainer 7d rounded, and making the large diameter o-f the resistor just a bit smaller than the inside diameter of chamber 80, a smooth valve action can be obtained with ball valve retainer 72 supported against transverse movement but freely movable longitudinally of the valve. Valve seat retainer 81 when threaded snugly against the forward end of metal insert 64 will form a smooth joint.
  • Metal valve seat retainer 81 has its forward end provided with cylindrical chamber 82a, this portion of the retainer having external threading 83. Resting within cylindrical chamber 82a is discharge nozzle assembly, generally indicated by 85 and shown in detail in FIG- URE 4. This assembly provides a fine discharge bore coaxial with the bore through valve seat 7-9 and functions Ito discharge coating material under high pressure to atmosphere.
  • the discharge nozzle assembly includes disk 86 of metal or plastic. Disk 86 is apertured at 87 at the center to form part of the bore. posed against cylindrical member 88 having reduced cylindrical portion 89. Disposed against reduced cylindri- 'cal portion 89 is nozzle block 90 of refractory material such as tungsten carbide, this having ne discharge opening 9.*1 therethrough.
  • Refractory nozzle block 90 can have any desired construction and is here shown as having a general cup shape.
  • the discharge nozzle is through the bottom of this cup.
  • Cup-shaped retainer 93 of plastic is disposed around the outer surface of refractory nozzle block 90 and has opening 94 therethrough to provide clearance for the nozzle tip part of block 90.
  • the assembly of three parts 86, 88 and l93 is kept intact by metal pin which is laterally offset from the axis of the nozzle assembly and is generally parallel t-o the axis thereof.
  • Pin 95 has a sharp pointed end projecting beyond the nozzle discharge opening.
  • Pin 95 has at head 96 which norm-ally -is pressed against t-he adjoining metal of valve seat retainer 81.
  • the plastic discharge nozzle assembly is maintained 4in position by metal retaining nut 97 and suitably shaped internally to t the shoulder portion of part 93 of the assembly.
  • Metal washer 93a is provided as a seat for retaining nut 97.
  • the plastic discharge nozzle assembly can be replaced'with a conventional all-metal nozzle assembly as an emergency rep-air measure when necessary to keep the spray gun in production. This provides impaired but continuing operation in an emergency.
  • Cup-shaped cap 98 of electrically insulating material is provided to cover all exposed metal parts which are at high potential but is open to expose pin 95 and nozzle tip 90.
  • Cap 98 may be of the same insulating material as body 10 of the gun or may be of different material, depending upon. mechanical considerations. In any event, cap 98 has high electrical resistance and should be thick enough to provide both mechanical and electrical protection necessary.
  • Oap 98 has internally threaded portion 99 Which cooperates with a correspondingly threaded portion on gun body 10.
  • O-ring 100 is disposed Disk 86 is disbetween opposing shoulders of the cap and gun body to provide a seal.
  • resistor 27 suitable for the potential to which the gun electrode is charged.
  • resistor 27 preferably has a value of 25 megohms per 10,000 volts of applied voltage.
  • the minimum potential is of the order of 40,000 or 50,000 volts and the potential can go up as high as 100,000 volts.
  • the amount of lateral yoffset of high potential needle 95 from the axis of discharge nozzle is small and will lgenerally lbe of the order of about 1%@ of an inch.
  • the needle itself can be about 4A@ or f/f; of an in'ch. ln general, the needle is long enough to project into the cloud of atomized material lafter it emerges from the nozzle. With the needle well within the cloud of latomized particles, excellent charging effects are obtained.
  • Atomization mechanically is promoted by the provision of the discharge nozzle and separate control valve arranged in tandem.
  • the valve causes some initial atomization of the discharge material prior to the time that this material reaches the discharge nozzle.
  • the reduction in pressure at the discharge nozzle greatly adds to the atomization.
  • This type of two-stage atomization is particularly effective for high pressure airless work.
  • a spray gun for electrostatic coating having discharge and rear ends, said gun having a body of plastic material having substantial mechanical strength and having excellent electrical resistance against the high potentials used in electrostatic coating, said body having an elongated straight barrel portion having a front discharge end and a handle portion extending laterally from said ⁇ barrel portion at the rear thereof, said barrel portion having two longitudinal, laterally offset parallely straight ducts, 'one such duct extending from the discharge end back to the rear end for accommodating coating material, means for supplying coating material to said first duct, valve means withinA said duct for controlling the flow of ycoating material, rvalve control means on said body, said second duct having its forward end rearwardly offset from the forward 'end of said first named duct and terminating in the handle portion, a third duct in said handle portion extending from the free end thereof and intersecting the rear end of said second duct, said third duct accommodating a high potential cable, a dropping resistor disposed within said second duct and having one terminal at the rear end of said second
  • valve means is located at the forward end portion of said iirst duct and wherein said valve control means includes a valve operating rod of insulating material extending rearwardly of the barrel in said rst duct.
  • said nozzle assembly includes a plastic housing for said nozzle, said plastic housing consisting of at least two separate pieces, said electrical insulation covering the barrel end having an opening for accommodating the end portion of said plastic housing, said pin passing through the plastic housing pieces and being laterally offset from the discharge nozzle by a distance of the order of about 1A and extending into atmosphere for a short distance of the same general order as the lateral offset.

Landscapes

  • Nozzles (AREA)

Description

May 31, 1966 w. G. FISCHER ETAL. 3,253,782
S PRAY GUN 2 Sheets-Sheet 1 Original Filed Jan. 30, 1963 @p W/dhfQ/e/SQ YROBE RTL KAH :\,Vv km.
N ATTY w. G. FISCHER `rs1-AL.
S PRAY GUN 2 Sheets-Sheet 2 FOBERTLKAHNATN May 3l, 1966 Original Filed Jan. 30, 1963 United States Patent O 3,253,782 SPRAY GUN Warren G. Fischer, St. Charles, Robert C. Schlinger, Palos Park, and Arvid C. Walberg, Lombard, Ill., assignors to H. G. Fischer & Co., Franklin Park, Ill., a corporation of Illinois Continuation of application Ser. No. 254,899, Jan. 30,
1963. This application Feb. 2, 1966, Ser. No. 526,973 3 Claims. (Cl. 239-15) This application is a continuation of our copending application Serial No. 254,899, filed January 30, 1963.
This invention relates to a spray gun, and more particularly to a spray gun of the airless type. Guns of this type are old and have been used to some extent. Such guns operate on the principle that liquid coating material under high pressure of the order of a thousand pounds per square inch or more when suddenly released into atmosphere will atomize into separate particles. Such guns operate under severe handicaps.
Hydraulic pressure generatingmeans, particularly for pressures of the order of a thousand pounds or more, are quite expensive both with regard to rst cost and with regard to maintenance. Then coating material must be discharged under such high pressure through nozzles having extremely line orifices. For example, .an orifice of the order of .010" or thereabouts is quite common. Wear on thev orifice increases the orifice diameter and results in a very substantial increase in the amount of coating material passed by the orifice. This impairs the operation of the gun.
For most industrial purposes, the quantity of coat-ing material must be carefully controlled and the thickness of the nished coating material must be uniform.. Airless guns of present design can not meet these requirements. Feathering is not possible. As a rule, a coating having a desired thickness is the minimum thickness obtainable. The difficulty has been in completing the coating by additional passes without overlap.
Another handicap under which high pressure airless guns operate is based upon the angle of incidence of the coating material to the work. Due to the extremely high pressure at which the coating material must be discharged in order to be atomized substantially, the coating material has a tendency to be reflected or bounced from the work unless the angle of incidence of coating material to the work is substantially about 90. Any departure 4from this angle results in a loss of coating material, with a consequent reduction in efficiency of coating.
Airless guns of this character use discharge orifices of material having a high degree of hardness. As an example, tungsten carbide is frequently used for a discharge nozzle in guns of this type. Tungsten carbide, while being very hard, is also quite brittle, and is dfiicult to fabricate, particularly with regard to control over the fneness of the orifice.
In order to obtain a high degree of atomization, guns of the prior art require the use of high pressures of the order of a thousand pounds or more. While electrostatic coating procedures are well known and are widely used, the advantage-s incident to such procedures have not accrued to airless types of guns. One reason may be due to the fact that conventional high pressure airless gun construction has been retained when electrifying spraying systems. Whatever change has been made has consisted of the superfici-al addition of one or more electrodes. This has consisted of the addition of large sharp spikes or spears radiating from a conventional gun and charged to high potential. v
This invention provides an airless spray gun which has such great increase in the efiiciency of operation as to make it possible to effect remarkable economies in the 3 ,253,7 82 Patented May 31, 1966 lCC operation of the gun. Thus as one example, it is possible to reduce the amount of hydraulic pressure neces-sary for operating the new gun as compared to a conventional airless gun of the prior art. Such -a great reduction in hydraulic pressure makes possible the use of discharge nozzle with a larger discharge orifice. This imposes less of a requirement upon the accuracy of the discharge nozzle and the cost of manufacture thereof. In addition, it is possible to control more closely the quantity of coating material discharged through the nozzle at lower hydraulic pressure.
The new gun not only provides fo-r operation at lower hydraulic pressure, but also makes it possible to create a much more intense electric field adjacent the discharge region of the gun to add to the atomiz-ing efficiency of the gun. As a rule, the major Work Vinvolved in atomizing coating material is accomplished by mechanical means. The intensity of the electric field simply superimposes some additional atomization and in particular, aids in charging the atomized particles more completely so that the effectiveness of the entire coating operation is greatly enhanced. The new gun embodying the present invention provides for the creation of an electric field which greatly increases the efficiency of operation of the gun. This aids in further reduction in the value of hydraulic pressure required'for successful operation and also makes it possible to increase the size of the discharge orifice or reduce the amount of paint discharged through a discharge orifice to a value of about the same order as is true of conventional air discharge guns. As -is well known, air discharge guns can handle coating material so that a comparatively small quantity of such material can be discharged and the thickness of coating material sprayed on can therefore be easily controlled and the gun can be quite efficiently managed.
A spray gun embodying the present invention provides a construction which not only permits of the efficient operation of the gun as an airless type of gun, but, in addition, also permits of the application of an electric field thereto greatly to increase the operating efiiciency of the gun.
The new gun resembles conventional airless guns in that a discharge nozzle or tip of refractory material such as tungsten carbide Iis used. In accordance with the present invention, a separate ionizing electrode having excellent electrical conductivity is provided, this electrode being located close to the discharge region of the gun. The new gun utilizes the principle disclosed in United States Patent No. 3,056,557, issued on October 2, 1962. In this patent, a gun is disclosed wherein substantially all of the metal at high potential present in the gun is electrically insulated or shielded from atmosphere by solid insulation except for a sharp tip or edge at the region of discharge. By thus minimizing highly charged metal exposed to atmosphere at the discharge region, an extremely intense field is created, this field extending from the sharp edge or point to the work. Not only is the atomization eficiency increased, but, in addition, the overall characteristics of the gun are improved.
Where a new gun embodying the present invention is to be held by an operator, it is desirable to have metallic parts of the handle portion of the gun at ground potential. In such case, it is necessary to have a b-arrel for the gun of insulating material with the b-arrel length longer than the spacing between the discharge end of the gun and the work. This prevents coating material discharged from the en d of the gun from following the electric field back toward the handle of the gun and back toward the operato-r. This same requirement may also be desirable with automatic guns if the mounting of the automatic gun is to be on a -reciproc-ator or other support which is desired to be at ground potential.
. As ya result of the presence of a long insulating gun barrel in the airless gun, the mechanical structure of conventional iairless guns has been greatly modified, particularly with regard to the location of the V-alve and the normal bias thereof. Conventional airless guns have used short operating rods because of the high pressures involved. The valve rod has been quite short and the normal bias of the valve has been to close the valve against the valve seat by means of a compression spring. In accordance with the present invention, a new structure provides a long valve rod and reverses the position of thevalve rod and spring so that the valve rod is always in tension. Thus the valve rod can be much thinner than would normally be the case.
The invention will now be described in conjunction with drawings showing an exemplarly embodiment. Referring, therefore, to the drawings;
FIGURE 1 shows a view partly in section and partly in elevation of a gun embodying the present invention, the handle portion thereof being cut short.
FIGURE 2 is a sectional vie-w of the remaining handle portion of the gun of FIGURE 1.
`FIGURE 3 is a front view looking toward the nozzle of the gun with the gun cap removed and a view omitting the handle and other portions of the gun.
FIGURE 4 is a partialy section and partial elevation of the nozzle portion illustrated in FIGURE 3.
FIGURE 5 is an exploded view showing the various parts partly in elevation and partly in section of the valve rod Iand valve portions of the'gunvernbodying the invention.
FIGURE 6 is a top view of the gun illustrated in FIG- URE l.
FIGURES 7, 8 and 9 are detaiis illustrating the action of the valve rod rotating means.
Thel gun preferably consists of a casting or moulding of a suitable plastic. As examples, plas-tics such as polypropylene, polyethylene and nylon are three -of a large number of plastics which may be used. Such plastics maye be moulded quite easily, have excellent electrical resistance characteristics and are suiiiciently strong mechanically for use in a gun of this character. The gun comprises barrel 10 and handle portion 11. Handle portion 11 is provided with straight ducts or channels 14 and 15 respectively. The free end of handle 11 carries metal fittings 17 and 18 which are threaded into handle 11 and constitute duct terminals for ducts 14 and 15. Fittings 17 and 18 are externally threaded as indicated and are useful respectively for adapting the ducts to be used for a high potential electric cable and for conducting' coating material under high pressure. In duct 14, high potential cable 19 is fitted. This cable includes stranded conductor 20 of copper or other wire and high potential insulation of polyethylene or similar material. The high potential cable outside of handle 11 is provided with outer sheath 21 of braided copper or the like for grounding and this outer sheath is electrically connected to metal fitting 17. Grounded sheath 21 does not extend inside of duct 14.
Metal fitting 18 is adapted to be connected to a flexible high pressure hose, not shown, for providing a supply of coating material to the gun. Inasmuch as guns of the character considered are operated at pressures considerably higher than conventional air guns, the fitting and coating material hose should be of the pressure type capable of resisting pressures of the order of about 1000- 2000 pounds per square inch.
Cable duct 14 in the handle Iterminates in the general region where the handle merges into the gun body. Conductor 20 of the cable is provided with terminal tipv 23 of brass or other metal, this consisting of a conical shell with a spike which may be pushed into conductor 20. intersecting duct 14 is resistor duct 24 which extends Ilongitudinally of the gun at the lower portion of gun barrel 10. Duct 24 extends forwardly of the gun body and terminates in threaded portion 25 adapted to receive threaded plug 26 of insulating material, preferably of the same material used in the gun body. Disposed within resistor duct 24 is dropping resistor 27 having terminal 28 in electrical contact with terminal tip 23 of the cable and the resistor having remaining -terminal 29 in contact with metal coiL spring 30 within the duct. Metal coil spring 30 carries conical metal terminal tip 31, this being, in the assembled position of thegun, at a position within the duct near threaded plug 26. Laterally of duct 24 is short transverse passage 33 suitably threaded for access from the exterior of the gun body to the duct. Access passage 33 is normally closed by threaded plug 34 also of electrically insulating material Iwhich may be of the same plastic as the gun body.
Passage 33 extends Within the interior -of the gun body from resistor duct 24 to a recess Within the gun barrel proper. Passage 33 contains a metal rod connector 35 of brass or other metal for electrically connecting terminal tip 31 with the metal parts of the gun at the discharge portion thereof.
Plugs 26 and 34 are provided so that the dropping resistor and spring may be inserted in duct 24 and metal connector 35 may be disposed within the interior connecting passage previously referred to.
Now referring to duct 14 in handle 11 of the gun, this duct extends into the rear end of the barrel of the gun body and intersects cylindrical bore 40 of the gun. At the rear, or what might be termed the breech end bore 40, metal fitting 41 is provided, this fitting being threaded into the body material of the gun. Fitting 41 is somewhat larger in diameter than bore 40 and is cup-shaped and has a portion of the interior threaded to receive packing nut 42. Between packing nut 42 and the bottom of the chamber defined by fitting 41 is a region filled with soft packing material 43 such as felt, or the like. Packing nut 42 and the bottom of fitting 41 are provided with coaxial apertures therethrough to accommodate operating `rod 45 of metal. This arrangement provides a packing gland for rod 45. This operating rod is used for operating the valve member in the forward part of the gun and is adapted to be moved longitudinally of the gun by suitable trigger means.
Various means for operating rod 45 may be provided. The means illustrated here function to move rod 45 longitudinally and .at the same time turn the rod about its axis. Thus yoke 46 is pivotally secured by bolts 46A on opposite sides of the gun body. Yoke 46 includes as a part thereof trigger handle 46B. Yoke 46 has operating portion 47 which is at all times above (as seen in FIG- URE 1) rod 45. Portion 47 of the yoke carries pin 48 parallel to and laterally offset from rod 45. The yokev is biased to a valve closing position by coil spring 51 extending lbetween yoke portion 47 and bolt 52 threaded into a portion of the gun body. In order to ground all metallic parts which may be handled by an operator, metal strap 53 is rigidly secured to the end of handle portion 11 by fittings 17 and 18, this strap 53 alsoextending up and being secured to v the gun body by bolt 52.
Backward travel of valve operating rod 45 is secured by yoke portion 47 moving pin 48 (see FIGURE 6), this pressing against disk 56 locked on threaded rod 57 by nut 58. Threaded rod 57 is coupled to operating rod 45 by cooperating threaded portions. The backward travel of operating rod 45 is limited yby metal fitting 60 threaded into the gun body material, this last named fitting being coaxial with threaded rod 57 and having a recess within the fit-ting for permitting the rod to move longitudinally therein. As is explained later, valve operating rod 45 is normally spring biased toward the dischargeend of the gun. This bias results in disk 56 being urged against offset pin 48. When trigger handle 46B is pressed toward gun handle 11, pin 48 not only moves against disk 56 to open the valve, but the upward cornponent of the movement of pin 48 (as illustrated in FIGURE 8) creates a turning force for moving disk 56 clockwise as seen in FIGURE 8, this resulting in turning the valve operating rod.
In the normal condition of the gun, valve operating rod 45 is biased to a forward position so that normally the Valve for the gun is closed. Pressing trigger 46B will result in longitudinal movement of rod 45 rearwardly of the gun, this opening the valve to permit coating material under high pressure to be discharged.
Valve operating rod 45 has portion 62 threaded into one end of valve operating rod portion 63 of electrically insulating material. This material may be of any material rwhich can stand tension. For example, the rod may be of Bakelite, fiber, or any other material. Rod 63 is subject to tension-the amount need not be very greatto that this rod need not be very heavy or large in cross section. Rod 63 fits loosely within bore 40 of the gun barrel, leaving enough space around the rod within bore 40 to permit the flow of coating material under pressure when the gun is discharging.
The forward end of operating rod portion 63 enters into heavy metal insert 64 which cooperates with other metal members, to be described, to form a housing for lthe control valve. `Metal insert 64 is generally cylindrical in shape a-nd has passage 65 through the end wall thereof for accommodating operating rod portion 63. Inasmuch as coating material must pass around the outside of rod portion 63 into the interior of metal insert 64, it is desirable to provide sufficient clearance between the operating rod and passage 65 for accomlmodating the flow of coating material. Metal insert 64 has a substantial portion thereof, beginning from the rear end, externally threaded at 66 so that this insert may be turned into a correspondingly threaded recess Within the gun barrel.
In view of the high pressures involved, it is understood that the wall thickness of the gun bar-rel between the exterior thereof and bore 40 will be sufficiently l-arge to wit-hstand the pressure and it is also understood that the length of threaded portion 66 of met-al fitting insert 64 is sufficiently long so that a pressure-tight seal will be provided. It will be noted that electrical connecting member 35 of metal is adapted to engage externaly threaded portion 66 for applying a high potential to the various metal parts of the gun at the discharge end. Coil spring 69 biases valve retainer 72 to a valve closing position. When trigger handle 46B is moved to open the valve, the pressure of pin 48 against disk 56 results in the valve operating rod being tensioned to pull retainer 72 toward the rear of the gun against the compression of spring 69. Metal insert 64 has cylindrical chamber 68 into which the forward end of operating rod portion- 63 projects. Disposed within cylindrical chamber 68 is helical coil spring 69 which has its coils around operating rod portion 63. The forward end of operating rod portion 63 is recessed and threaded, as illustrated in FIG- URE 5, to accommodate externally threaded shank 71 of metal form-ing part of metal ball valve retainer 72. Metal collar 73 is disposed around threaded shank 7,1 and collar 73 is large enough so that the forward end coilof spring 69 can rest against collar 73.
Collar 73 is disposed forwardly of cylindrical chamber 68 and is surrounded by the threads of internally threaded portion 75 of the forward portion of metal insert 64. This internally threaded portion 75 has a somewhat larger diameter than chamber 68 so that in the open or closed valve position, collar 73 will have some clearance around the outside by way of threads 75 to permit flow of coating material under pressure. Ball valve retainer 72 may have any desired shape and is here shown as having a generally square cross section with rounded edges. Ball valve lretainer 72 has its forward end tapering at 76 and set in this tapered end is ball valve 77, of hard material. This ball m-ay be of tungsten carbide or other refractory tough material and is cemented into the end of the retainer to be firmly attached thereto. Ball valve member 77 cooperates with the end of cylindrical valve seat 79 ofhard material such as tungsten carbide. rBhe end of the valve seat is tapered and is adapted to cooperate with ball 77 to form a tight closure. Both valve pa-rts are ground to smooth finishes. Valve seat 79 is secured -in cylindrical chamber 80 of metal valve retainer 81. Valve retainer 811 has externally threaded portion 82 which is outside of chamber 80. Externally threaded portion 82 cooperates with internal- =ly threaded portion 75 of metal insert 64. The forward end of insert 64 has a conically tapered seat which can cooperate with a correspondingly shaped seat on retainer 81 to form a high pressure seal.
Ball valve retainer 72 operates within chamber S0 of the valve seatretainer. In view of the generally square shape of ba-ll valve retainer 72, there will be regions where coating material can flow past ball valve retainer 72 toward the valve seat when the valve is opened. By having a square shape with the corners of ball valve retainer 7d rounded, and making the large diameter o-f the resistor just a bit smaller than the inside diameter of chamber 80, a smooth valve action can be obtained with ball valve retainer 72 supported against transverse movement but freely movable longitudinally of the valve. Valve seat retainer 81 when threaded snugly against the forward end of metal insert 64 will form a smooth joint.
Metal valve seat retainer 81 has its forward end provided with cylindrical chamber 82a, this portion of the retainer having external threading 83. Resting within cylindrical chamber 82a is discharge nozzle assembly, generally indicated by 85 and shown in detail in FIG- URE 4. This assembly provides a fine discharge bore coaxial with the bore through valve seat 7-9 and functions Ito discharge coating material under high pressure to atmosphere. The discharge nozzle assembly includes disk 86 of metal or plastic. Disk 86 is apertured at 87 at the center to form part of the bore. posed against cylindrical member 88 having reduced cylindrical portion 89. Disposed against reduced cylindri- 'cal portion 89 is nozzle block 90 of refractory material such as tungsten carbide, this having ne discharge opening 9.*1 therethrough. Refractory nozzle block 90 can have any desired construction and is here shown as having a general cup shape. The discharge nozzle is through the bottom of this cup. Cup-shaped retainer 93 of plastic is disposed around the outer surface of refractory nozzle block 90 and has opening 94 therethrough to provide clearance for the nozzle tip part of block 90. The assembly of three parts 86, 88 and l93 is kept intact by metal pin which is laterally offset from the axis of the nozzle assembly and is generally parallel t-o the axis thereof. Pin 95 has a sharp pointed end projecting beyond the nozzle discharge opening. Pin 95 has at head 96 which norm-ally -is pressed against t-he adjoining metal of valve seat retainer 81. The plastic discharge nozzle assembly is maintained 4in position by metal retaining nut 97 and suitably shaped internally to t the shoulder portion of part 93 of the assembly.
Metal washer 93a is provided as a seat for retaining nut 97. The plastic discharge nozzle assembly can be replaced'with a conventional all-metal nozzle assembly as an emergency rep-air measure when necessary to keep the spray gun in production. This provides impaired but continuing operation in an emergency.
Cup-shaped cap 98 of electrically insulating material is provided to cover all exposed metal parts which are at high potential but is open to expose pin 95 and nozzle tip 90. Cap 98 may be of the same insulating material as body 10 of the gun or may be of different material, depending upon. mechanical considerations. In any event, cap 98 has high electrical resistance and should be thick enough to provide both mechanical and electrical protection necessary. Oap 98 has internally threaded portion 99 Which cooperates with a correspondingly threaded portion on gun body 10. O-ring 100 is disposed Disk 86 is disbetween opposing shoulders of the cap and gun body to provide a seal.
yIn the use of the gun, it is desirable to have the value 4of resistor 27 suitable for the potential to which the gun electrode is charged. Thus resistor 27 preferably has a value of 25 megohms per 10,000 volts of applied voltage. As a rule, the minimum potential is of the order of 40,000 or 50,000 volts and the potential can go up as high as 100,000 volts.
The amount of lateral yoffset of high potential needle 95 from the axis of discharge nozzle is small and will lgenerally lbe of the order of about 1%@ of an inch. The needle itself can be about 4A@ or f/f; of an in'ch. ln general, the needle is long enough to project into the cloud of atomized material lafter it emerges from the nozzle. With the needle well within the cloud of latomized particles, excellent charging effects are obtained.
Atomization mechanically is promoted by the provision of the discharge nozzle and separate control valve arranged in tandem. The valve causes some initial atomization of the discharge material prior to the time that this material reaches the discharge nozzle. Thus, by the time the initially atomized material reaches the second discharge nozzle, the reduction in pressure at the discharge nozzle greatly adds to the atomization. This type of two-stage atomization is particularly effective for high pressure airless work.
The shielding of all highly charged metallic parts from atmosphere except for needle 95 promotes atomization and also makes the gun operation safe to handle for substantially the same reasons present in the copending application of A. C. Walberg, Serial No. 211,006, tiled July 19, 1962.
We claim:
1. A spray gun for electrostatic coating having discharge and rear ends, said gun having a body of plastic material having substantial mechanical strength and having excellent electrical resistance against the high potentials used in electrostatic coating, said body having an elongated straight barrel portion having a front discharge end and a handle portion extending laterally from said `barrel portion at the rear thereof, said barrel portion having two longitudinal, laterally offset parallely straight ducts, 'one such duct extending from the discharge end back to the rear end for accommodating coating material, means for supplying coating material to said first duct, valve means withinA said duct for controlling the flow of ycoating material, rvalve control means on said body, said second duct having its forward end rearwardly offset from the forward 'end of said first named duct and terminating in the handle portion, a third duct in said handle portion extending from the free end thereof and intersecting the rear end of said second duct, said third duct accommodating a high potential cable, a dropping resistor disposed within said second duct and having one terminal at the rear end of said second duct connected to the high potential conductor in the cable, solid insulating material at both ends of said second duct forV sealing said second duct after said resistor has been positioned therein, a fourth duct extending laterally of the barrel from the forward end of said second duct to the first duct at a region rearwardly fromthe gun discharge end, electrically conductive members including nozzle yassembly parts and a nozzle within said lirst duct at the forward portion thereof, electrical connecting means within said fourth duct extending between the forward end of said dropping resistor and'said electrically Conductive members Within the rst duct, solid insulating means disposed over the forward end of the barrel portion containing the first duct for closing the same, said solid insulating means having an opening therethrough foraccommodating material discharged by the gun, said gun including an electrically conductive electrode portion in contact with electrically conductive members in said irst duct and having a sharp tip normally charged to a high potential during gun use, said tip being forwardly of the gun beyond the nozzle, said solid insulation means shielding all electrically conductive members charged to a high potential from exposure to atmosphere except for the sharp tip and said nozzle.
2. The structure according to claim 1 wherein said valve means is located at the forward end portion of said iirst duct and wherein said valve control means includes a valve operating rod of insulating material extending rearwardly of the barrel in said rst duct.'
y3. The structure according to claim 1 wherein said nozzle assembly includes a plastic housing for said nozzle, said plastic housing consisting of at least two separate pieces, said electrical insulation covering the barrel end having an opening for accommodating the end portion of said plastic housing, said pin passing through the plastic housing pieces and being laterally offset from the discharge nozzle by a distance of the order of about 1A and extending into atmosphere for a short distance of the same general order as the lateral offset.
. References Cited by the Examiner UNITED STATES PATENTS 1,928,963 -10/1933. Chaffee. 2,302,289 1.1/ 1942 Branston-Cook. 2,571,608 10/1951 Plagge 239--15 2,595,774 5/ 1952 De Ment. 2,597,775 5/1952 Brown. 2,625,590 1/1-953v Peeps. 2,626,187 1/ 1953 Toftmann. 2,766,064 '10/ 1956 Schweitzer. 2,826,451 3/195-8y Sedlacsik. 2,843,425 7/ 1958 fPaasche. 2,844,408 7/195'8 Diekmann. 2,995,393 8/1961 Charp 239-15 3,000,576 9/ 1961 Levey et al 239-499 3,031,145 4/ 1962 Croskey. 3,116,020 112/1963 Rosen et al. 239-578 FOREIGN PATENTS 569,794 1/1'959` Canada. 594,913 7/ 1945 Great Britain. 338,037 6/ 1959 Switzerland.
M. HENsoN woD, JR., Primary Examiner.
R. S. STROBEL, Assistant Examiner.

Claims (1)

1. A SPRAY GUN FOR ELECTROSTATIC COATING HAVING DISCHARGE AND REAR ENDS, SAID GUN HAVING A BODY OF PLASTIC MATERIAL HAVING SUBSTANTIALLY MECHANICAL STRENGTH AND HAVING EXCELLENT ELECTRICAL RESISTANCE AGAINST THE HIGH POTENTIALS USED IN ELECTROSTAIC COATING, SAID BODY HAVING AN ELONGATED STRAIGHT BARRLE PORTION HAVING A FRONT DISCHARGE END AND A HANDLE PORTION EXTENDING LATERALLY FROM SAID BARREL PORTION AT THE REAR THEREOF, SAID BARREL PORTION HAVING TWO LONGITUDINAL, LATERALLY OFFSET PARALLEL STRAIGHT DUCTS, ONE SUCH DUCT EXTENDING FROM THE DISCHARGE END BACK TO THE REAR END FOR ACCOMMODATING COATING MATERIAL, MEANS FOR SUPPLYING COATING MATERIAL TO SAID FIRST DUCT, VALVE MEANS WITHIN SAID DUCT FOR CONTROLLING THE FLOW OF COATING MATERIAL, VALVE CONTROL MEANS ON SAID BODY, SAID SECOND DUCT HAVING ITS FORWARD END REARWARDLY OFFSET FROM THE FORWARD END OF SAD FIRST NAMED DUCT AND TERMINATING IN THE HANDLE PORTION, A THIRD DUCT IN SAID HANDLE PORTION EXTENDING FROM THE FREE END THEREOF AND INTERSECTING THE REAR END OF SAID SAECOND DUCT, SAID THIRD DUCT ACCOMMODATING A HIGH POTENTIAL CABLE, A DROPPING RESISTOR DISPOSED WITHIN SAID SAECOND DUCT AND HAVING ONE TERMINAL AT THE REAR END OF SAID SECOND DUCT CONNECTED TO THE HIGH POTENTIAL CONDUCTOR IN THE CABLE, SOLID INSULATING MATERIAL AT BOTH ENDS OF SAID SECOND DUCT FOR SEALING SAID SECOND DUCT AFTER SAID RESISTOR HAS BEEN POSITIONED THEREIN, A FOURTH DUCT EXTENDING LATERALLY OF THE BARREL FROM THE FORWARD END OF SAID SECOND DUCT TO THE FIRST DUCT AT A REGION REARWARDLY FROM THE GUN DISCHARGE END, ELECTRICALLY CONDUCTIVE MEMBERS INCLUDING NOZZLE ASSEMBLY PARTS AND NOZZLE WITHIN SAID FIRST DUCT AT THE FORWARD PORTION THEREOF, ELECTRICAL CONNECTING MEANS WITHIN SAID FOURTH DUCT EXTENDING BETWEEN THE FORWARD END OF SAID DROPPING RESISTOR AND SAID ELECTRICALLY CONDUCTIVE MEMBERS WITHIN THE FIRST DUCT, SOLID INSULATING MEANS DISPOSED OVER THE FORWARD END OF THE BARREL PORTION CONTAINING THE FIRST DUCT FOR CLOSING THE SAME, SAID SOLID INSULATING MEANS HAVING AN OPENING THERETHROUGH FOR ACCOMMODATING MATERIAL DISCHARGED BY THE GUN, SAID GUN INCLUDING AN ELECTRICALLY CONDUCTIVE ELECTRODE PORTION IN CONTACT WITH ELECTRICALLY CONDUCTIVE MEMBERS IN SAID FIRST DUCT AND HAVING A SHARP TIP NORMALLY CHARGED TO A HIGH POTENTIAL DURING GUN USE, SAID TIP BEING FORWARDLY OF THE BEYOND THE NOZZLE, SAID SOLIDE INSULATION MEANS SHEILDING ALL ELECTRICALLY CONDUCTIVE MEMBERS CHARGED TO A HIGH POTENTIAL FROM EXPOSURE TO ATMOSPHERE EXCEPT FOR THE SHARP TIP AND SAID NOZZLE.
US526973A 1966-02-02 1966-02-02 Spray gun Expired - Lifetime US3253782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US526973A US3253782A (en) 1966-02-02 1966-02-02 Spray gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US526973A US3253782A (en) 1966-02-02 1966-02-02 Spray gun

Publications (1)

Publication Number Publication Date
US3253782A true US3253782A (en) 1966-05-31

Family

ID=24099575

Family Applications (1)

Application Number Title Priority Date Filing Date
US526973A Expired - Lifetime US3253782A (en) 1966-02-02 1966-02-02 Spray gun

Country Status (1)

Country Link
US (1) US3253782A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459374A (en) * 1965-07-07 1969-08-05 Ransburg Electro Coating Corp Electrostatic coating apparatus
US3472204A (en) * 1968-06-14 1969-10-14 Ransburg Electro Coating Corp Electrostatic coating apparatus
US3767115A (en) * 1971-12-27 1973-10-23 Graco Inc Electrostatic spray gun apparatus
US3907202A (en) * 1973-05-10 1975-09-23 Skm Sa Spray-gun apparatus for atomizing paint or similar liquids
US3930619A (en) * 1974-11-18 1976-01-06 Gustave S. Levey Adjustable orifice spray gun
US4355764A (en) * 1980-07-17 1982-10-26 Nordson Corporation Low capacitance airless spray apparatus

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1928963A (en) * 1925-01-12 1933-10-03 Donald W Salisbury Electrical system and method
US2302289A (en) * 1938-12-06 1942-11-17 Union Oil Co Electrified spray method and apparatus
GB594913A (en) * 1945-07-03 1947-11-21 Aerostyle Ltd Improvements in and relating to spray gun tips and the like
US2571608A (en) * 1945-06-29 1951-10-16 Westinghouse Electric Corp Method and apparatus for connecting articles with a graded coating of glass
US2595774A (en) * 1948-01-02 1952-05-06 Ment Jack De Protection of structures from noxious atmospheres
US2597775A (en) * 1945-09-08 1952-05-20 Bridgeport Brass Co Insecticide dispenser
US2625590A (en) * 1948-07-31 1953-01-13 Vilbiss Co Means for electrostatically charging spray material
US2626187A (en) * 1948-10-01 1953-01-20 Toftmann Gunter Heinrich Pressure spray oil burner
US2766064A (en) * 1955-08-22 1956-10-09 Howard V Schweitzer Paint gun
US2826451A (en) * 1954-11-01 1958-03-11 Sedlacsik John Spray device for electrostatic deposition of a fluid
US2843425A (en) * 1954-12-23 1958-07-15 Cline Electric Mfg Co Atomizing device
US2844408A (en) * 1956-02-25 1958-07-22 Waldemar Foerstner Nozzles
CA569794A (en) * 1959-01-27 A. Croskey Frank Electrostatic spray charger with discharge electrode of metallic needles
CH338037A (en) * 1954-07-28 1959-04-30 Lenger Vladimir J Ing Dr Electrostatic precipitator
US2995393A (en) * 1957-10-30 1961-08-08 Nalco Chemical Co Method and apparatus for increasing the coefficient of friction between metal surfaces
US3000576A (en) * 1960-03-01 1961-09-19 Spee Flo Company Spray gun
US3031145A (en) * 1959-09-21 1962-04-24 Gen Motors Corp Electrostatic spray painting apparatus
US3116020A (en) * 1961-10-05 1963-12-31 Nordson Corp Paint spray gun

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA569794A (en) * 1959-01-27 A. Croskey Frank Electrostatic spray charger with discharge electrode of metallic needles
US1928963A (en) * 1925-01-12 1933-10-03 Donald W Salisbury Electrical system and method
US2302289A (en) * 1938-12-06 1942-11-17 Union Oil Co Electrified spray method and apparatus
US2571608A (en) * 1945-06-29 1951-10-16 Westinghouse Electric Corp Method and apparatus for connecting articles with a graded coating of glass
GB594913A (en) * 1945-07-03 1947-11-21 Aerostyle Ltd Improvements in and relating to spray gun tips and the like
US2597775A (en) * 1945-09-08 1952-05-20 Bridgeport Brass Co Insecticide dispenser
US2595774A (en) * 1948-01-02 1952-05-06 Ment Jack De Protection of structures from noxious atmospheres
US2625590A (en) * 1948-07-31 1953-01-13 Vilbiss Co Means for electrostatically charging spray material
US2626187A (en) * 1948-10-01 1953-01-20 Toftmann Gunter Heinrich Pressure spray oil burner
CH338037A (en) * 1954-07-28 1959-04-30 Lenger Vladimir J Ing Dr Electrostatic precipitator
US2826451A (en) * 1954-11-01 1958-03-11 Sedlacsik John Spray device for electrostatic deposition of a fluid
US2843425A (en) * 1954-12-23 1958-07-15 Cline Electric Mfg Co Atomizing device
US2766064A (en) * 1955-08-22 1956-10-09 Howard V Schweitzer Paint gun
US2844408A (en) * 1956-02-25 1958-07-22 Waldemar Foerstner Nozzles
US2995393A (en) * 1957-10-30 1961-08-08 Nalco Chemical Co Method and apparatus for increasing the coefficient of friction between metal surfaces
US3031145A (en) * 1959-09-21 1962-04-24 Gen Motors Corp Electrostatic spray painting apparatus
US3000576A (en) * 1960-03-01 1961-09-19 Spee Flo Company Spray gun
US3116020A (en) * 1961-10-05 1963-12-31 Nordson Corp Paint spray gun

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459374A (en) * 1965-07-07 1969-08-05 Ransburg Electro Coating Corp Electrostatic coating apparatus
US3472204A (en) * 1968-06-14 1969-10-14 Ransburg Electro Coating Corp Electrostatic coating apparatus
US3767115A (en) * 1971-12-27 1973-10-23 Graco Inc Electrostatic spray gun apparatus
US3907202A (en) * 1973-05-10 1975-09-23 Skm Sa Spray-gun apparatus for atomizing paint or similar liquids
US3930619A (en) * 1974-11-18 1976-01-06 Gustave S. Levey Adjustable orifice spray gun
US4355764A (en) * 1980-07-17 1982-10-26 Nordson Corporation Low capacitance airless spray apparatus

Similar Documents

Publication Publication Date Title
US3583632A (en) Electrostatic spray coating apparatus
US4335851A (en) Electrostatic spray gun
US3746253A (en) Coating system
US3056557A (en) Spray gun for electrostatic coating
US4182490A (en) Electrostatic spray gun
DE2312363A1 (en) ELECTROSTATIC POWDER SPRAY GUN
US3253782A (en) Spray gun
US3265306A (en) Spray gun
USRE31867E (en) Electrostatic spray gun
DE69409557T2 (en) Electrostatic powder spray gun
US3248059A (en) Spray gun
US4611762A (en) Airless spray gun having tip discharge resistance
GB1310284A (en) Spray guns
DE1900821A1 (en) Electrostatic spray gun
EP1238709A2 (en) Powder spray pistol for coating powder
US3767115A (en) Electrostatic spray gun apparatus
US3251551A (en) Electrostatic coating system
US3268171A (en) Electrostatic coating system
US4651932A (en) Electrostatic paint spraygun
US3670961A (en) Electrostatic spray gun
US3591080A (en) Electrostatic spray gun
US3471089A (en) Electrostatic spray gun
DE1427633A1 (en) Device for dusting overcoats
US3554445A (en) Paint spray gun
US3693877A (en) Electrostatic spray coating apparatus