US3250028A - Universal bucket for a tractor mounted loader - Google Patents

Universal bucket for a tractor mounted loader Download PDF

Info

Publication number
US3250028A
US3250028A US427207A US42720765A US3250028A US 3250028 A US3250028 A US 3250028A US 427207 A US427207 A US 427207A US 42720765 A US42720765 A US 42720765A US 3250028 A US3250028 A US 3250028A
Authority
US
United States
Prior art keywords
bucket
line
pressure
jacks
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US427207A
Inventor
Richard H Hunger
Paul H Spennetta
Trevor G Campbell
Morton M Coker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US161968A external-priority patent/US3211065A/en
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Priority to US427207A priority Critical patent/US3250028A/en
Application granted granted Critical
Publication of US3250028A publication Critical patent/US3250028A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • E02F3/402Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors
    • E02F3/404Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets with means for facilitating the loading thereof, e.g. conveyors comprising two parts movable relative to each other, e.g. for gripping

Definitions

  • The'present invention relates to material handling and earth digging machines, and more particularly to vehicle mounted loaders having material handling buckets capable of performing a variety of tasks.
  • Vehicle mounted loaders are generally equipped with a clamping or digging attachment designed primarily to perform a specific job. Attachments of this nature which are known in the art include log forks, pulp'wood forks, bulldozers, buckets, ejector buckets, etc. All of the attachments have the common feature of being designed to move material from one place to another. On large scale construction projects it is not uncommon for various types of material to be moved from one place to another, and it is therefore often required that several vehicle mounted loaders, each with a different .attachment, be in use.
  • FIG. 1 is a view in side elevation of a tractor mounted loader with a universal bucket embodying the present invention
  • FIG. 2 is an enlarged top plan view of the universal bucket of FIG. 1 with its clamp closed and shown in combination with operating mechanisms used in conjunction therewith;
  • FIG. 3 is an enlarged illustration of a portion of the linkage utilized in operating the universal bucket
  • FIG. 4 is a section on the line IV1V of FIG. 2, but with the clamp partially open;
  • FIG. 5 is a view like FIG. 4 but showing the clamp in a fully open position and with the ejector fully forward;
  • FIG. 6 is a schematic diagram of the hydraulic system utilized to operate the components of the bucket.
  • a tractor as generally illustrated at 11 in FIG. 1 is shown as typical of any vehicle upon which a loader bucket may be mounted and the bucket of the present invention, generally indicated at 12, is shown as mounted at the forward end of a pair of lift arms, one of which is shown at 13, pivotally connected to the tractor at 14 and to the bucket at 16.
  • Hydraulic jacks 17 are employed for raising and lowering the lift arms 13 and bucket 12.
  • Tilt linkage of conventional construction is employed for tilting the bucket between load, carry and dump positions about the pivots 16. This linkage comprises jacks 18 for imparting swinging movement to levers 19 pivoted to the lift arms which in turn impart swinging movement to levers 21 through connecting links 22.
  • Another pair of links 23 form a connection between "ice the levers 21 and thebucket for imparting tilting movement thereto.
  • the bucket 12 comprises a bottom 24 with a cutting edge 26 (FIGS. 4 and 5) and side walls 27 extending upwardly in parallelism from its opposite ends.
  • a cylindrical cross beam 28 (see FIG. 2) extends between the side walls adjacent their upper edges lending rigidity to the structure as well as performing other functions to be described in detail.
  • a curved ejector plate 29 provides a back wall which extends the full distance between the side walls 27 and is pivoted as by pins 31 for forward swinging movement through the bucket to eject the contents thereof.
  • the pivotal supports for the ejector as well .as the pivotal connections of the lift arms and tilt mechanism is best shown in FIGS.
  • the bucket is shown as having a pair of spaced brackets 32 which extend from the bottom of the bucket at its rear edge to the cross beam 28 and continue upwardly and forwardly from the cross beam to provide supports lift arms 13 and the bucket as shown at 16 in FIG. 2 and the tilt links 23 and the bucket, as shown at 34.
  • Cylindrical cross beam 28 is pivotally mounted by means of a pair of inner bearing blocks 36 associated with spaced brackets 32 and a pair of smaller bearing blocks 37 mounted on the widened upper edges 38 of side walls 27, as best illustrated in FIG. 2.
  • Clamp 39 is rigidly secured to beam 28 at each end and is composed of a pair of curved lever arms interconnected by means of a cross brace 41 and cutting edge 42.
  • Rotation of beam 28 is controlled by means of a pair of hydraulic cylinders or jacks 43 which are positioned equidistant the center line of bucket 12.
  • the rods of jacks 43 are pivotally connected as by pins 46 to levers 44 which are rigidly secured to the beam 28.
  • the jacks 43 are pivotally connected at 47 to rigid brackets 48 welded or similarly affixed to the bottom 24 of bucket 12.
  • a cross member 49 connects brackets 48 to provide added rigidity thereto.
  • a second pair of levers 51 is also rigidly secured to beam 28 and is pivotally connected as by pins 52 to links 53.
  • Links 53 are pivotally connected by pins 54 at their other ends to links 56 which are, in turn, pivotally connected at their other ends, by pins 57, to ribs 33.
  • the curved lever arms of clamp 39 have teeth 57 on their interior edge to provide an effective gripping means in combination with edge 0 58 of sides 27 of bucket 12, which may also be equipped closed position approximately 60 to the position shown in FIG. 4 by counterclockwise rotation of beam 28 through retraction of jacks 43.
  • the position of clamp 39 shown in FIG. 4 is the position generally established preparatory to grasping and picking up an object. For this movement range counterclockwise rotation of beam 28, clamp 39, and levers 51 causes a collapsing action of links 53 and 56 as may be noted by comparing FIG. 3 and FIG. 4 without exerting any force on pin 57.
  • initial opening of clamp 39 is accomplished without any resulting motion of ejector 29.
  • stops 61 secured on levers 51 engage links 53 and transmit forces through links 56 to pins 57 which swing ejector plate 29 about its pins 31 until the extreme forward position is reached as illus- I 3 trated in FIG. 5.
  • Stop blocks 62 mounted on the sides 27 of bucket 12 determine the extreme forward position of ejector 29. The amount of rotation of beam 28 necessary to position ejector 29 at its extreme forward position simultaneously moves clamp 39 to its extreme open position.
  • the bucket With the bucket components positioned as shown in FIG. 5, the bucket is also capable of being used to perform bulldozer type functions. Probably the most advantageous use of ejector 29, however, is the function it performs by its sweeping motion when it travels from the position shown in FIG. 4 to that shown in FIG. 5. In
  • links 53 and links 56 tend to position themselves in a straight line. But, if permitted, this action might allow links 53 and 56 to over-center and fold in a reverse manner to that intended. Blocks 63 integral with links 56 prevent any danger of over-centering links 53 and 56.
  • ejector 29 assumes a rearward. position corresponding to the solid line condition of links 53 and 56 as shown in FIG. 3. However, the ejector 29 can be urged rearwardly an additional incremental amount to engage spaced brackets 32 whereupon links 53 and 56 would assume the phantom line state. This clearance allowance insures that edge 42 of clamp 39 engages edge 26 of bottom 24 before ejector 29 contacts brackets 32.
  • bucket 12 as equipped with a clamp 39 and ejector 29 is capable of performing a wide variety of functions and of handling numerous types of material. Furthermore, operation in any of its capacities is conducted by the actuation of the single pair of hydraulic jacks 43 acting through lost motion linkage between the variou components.
  • Jacks 43 control the angular position of beam 28 by being supplied with hydraulic fluid from a pump 66, which draws fluid from-an appropriate source 67. Under most conditions of operation only low forces are required to rotate beam 28 and its associated mechanisms. It is, therefore, advantageous to direct all of the fluid flow from pump '66 to one of the jacks 43 exclusively, to induce a more rapid angular positioning of beam 28 than would be accomplished if pump 66 supplied fluid to both of jacks 43 at the same time. When the clamp engages an object to be grasped or the ejector is set into motion against a load of material in the bucket, the flow from pump 66 meets the resisting force on the jack receiving the full flow and the fluid pressure rises.
  • hydraulic system which operates the universal bucket of the present invention includes means by which one of jacks 43 (designated as jack No. l) is the only jack to receive fluid flow when the required pressure is below a determined value (for example, 1400 p.s.i.).
  • a determined value for example, 1400 p.s.i.
  • fluid pressure supplied by pump 66 exceeds the predetermined value, fluid is delivered equally to both jacks 43 (the second jack being designated as jack No. 2) as long as the higher pressure is required.
  • the entire hydraulic operation is normally conducted automatically except for a manually operated control valve 68 which determines whether the hydraulic system acts to retract, extend, or merely hold the jacks in a fixed position.
  • manually operated directional control valve 68 is positioned to the extend position to provide communication between line 69, from pump 66, and line 71, which leads to the head end of jack No. 1.
  • line 71 which leads to the head end of jack No. 1.
  • the fluid pressure which exists in line 71 also exists in line 74 by virtue of the communication between the two lines.
  • a line 76 forms communication between line 74 and a shuttle valve 77. The pressure in line 74 is thus communicated to line 76 where it induces, through a line 78, the hydraulic positioning mechanism of shuttle valve 77 to position the valve in such a manner as to form a communication between line 76 and a line 79.
  • Line 79 from shuttle valve 77 communicates with a sequence valve 81 as well as a line 82 to the hydraulic positioning mechanism therefor. While shuttle valve 77 positions to the right (as shown) when any pressure exists in line 71 sequence valve 81 is of such nature that its hydraulic positioning system responds only to pressures above a predetermined pressure, and until that pressure is realized, the pressure in line 71 is transmitted no further than line 7 9. Consequently, until the predetermined pressure is met jack No. 1 receives the entire output of pump 66.
  • Sequence valve 81 is so designed, however, that the hydraulic controls therefor will maintain the valve in its communicating position as long as the pressure in line 82 does not drop much below one-half the value necessary to cause the sequence valve to initially shift into communicating position.
  • sequence valve 81 By maintaining sequence valve 81 in its communicating position selector valve 86 is also maintained in the position which allows communication between pump 66 and jack No. 2, which is the desired position until the pressure in line 71 drops below a specified value.
  • manual control valve 68 When it is desired to retract jacks 43, such as when ejecting a load from the bucket, manual control valve 68 is positioned to the left, forming communication between line 71 and sump 72, and lines 69 and 73.
  • the fluid flow from pump 66 is directed through line 73 to the rod end of jack No. 1, forcing the piston to retract. This causes the fluid in the head end to flow through line 71 to sump 72.
  • sequence valve 81 and selector valve 86 are positioned as shown by FIG. 6 so as to prevent communication between the rod end of jack No. 2 and pump 66.
  • the pressure in line 93 is communicated to shuttle valve 77 through line 94, and from line 94 to the hydraulic controls of shuttle valve 77 through line 96.
  • the existence of pressure in line 96 causes the hydraulic controls for shuttle valve 77 to position it to the left so as to form communication between line 94 and line 79.
  • the pressure in line 73 reaches the predetermined shifting pressure the pressure communicated from line 94 to lines 79 and 82 will induce sequence valve 81 to shift to the right, which in turn provides for the shifting of selector valve 86 to the right as described above.
  • selector valve 86 With selector valve 86 shifted into communicating position, fluid from line 73 is delivered equally to jacks 1 and 2 in the same manner as described in connection with operation in the extend position.
  • An accumulator 97 with an established charging pressure greater than the predetermined shifting pressure required to shift sequence valve 81, communicates through a manually operated valve 98 and a line 99 with line 71.
  • accumulator 97 provides a supplemental source of pressure to the head end of both jacks for use in the event that a slight drop in line pressure should occur. Action of the accumulator 97 thus maintains clamps 39 in tight engagement with the load.
  • accumulator 97 will cause movement of both jacks to more securely engage a shifting load the rate of fluid exit from the rod end of both jacks is determined by leakage in the circuitry. Therefore an optional hold-accumulator position may be added to directional control valve 68 so that fluid is allowed topass from the rod ends of both jacks to drain 72. This hold-accumulator position would allow the jacks to be extended more quickly in response to load shifting. In certain circumstances, however, accumulator 97 might cause an undesirable resilience in the system in which case manually operated valve 98 may be moved to the right to effectively I'flll'IlOVB the accumulator from the system.
  • Cylindrical cross beam 28 acts as a torsion bar or tube which stores energy like a spring when resistance is encountered during clamping. Consequently, when the load shifts slightly in the clamp, tension in the beam will compensate for any looseness which might occur.
  • This torsion elfect supplements action of the accumulator mentioned above, or may be used instead of the accumulator.
  • Check valves 101 in connection with relief valve 102 and relief valve 103 protect the jack line hoses and pump, from excessive pressures. Valves 101, 102 and 103, while not essential to the operation of the overall hydraulic system, should be provided where high pressures are contemplated, to prevent serious damage to the equipment.
  • One of the outstanding features of the hydraulic system described above is the manner in which it automatically adjusts itself to operate in the most eflicient manner for the circumstances encountered.
  • beam 28 is being rotated to put the various components of the universal bucket in a desired position rather than to do work with the components, all of the available fluid flow from pump 66 is directed to a single jack so as to drive that cylinder quickly and efliciently to the desired position.
  • the hydraulic system senses the need for equally distributed work type forces and conditions itself to provide those forces equally through the jacks.
  • the present invention provides a bucket to be employed with tractor mounted loaders which is capable of performing a wide variety of tasks without sacrificing efficiency of operation to acquire the desired versatility.
  • a universal bucket for vehicle mounted loaders comprising in combination:
  • a material handling bucket having a bottom, two upstanding side Walls and an open forward end;
  • clamp means rigidly secured at either end of said cross beam
  • a universal bucket for vehicle mounted loaders comprising in combination:
  • a material handling bucket having a bottom and two upstanding side walls;
  • a curved ejector plate pivotally mounted on the free end of said structure means forming a back for said bucket;
  • said clamping means assuming a position between fully closed, where the clamping means contacts the bottom of said bucket, and fully open, in response to angular positioning of said beam;
  • said ejector being rotated forwardly in said bucket in response to rotation of said beam which corresponds to increased opening of said clamping means and being rotated rearwardly in said bucket in response to rotation of said beam which corresponds to decreased opening of said clamping means.
  • a material handling bucket having a bottom and two upstanding side Walls;
  • a curved ejector plate pivotally mounted on the free end of said structure means forming a back for said bucket;
  • said clamping means assuming a position between fully closed, where the clamping means contacts the bottom of said bucket, and fully open, in response to angular positioning of said beam;
  • stop means carried by said first link for engaging said second link, said stop means being positioned at a distance from said second link when the angularposition of said beam corresponds to said clamp means being anywhere between a closed position and a partially open position, said stop means bearing against and applying a force to said second link when the angular position of said beam corresponds to said clamp means being open further than the partially open position;

Description

y ,1966 I R. H. HUNGER ETAL 3,250,028
UNIVERSAL BUCKET FOR A TRACTOR MOUNTED LOADER Original Filed Dec. 26, 1961 I 4 4 Sheets-Sheet 1 INVENTORS RICHARD H. HUNGER PAUL H. SPENNETTA TREVOR G. CAMPBELL BY MORTON M. COKER 9/7; WW!
ATTORNEYS y 1966 R. H. HUNGER ETAL 3,250,028
UNIVERSAL BUCKET FOR A TRACTOR MOUNTED LOADER Original Filed Dec. 26, 1961 4 Sheets-Sheet 2 ELE E mvmvrozes RiCHARD H. HUNGER PAUL H. SPENNETTA TREVOR G. CAMPBELL BY MORTON M. COKER ATTORNEYS y 1966 R. H. HUNGER ETAL 3,250,028
UNIVERSAL BUCKET FOR A TRACTOR MOUNTED LOADER 4 Sheets-Sheet 3 Original Filed Dec. 26, 1961 IZZ/17m INVENTORS RICHARD H. HUNGER PAUL H., SPENNET TA 8 u n ER N BE R PK. 0 /w .M TA M. O l; W T Y B/Mfl nW y 1966 R. H. HUNGER 'ETAL 3,250,028
UNIVERSAL BUCKET FOR A TRACTOR MOUNTED LOADER Original Filed Dec. 26, 1961 4 Sheets-Sheet 4 ACCUM 97 [43 JACK! I F99 l r JAcK===z a4 IO, E ECTOR VALVE /02 S L [86 SEQUENCE VALVE\ m /T W H /0/ 88 SHUTTLE VALVE 82 A f 77 87 arrow 223M 2 RETRACT -89 @HTUHl' lX r 69x DIRECTIONAL CONTROL VALVE 103 u G 66 E- E- mvmrons RICHARD H. HUNGER PAuL H. SPENNETTA TREVOR G. CAMPBELL BY MORTON M. COKER AT TORNEYS United States Patent 3,250,028 UNIVERSAL BUCKET FOR A TRACTOR MOUNTED LOADER Richard H. Hunger, Washington, Paul H. Spennetta, Morton, and Trevor G. Campbell and Morton M. Coker, Peoria, 111., assignors to Caterpillar Tractor Co., Peoria, 11]., a corporation of California Original application Dec. 26, 1961, Ser. No. 161,968, now Patent No. 3,211,065, dated Oct. 12, 1965. Divided and this application Jan. 8, 1965, Ser. No. 427,207 3 Claims. (Cl. 37117.5)
This is a division of application Serial No. 161,968, filed December 26, 1961.
The'present invention relates to material handling and earth digging machines, and more particularly to vehicle mounted loaders having material handling buckets capable of performing a variety of tasks.
Vehicle mounted loaders are generally equipped with a clamping or digging attachment designed primarily to perform a specific job. Attachments of this nature which are known in the art include log forks, pulp'wood forks, bulldozers, buckets, ejector buckets, etc. All of the attachments have the common feature of being designed to move material from one place to another. On large scale construction projects it is not uncommon for various types of material to be moved from one place to another, and it is therefore often required that several vehicle mounted loaders, each with a different .attachment, be in use.
Accordingly, it is an object of the present invention to provide a universal bucket for a vehicle mounted loader.
It is another object of the present invention toprovide a universal bucket for a vehicle mounted loader which is hydraulically operated in such a manner as to perform in a quick, eflicient and positive manner.
Further and more specific objects and advantages of the invention are made apparent in the following specification wherein a preferred form of the invention is described by reference to the accompanying drawings.
In the drawings:
FIG. 1 is a view in side elevation of a tractor mounted loader with a universal bucket embodying the present invention;
FIG. 2 is an enlarged top plan view of the universal bucket of FIG. 1 with its clamp closed and shown in combination with operating mechanisms used in conjunction therewith;
FIG. 3 is an enlarged illustration of a portion of the linkage utilized in operating the universal bucket;
FIG. 4 is a section on the line IV1V of FIG. 2, but with the clamp partially open;
FIG. 5 is a view like FIG. 4 but showing the clamp in a fully open position and with the ejector fully forward; and
FIG. 6 is a schematic diagram of the hydraulic system utilized to operate the components of the bucket.
A tractor as generally illustrated at 11 in FIG. 1 is shown as typical of any vehicle upon which a loader bucket may be mounted and the bucket of the present invention, generally indicated at 12, is shown as mounted at the forward end of a pair of lift arms, one of which is shown at 13, pivotally connected to the tractor at 14 and to the bucket at 16. Hydraulic jacks 17 are employed for raising and lowering the lift arms 13 and bucket 12. Tilt linkage of conventional construction is employed for tilting the bucket between load, carry and dump positions about the pivots 16. This linkage comprises jacks 18 for imparting swinging movement to levers 19 pivoted to the lift arms which in turn impart swinging movement to levers 21 through connecting links 22. Another pair of links 23 form a connection between "ice the levers 21 and thebucket for imparting tilting movement thereto.
The bucket 12 comprises a bottom 24 with a cutting edge 26 (FIGS. 4 and 5) and side walls 27 extending upwardly in parallelism from its opposite ends. A cylindrical cross beam 28 (see FIG. 2) extends between the side walls adjacent their upper edges lending rigidity to the structure as well as performing other functions to be described in detail. A curved ejector plate 29 provides a back wall which extends the full distance between the side walls 27 and is pivoted as by pins 31 for forward swinging movement through the bucket to eject the contents thereof. The pivotal supports for the ejector as well .as the pivotal connections of the lift arms and tilt mechanism is best shown in FIGS. 2, 4 and 5 wherein the bucket is shown as having a pair of spaced brackets 32 which extend from the bottom of the bucket at its rear edge to the cross beam 28 and continue upwardly and forwardly from the cross beam to provide supports lift arms 13 and the bucket as shown at 16 in FIG. 2 and the tilt links 23 and the bucket, as shown at 34.
Cylindrical cross beam 28 is pivotally mounted by means of a pair of inner bearing blocks 36 associated with spaced brackets 32 and a pair of smaller bearing blocks 37 mounted on the widened upper edges 38 of side walls 27, as best illustrated in FIG. 2. Clamp 39 is rigidly secured to beam 28 at each end and is composed of a pair of curved lever arms interconnected by means of a cross brace 41 and cutting edge 42. Rotation of beam 28 is controlled by means of a pair of hydraulic cylinders or jacks 43 which are positioned equidistant the center line of bucket 12. The rods of jacks 43 are pivotally connected as by pins 46 to levers 44 which are rigidly secured to the beam 28. The jacks 43 are pivotally connected at 47 to rigid brackets 48 welded or similarly affixed to the bottom 24 of bucket 12. A cross member 49 connects brackets 48 to provide added rigidity thereto.
A second pair of levers 51 is also rigidly secured to beam 28 and is pivotally connected as by pins 52 to links 53. Links 53 are pivotally connected by pins 54 at their other ends to links 56 which are, in turn, pivotally connected at their other ends, by pins 57, to ribs 33.
As illustrated in FIGS. 1, 4 and 5, the curved lever arms of clamp 39 have teeth 57 on their interior edge to provide an effective gripping means in combination with edge 0 58 of sides 27 of bucket 12, which may also be equipped closed position approximately 60 to the position shown in FIG. 4 by counterclockwise rotation of beam 28 through retraction of jacks 43. The position of clamp 39 shown in FIG. 4 is the position generally established preparatory to grasping and picking up an object. For this movement range counterclockwise rotation of beam 28, clamp 39, and levers 51 causes a collapsing action of links 53 and 56 as may be noted by comparing FIG. 3 and FIG. 4 without exerting any force on pin 57. Thus, initial opening of clamp 39 is accomplished without any resulting motion of ejector 29. When, however, jacks 43 induce rotation of beam 28 beyond the predetermined position illustrated in FIG. 4, stops 61 secured on levers 51 engage links 53 and transmit forces through links 56 to pins 57 which swing ejector plate 29 about its pins 31 until the extreme forward position is reached as illus- I 3 trated in FIG. 5. Stop blocks 62 mounted on the sides 27 of bucket 12 determine the extreme forward position of ejector 29. The amount of rotation of beam 28 necessary to position ejector 29 at its extreme forward position simultaneously moves clamp 39 to its extreme open position.
With the bucket components positioned as shown in FIG. 5, the bucket is also capable of being used to perform bulldozer type functions. Probably the most advantageous use of ejector 29, however, is the function it performs by its sweeping motion when it travels from the position shown in FIG. 4 to that shown in FIG. 5. In
-moving the ejector in this manner essentially all of the contents of the bucket 12 are forced out, without the necessity of tilting the bucket to an extreme downward position as would be necessary in the absence of an ejector.
Upon initial clockwise rotation of levers 51 from the position shown by FIG. 5, links 53 and links 56 tend to position themselves in a straight line. But, if permitted, this action might allow links 53 and 56 to over-center and fold in a reverse manner to that intended. Blocks 63 integral with links 56 prevent any danger of over-centering links 53 and 56.
As beam 28 is rotated clockwise to its full extent, ejector 29 assumes a rearward. position corresponding to the solid line condition of links 53 and 56 as shown in FIG. 3. However, the ejector 29 can be urged rearwardly an additional incremental amount to engage spaced brackets 32 whereupon links 53 and 56 would assume the phantom line state. This clearance allowance insures that edge 42 of clamp 39 engages edge 26 of bottom 24 before ejector 29 contacts brackets 32.
Thus, bucket 12 as equipped with a clamp 39 and ejector 29 is capable of performing a wide variety of functions and of handling numerous types of material. Furthermore, operation in any of its capacities is conducted by the actuation of the single pair of hydraulic jacks 43 acting through lost motion linkage between the variou components.
Because of the economic considerations involved in a construction project it is always desirable to furnish a machine which operates both quickly and efliciently. The various linkage and operating sequences described above are specifically designed to furnish eflicient operation while providing a machine of wide versatility. The ability of the present invention to perform economically is further aided by the hydraulic system associated with jacks 43. The manner in which this hydraulic system works and the added efliciency which it gives to the invention will be described below with reference to FIG. 6.
Jacks 43 control the angular position of beam 28 by being supplied with hydraulic fluid from a pump 66, which draws fluid from-an appropriate source 67. Under most conditions of operation only low forces are required to rotate beam 28 and its associated mechanisms. It is, therefore, advantageous to direct all of the fluid flow from pump '66 to one of the jacks 43 exclusively, to induce a more rapid angular positioning of beam 28 than would be accomplished if pump 66 supplied fluid to both of jacks 43 at the same time. When the clamp engages an object to be grasped or the ejector is set into motion against a load of material in the bucket, the flow from pump 66 meets the resisting force on the jack receiving the full flow and the fluid pressure rises. When the pressure at pump 66 reaches a certain predetermined limit, the circuitryadvantageously switches flow from act-v ing only on a single jack 43 to acting on both of jacks 43. This provides equally distributed work forces and the lower speed operation necessary for proper performance under heavy load conditions.
Since clamping an object with clamp 39 requires extending jacks 43, and ejecting material from the bucket requires retracting jacks 43, the desired sequence of operation must be provided for either operation. Thus, the
hydraulic system which operates the universal bucket of the present invention includes means by which one of jacks 43 (designated as jack No. l) is the only jack to receive fluid flow when the required pressure is below a determined value (for example, 1400 p.s.i.). When the fluid pressure supplied by pump 66 exceeds the predetermined value, fluid is delivered equally to both jacks 43 (the second jack being designated as jack No. 2) as long as the higher pressure is required. The entire hydraulic operation is normally conducted automatically except for a manually operated control valve 68 which determines whether the hydraulic system acts to retract, extend, or merely hold the jacks in a fixed position.
When it is desired to extend jacks 43, manually operated directional control valve 68 is positioned to the extend position to provide communication between line 69, from pump 66, and line 71, which leads to the head end of jack No. 1. As the piston of jack No. 1 moves to the right in response to fluid pressure from pump 66 fluid is forced out of the rod end of the jack and returned to a sump 72 by means of a return line 73 which communicates with sump 72 when valve 68 is in the extend position. The fluid pressure which exists in line 71 also exists in line 74 by virtue of the communication between the two lines. A line 76 forms communication between line 74 and a shuttle valve 77. The pressure in line 74 is thus communicated to line 76 where it induces, through a line 78, the hydraulic positioning mechanism of shuttle valve 77 to position the valve in such a manner as to form a communication between line 76 and a line 79.
Line 79 from shuttle valve 77 communicates with a sequence valve 81 as well as a line 82 to the hydraulic positioning mechanism therefor. While shuttle valve 77 positions to the right (as shown) when any pressure exists in line 71 sequence valve 81 is of such nature that its hydraulic positioning system responds only to pressures above a predetermined pressure, and until that pressure is realized, the pressure in line 71 is transmitted no further than line 7 9. Consequently, until the predetermined pressure is met jack No. 1 receives the entire output of pump 66.
Even though jack No. 2 does not receive any fluid from pump 66, the mechanical connection between the two jacks through beam 28 causes the piston of jack No. 2 to follow that of jack No. 1 and draw fluid into its head end through line 83 and force fluid out of its rod end through line 84, when the jack is extending. Lines 83 and 84 communicate through a selector valve 86 with lines 87 and 88, respectively, when the pressure in line 71 is less than the predetermined pressure. Lines 87 and 88 both communicate with a sump 89, through a common line 91 therebetween.
When the predetermined pressure in line 71 is realized at sequence valve 81 (through lines 74, 76, and 79) pressure in line 82 moves valve 81 to the right so as to form -communication between line 79 and a line 92 which leads to the hydraulic controls of selector valve 86. The pressure in line 92 activates the hydraulic controls of selector valve 86 so as to position it to the right fonming communication between line 74 and line 83, and line 84 and a line 93. Line 93 communicates with line 73 forming a return path to sump 72. Thus with directional control valve 68 in the extend position and after the pressure in line 71 had become greater than the predetermined pressure, line 74 communicates with the head end of jack No. 2 thereby providing it with a fluid flow at the same pressure as provided to the head end of jack No. 1.
When selector valve 86 shifts so as to provide communication between pump 66 and jack No. 2, the pressure in line 71 drops by one-half. Sequence valve 81 is so designed, however, that the hydraulic controls therefor will maintain the valve in its communicating position as long as the pressure in line 82 does not drop much below one-half the value necessary to cause the sequence valve to initially shift into communicating position. (For ex,-
ample, the sequence valve will not back-shift until the pressure drops below 600 psi. when the predetermined initial shifting pressure is 1400 p.s.i.) By maintaining sequence valve 81 in its communicating position selector valve 86 is also maintained in the position which allows communication between pump 66 and jack No. 2, which is the desired position until the pressure in line 71 drops below a specified value.
When it is desired to retract jacks 43, such as when ejecting a load from the bucket, manual control valve 68 is positioned to the left, forming communication between line 71 and sump 72, and lines 69 and 73. The fluid flow from pump 66 is directed through line 73 to the rod end of jack No. 1, forcing the piston to retract. This causes the fluid in the head end to flow through line 71 to sump 72. During the mode of operation in which the pressure in line 73 is below the predetermined shift pressure, sequence valve 81 and selector valve 86 are positioned as shown by FIG. 6 so as to prevent communication between the rod end of jack No. 2 and pump 66. Thus, while the pressure in line 73 exists also in line 93 it cannot be transmitted past selector valve 86. The pressure in line 93 is communicated to shuttle valve 77 through line 94, and from line 94 to the hydraulic controls of shuttle valve 77 through line 96. The existence of pressure in line 96 causes the hydraulic controls for shuttle valve 77 to position it to the left so as to form communication between line 94 and line 79. When the pressure in line 73 reaches the predetermined shifting pressure the pressure communicated from line 94 to lines 79 and 82 will induce sequence valve 81 to shift to the right, which in turn provides for the shifting of selector valve 86 to the right as described above. With selector valve 86 shifted into communicating position, fluid from line 73 is delivered equally to jacks 1 and 2 in the same manner as described in connection with operation in the extend position.
An accumulator 97, with an established charging pressure greater than the predetermined shifting pressure required to shift sequence valve 81, communicates through a manually operated valve 98 and a line 99 with line 71. When clamp 39 is closed upon an object, when a pressure above the accumulator charging pressure is then felt at the head end of both jacks, and when directional control valve 68 has been shifted from the extend to the hold position, accumulator 97 provides a supplemental source of pressure to the head end of both jacks for use in the event that a slight drop in line pressure should occur. Action of the accumulator 97 thus maintains clamps 39 in tight engagement with the load. Although accumulator 97 will cause movement of both jacks to more securely engage a shifting load the rate of fluid exit from the rod end of both jacks is determined by leakage in the circuitry. Therefore an optional hold-accumulator position may be added to directional control valve 68 so that fluid is allowed topass from the rod ends of both jacks to drain 72. This hold-accumulator position would allow the jacks to be extended more quickly in response to load shifting. In certain circumstances, however, accumulator 97 might cause an undesirable resilience in the system in which case manually operated valve 98 may be moved to the right to effectively I'flll'IlOVB the accumulator from the system.
Cylindrical cross beam 28 acts as a torsion bar or tube which stores energy like a spring when resistance is encountered during clamping. Consequently, when the load shifts slightly in the clamp, tension in the beam will compensate for any looseness which might occur. This torsion elfect supplements action of the accumulator mentioned above, or may be used instead of the accumulator.
Check valves 101 in connection with relief valve 102 and relief valve 103 protect the jack line hoses and pump, from excessive pressures. Valves 101, 102 and 103, while not essential to the operation of the overall hydraulic system, should be provided where high pressures are contemplated, to prevent serious damage to the equipment.
One of the outstanding features of the hydraulic system described above is the manner in which it automatically adjusts itself to operate in the most eflicient manner for the circumstances encountered. When beam 28 is being rotated to put the various components of the universal bucket in a desired position rather than to do work with the components, all of the available fluid flow from pump 66 is directed to a single jack so as to drive that cylinder quickly and efliciently to the desired position. When, however, heavy work is to be done the hydraulic system senses the need for equally distributed work type forces and conditions itself to provide those forces equally through the jacks. Thus, the present invention provides a bucket to be employed with tractor mounted loaders which is capable of performing a wide variety of tasks without sacrificing efficiency of operation to acquire the desired versatility.
We claim:
1. A universal bucket for vehicle mounted loaders comprising in combination:
a material handling bucket having a bottom, two upstanding side Walls and an open forward end;
a cylindrical cross beam extending between said side walls and rotatably mounted thereon;
a pivotally mounted ejector plate forming a back for said bucket;
clamp means rigidly secured at either end of said cross beam;
means operative along with movement of said beam to position said clamp means from a closed position relative to said bucket to an intermediate open position without changing the location of said ejector plate from the back of said bucket, said means operative upon further movement of said beam with accompanying further opening of said clamping means to position said ejector plate at the forward end of said bucket whereby said bucket can be used as a scoop when said clamp means is in its intermediate open position and as a bulldozer when said clamp is in its fully open position.
2. A universal bucket for vehicle mounted loaders comprising in combination:
a material handling bucket having a bottom and two upstanding side walls;
a cross beam extending between said side walls and rotatably mounted thereon;
structural support means secured to the bottom of said bucket and extending upwardly and forwardly such that the free end of said support means generally lies on a line between the upper forward edges of said walls;
a curved ejector plate pivotally mounted on the free end of said structure means forming a back for said bucket;
a clamp means rigidly secured at either end of said cross beam;
means for angularly positioning said cross beam;
said clamping means assuming a position between fully closed, where the clamping means contacts the bottom of said bucket, and fully open, in response to angular positioning of said beam;
and means responsive only to rotation of said beam between the fully open position of the clamping means and a predetermined partially open position of the clamping means to rotate said ejector plate about its pivotal connection;
said ejector being rotated forwardly in said bucket in response to rotation of said beam which corresponds to increased opening of said clamping means and being rotated rearwardly in said bucket in response to rotation of said beam which corresponds to decreased opening of said clamping means.
3. A universal bucket for vehicle mounted loaders com- 7 5 prising in combination:
a material handling bucket having a bottom and two upstanding side Walls;
a cross beam extending between said side walls and rotatably mounted thereon;
structural support means secured to the bottom of sai bucket and extending upwardly and forwardly such that the free end of said support means generally lies on a line between the upper forward edges of said walls;
a curved ejector plate pivotally mounted on the free end of said structure means forming a back for said bucket;
a clamp means rigidly secured at either end of said cross beam;
means for angularly positioning said cross beam;
said clamping means assuming a position between fully closed, where the clamping means contacts the bottom of said bucket, and fully open, in response to angular positioning of said beam;
a first link secured to said cross beam for rotation therewith;
a second link pivotally secured at one end to said first link;
stop means carried by said first link for engaging said second link, said stop means being positioned at a distance from said second link when the angularposition of said beam corresponds to said clamp means being anywhere between a closed position and a partially open position, said stop means bearing against and applying a force to said second link when the angular position of said beam corresponds to said clamp means being open further than the partially open position; and
a" third link 'pivotally connected at one end to said ejector plate and at its other end to said second link, said third link operative to transmit forces applied to said second link to said ejector plate which changes position in response thereto.
References Cited by the Examiner UNITED STATES PATENTS 1,083,625 1/1914 Litzenberg 214-146 2,828,878 4/1958 Le Torneau 214-510 2,858,035 10/1958 Mettetal 214-510 2,873,874 2/1959 Best et al. 214-514 X 2,958,434 11/1960 Wagner 214-510 2,973,876 3/1961 1 Voss 214514 3,057,496 10/1962 Garske 37-117.5 3,077,999 2/1963 Svoboda 37-1175 3,122,248 2/1964 Cambell et a1 37-1175 ABRAHAM.G. STONE, Primary Examiner.
F. B. HENRY, Assistant Examiner.

Claims (1)

1. A UNIVERSAL BUCKET FOR VEHICLE MOUNTED LOADERS COMPRISING IN COMBINATION: A MATERIAL HANDLING BUCKET HAVING A BOTTOM, TWO UPSTANDING SIDE WALLS AND AN OPEN FORWARD END; A CYLINDRICAL CROSS BEAM EXTENDING BETWEEN SAID SIDE WALLS AND ROTATABLY MOUNTED THREON; A PIVOTALLY MOUNTED EJECTOR PLATE FORMING A BACK FOR SAID BUCKET; CLAMP MEANS RIGIDLY SECURED AT EITHER END OF SAID CROSS BEAM; MEANS OPERATIVE ALONG WITH MOVEMENT OF SAID BEAM TO POSITION SAID CLAMP MEANS FROM A CLOSED POSITION RELATIVE TO SAID BUCKET TO AN INTERMEDIATE OPEN POSITION WITHOUT CHANGING THE LOCATION OF SAID EJECTOR PLATE FROM THE BACK OF SAID BUCKET, SAID MEANS OPERATIVE UPON FURTHER MOVEMENT OF SAID BEAM WITH ACCOMPANYING FURTHER OPENING OF SAID CLAMPING MEANS TO POSITION SAID EJECTOR PLATE AT THE FORWARD END OF SAID BUCKET WHEREBY SAID BUCKET CAN BE USED AS A SCOOP WHEN SAID CLAMP MEANS IS IN ITS INTEMEDIATE
US427207A 1961-12-26 1965-01-08 Universal bucket for a tractor mounted loader Expired - Lifetime US3250028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US427207A US3250028A (en) 1961-12-26 1965-01-08 Universal bucket for a tractor mounted loader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US161968A US3211065A (en) 1961-12-26 1961-12-26 Hydraulic system for a universal bucket of a tractor mounted loader
US427207A US3250028A (en) 1961-12-26 1965-01-08 Universal bucket for a tractor mounted loader

Publications (1)

Publication Number Publication Date
US3250028A true US3250028A (en) 1966-05-10

Family

ID=26858322

Family Applications (1)

Application Number Title Priority Date Filing Date
US427207A Expired - Lifetime US3250028A (en) 1961-12-26 1965-01-08 Universal bucket for a tractor mounted loader

Country Status (1)

Country Link
US (1) US3250028A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344540A (en) * 1963-12-19 1967-10-03 Ulrich Mfg Co Universal load handling apparatus
US3346974A (en) * 1965-04-07 1967-10-17 John A Haynes Bulldozer and bucket
US3483642A (en) * 1967-12-28 1969-12-16 Omsteel Ind Inc "v" plow with a floating-type mounting linkage
FR2161010A1 (en) * 1971-11-23 1973-07-06 Rome Ind Inc Ste
FR2449168A1 (en) * 1979-02-17 1980-09-12 Ogawa Junji CONVERTIBLE BUCKET FOR EXCAVATOR LIKELY TO PROVIDE EXCAVATION AND HANDLING BY CLAWS
AT386437B (en) * 1986-02-18 1988-08-25 Posch Leopold Attachment for a front-end loader
US4804309A (en) * 1987-10-01 1989-02-14 Risch Joel V Gripping device for boom-mounted work tool
US4845867A (en) * 1988-03-14 1989-07-11 Wausau Machine And Technology, Inc. Triple-purpose attachment
US6655053B1 (en) * 1998-08-25 2003-12-02 Rockland, Inc. Tool attachment for excavating machines and the like
US7000339B1 (en) 1999-08-31 2006-02-21 Ramun John R Demolition equipment having universal tines and a method for designing a universal tine
US20070107270A1 (en) * 2005-11-01 2007-05-17 David Edmond Attachment for Heavy Equipment Vehicles
US20090217555A1 (en) * 2007-02-28 2009-09-03 Leonard Mark A Multiple purpose attachment for a front loader
US20150107137A1 (en) * 2013-10-17 2015-04-23 John L. Humphrey Tree Removal-Field Reclamation Attachment
US20180171577A1 (en) * 2016-05-26 2018-06-21 Bertha Manufacturing, LLC Debris gripper and extractor for hydraulic equipment
US20180245307A1 (en) * 2015-03-27 2018-08-30 Thomas I. Burenga Rock Bucket Attachment Incorporating Sweep-In Grapple for Partial or Full Collection and Conveying of Miscellaneous Debris
US10066360B2 (en) * 2015-03-27 2018-09-04 Worksaver, Inc. Rock bucket attachment incorporating sweep-in grapple for conveying miscellaneous debris
US20190100896A1 (en) * 2016-03-23 2019-04-04 Ami Attachments Inc. Robust multi-tool assembly for hydraulic excavators
US20190119878A1 (en) * 2016-03-23 2019-04-25 Ami Attachments Inc. Robust multi-tool assembly for hydraulic excavators
US10918026B2 (en) * 2017-04-25 2021-02-16 National Attachments Incorporated Optimized stump harvester
US11180899B2 (en) * 2015-03-27 2021-11-23 Worksaver, Inc. Electric grapple for compact tractors with loader

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1083625A (en) * 1912-09-14 1914-01-06 William R Litzenberg Power-shovel.
US2828878A (en) * 1956-08-24 1958-04-01 Robert G Letourneau Log handling machine
US2858035A (en) * 1956-05-14 1958-10-28 Jr Donald Mettetal Bucket cleaners for end-loading excavators
US2873874A (en) * 1957-06-28 1959-02-17 Baxter & Co J H Pole handling apparatus
US2958434A (en) * 1957-10-21 1960-11-01 Wagner Tractor Inc Lift fork vehicle with unloading kicker
US2973876A (en) * 1959-05-14 1961-03-07 Leon F Voss Manure loader
US3057496A (en) * 1959-11-19 1962-10-09 Hubert A Garske Bucket loader
US3077999A (en) * 1960-04-27 1963-02-19 Caterpillar Tractor Co Multi-purpose loader bucket
US3122248A (en) * 1961-08-10 1964-02-25 Caterpillar Tractor Co Loader bucket with ejector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1083625A (en) * 1912-09-14 1914-01-06 William R Litzenberg Power-shovel.
US2858035A (en) * 1956-05-14 1958-10-28 Jr Donald Mettetal Bucket cleaners for end-loading excavators
US2828878A (en) * 1956-08-24 1958-04-01 Robert G Letourneau Log handling machine
US2873874A (en) * 1957-06-28 1959-02-17 Baxter & Co J H Pole handling apparatus
US2958434A (en) * 1957-10-21 1960-11-01 Wagner Tractor Inc Lift fork vehicle with unloading kicker
US2973876A (en) * 1959-05-14 1961-03-07 Leon F Voss Manure loader
US3057496A (en) * 1959-11-19 1962-10-09 Hubert A Garske Bucket loader
US3077999A (en) * 1960-04-27 1963-02-19 Caterpillar Tractor Co Multi-purpose loader bucket
US3122248A (en) * 1961-08-10 1964-02-25 Caterpillar Tractor Co Loader bucket with ejector

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344540A (en) * 1963-12-19 1967-10-03 Ulrich Mfg Co Universal load handling apparatus
US3346974A (en) * 1965-04-07 1967-10-17 John A Haynes Bulldozer and bucket
US3483642A (en) * 1967-12-28 1969-12-16 Omsteel Ind Inc "v" plow with a floating-type mounting linkage
FR2161010A1 (en) * 1971-11-23 1973-07-06 Rome Ind Inc Ste
FR2449168A1 (en) * 1979-02-17 1980-09-12 Ogawa Junji CONVERTIBLE BUCKET FOR EXCAVATOR LIKELY TO PROVIDE EXCAVATION AND HANDLING BY CLAWS
US4283866A (en) * 1979-02-17 1981-08-18 Junji Ogawa Convertible bucket attachment capable of excavation and clasping
AT386437B (en) * 1986-02-18 1988-08-25 Posch Leopold Attachment for a front-end loader
US4804309A (en) * 1987-10-01 1989-02-14 Risch Joel V Gripping device for boom-mounted work tool
US4845867A (en) * 1988-03-14 1989-07-11 Wausau Machine And Technology, Inc. Triple-purpose attachment
US6655053B1 (en) * 1998-08-25 2003-12-02 Rockland, Inc. Tool attachment for excavating machines and the like
US7000339B1 (en) 1999-08-31 2006-02-21 Ramun John R Demolition equipment having universal tines and a method for designing a universal tine
US20070107270A1 (en) * 2005-11-01 2007-05-17 David Edmond Attachment for Heavy Equipment Vehicles
US20090217555A1 (en) * 2007-02-28 2009-09-03 Leonard Mark A Multiple purpose attachment for a front loader
US8006414B2 (en) * 2007-02-28 2011-08-30 Mark A Leonard Multiple purpose attachment for a front loader
US20150107137A1 (en) * 2013-10-17 2015-04-23 John L. Humphrey Tree Removal-Field Reclamation Attachment
US9185855B2 (en) * 2013-10-17 2015-11-17 John L. Humphrey Tree removal—field reclamation attachment
US10584462B2 (en) * 2015-03-27 2020-03-10 Worksaver, Inc. Rock bucket attachment incorporating sweep-in grapple for partial or full collection and conveying of miscellaneous debris
US20180245307A1 (en) * 2015-03-27 2018-08-30 Thomas I. Burenga Rock Bucket Attachment Incorporating Sweep-In Grapple for Partial or Full Collection and Conveying of Miscellaneous Debris
US10066360B2 (en) * 2015-03-27 2018-09-04 Worksaver, Inc. Rock bucket attachment incorporating sweep-in grapple for conveying miscellaneous debris
US11180899B2 (en) * 2015-03-27 2021-11-23 Worksaver, Inc. Electric grapple for compact tractors with loader
US20190100896A1 (en) * 2016-03-23 2019-04-04 Ami Attachments Inc. Robust multi-tool assembly for hydraulic excavators
US20190119878A1 (en) * 2016-03-23 2019-04-25 Ami Attachments Inc. Robust multi-tool assembly for hydraulic excavators
US10774498B2 (en) * 2016-03-23 2020-09-15 Ami Attachments Inc. Robust multi-tool assembly for hydraulic excavators
US10774501B2 (en) * 2016-03-23 2020-09-15 Ami Attachments Inc. Robust multi-tool assembly for hydraulic excavators
US20180171577A1 (en) * 2016-05-26 2018-06-21 Bertha Manufacturing, LLC Debris gripper and extractor for hydraulic equipment
US10918026B2 (en) * 2017-04-25 2021-02-16 National Attachments Incorporated Optimized stump harvester
US20210392828A1 (en) * 2017-04-25 2021-12-23 National Attachments Incorporated Optimized stump harvester
US11903347B2 (en) * 2017-04-25 2024-02-20 National Attachments Incorporated Optimized stump harvester

Similar Documents

Publication Publication Date Title
US3250028A (en) Universal bucket for a tractor mounted loader
US4046270A (en) Power shovel and crowd system therefor
US2482612A (en) Shovel loader
US3971215A (en) Power shovel and crowd system therefor
US3862697A (en) Front loading hydraulic excavator
US3211065A (en) Hydraulic system for a universal bucket of a tractor mounted loader
US3695474A (en) Hydraulic control linkage for implement
US2811265A (en) Loader
US3737059A (en) Bucket arrangement
US3376984A (en) Backhoe
US3927781A (en) Excavator
US5595471A (en) Linkage arrangement
US3767075A (en) Bucket loader
US2753060A (en) Vehicle mounted loader
US3120314A (en) Self-leveling valve attachment for loaders
US3009590A (en) Tractor loader
US4109812A (en) Dump control for loaders
JP2004301215A (en) Hydraulic driving device for work vehicle
US3220581A (en) Material handling equipment
US3122247A (en) Automatic positioning device for material handling bucket
US3094229A (en) Hydraulic back hoe
US4411584A (en) Optimized earthworking tool operating linkage
US4329797A (en) Amplified loader arm
US3487968A (en) Self-leveling hydraulic loader
US4504185A (en) Hydraulic circuit of hydraulic power shovel