US3245833A - Electrically conductive coatings - Google Patents
Electrically conductive coatings Download PDFInfo
- Publication number
- US3245833A US3245833A US361229A US36122964A US3245833A US 3245833 A US3245833 A US 3245833A US 361229 A US361229 A US 361229A US 36122964 A US36122964 A US 36122964A US 3245833 A US3245833 A US 3245833A
- Authority
- US
- United States
- Prior art keywords
- coating
- solution
- conductive
- film
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims description 132
- 239000011248 coating agent Substances 0.000 claims description 90
- 239000004065 semiconductor Substances 0.000 claims description 52
- 239000002904 solvent Substances 0.000 claims description 45
- 150000001875 compounds Chemical class 0.000 claims description 44
- 239000011230 binding agent Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 31
- 239000008139 complexing agent Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000003381 solubilizing effect Effects 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 239000012799 electrically-conductive coating Substances 0.000 claims description 3
- -1 silver halides Chemical class 0.000 description 60
- 239000000243 solution Substances 0.000 description 57
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 36
- 239000010410 layer Substances 0.000 description 30
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 21
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 21
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 19
- 229910021612 Silver iodide Inorganic materials 0.000 description 19
- 229940045105 silver iodide Drugs 0.000 description 19
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 14
- 150000002576 ketones Chemical class 0.000 description 13
- 229920002799 BoPET Polymers 0.000 description 12
- 239000005041 Mylar™ Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 239000008273 gelatin Substances 0.000 description 9
- 229920000159 gelatin Polymers 0.000 description 9
- 239000005453 ketone based solvent Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 229920002554 vinyl polymer Polymers 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 108010010803 Gelatin Proteins 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 235000019322 gelatine Nutrition 0.000 description 8
- 235000011852 gelatine desserts Nutrition 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011118 polyvinyl acetate Substances 0.000 description 8
- 229920002689 polyvinyl acetate Polymers 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 229910001508 alkali metal halide Inorganic materials 0.000 description 7
- 150000008045 alkali metal halides Chemical class 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 150000004820 halides Chemical class 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 4
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 4
- 150000002825 nitriles Chemical class 0.000 description 4
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- CYTQBVOFDCPGCX-UHFFFAOYSA-N trimethyl phosphite Chemical compound COP(OC)OC CYTQBVOFDCPGCX-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229920006387 Vinylite Polymers 0.000 description 3
- 229940081735 acetylcellulose Drugs 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- CRVGKGJPQYZRPT-UHFFFAOYSA-N diethylamino acetate Chemical compound CCN(CC)OC(C)=O CRVGKGJPQYZRPT-UHFFFAOYSA-N 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- AHQNFRFBKOXXBK-ODZAUARKSA-N (z)-but-2-enedioic acid;methoxymethane Chemical compound COC.OC(=O)\C=C/C(O)=O AHQNFRFBKOXXBK-ODZAUARKSA-N 0.000 description 2
- HXVNBWAKAOHACI-UHFFFAOYSA-N 2,4-dimethyl-3-pentanone Chemical compound CC(C)C(=O)C(C)C HXVNBWAKAOHACI-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- HYTRYEXINDDXJK-UHFFFAOYSA-N Ethyl isopropyl ketone Chemical compound CCC(=O)C(C)C HYTRYEXINDDXJK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- 238000009498 subcoating Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical compound ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 1
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- LZVQJGNZLWKVAN-UHFFFAOYSA-N 2-methylidenebutanedioic acid;hydrochloride Chemical compound Cl.OC(=O)CC(=C)C(O)=O LZVQJGNZLWKVAN-UHFFFAOYSA-N 0.000 description 1
- ZAMLGGRVTAXBHI-UHFFFAOYSA-N 3-(4-bromophenyl)-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)NC(CC(O)=O)C1=CC=C(Br)C=C1 ZAMLGGRVTAXBHI-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- HHRIHEMWQAOMIC-UHFFFAOYSA-M didodecyl(dimethyl)azanium;iodide Chemical compound [I-].CCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCC HHRIHEMWQAOMIC-UHFFFAOYSA-M 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- PJGSXYOJTGTZAV-UHFFFAOYSA-N pinacolone Chemical compound CC(=O)C(C)(C)C PJGSXYOJTGTZAV-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000075 poly(4-vinylpyridine) Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 1
- RHUVFRWZKMEWNS-UHFFFAOYSA-M silver thiocyanate Chemical class [Ag+].[S-]C#N RHUVFRWZKMEWNS-UHFFFAOYSA-M 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- JRLISGAUAJZAGL-UHFFFAOYSA-M tridodecyl(methyl)azanium;iodide Chemical compound [I-].CCCCCCCCCCCC[N+](C)(CCCCCCCCCCCC)CCCCCCCCCCCC JRLISGAUAJZAGL-UHFFFAOYSA-M 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/20—Duplicating or marking methods; Sheet materials for use therein using electric current
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/07—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
- D06M11/11—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
- D06M11/13—Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic Table
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/12—Aldehydes; Ketones
- D06M13/127—Mono-aldehydes, e.g. formaldehyde; Monoketones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/345—Nitriles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/03—Polysaccharides or derivatives thereof
- D06M15/11—Starch or derivatives thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/244—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/85—Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
- G03C1/853—Inorganic compounds, e.g. metals
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
- G03G5/104—Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/142—Inert intermediate layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/72—Protective coatings, e.g. anti-static or antifriction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F1/00—Preventing the formation of electrostatic charges
- H05F1/02—Preventing the formation of electrostatic charges by surface treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- This invention relates to electrically-conductive coatings useful as antistatic coatings on photographic films and the like, and to methods for making such conductive coatings, and to manufactures that comprise such coatings.
- An object of the invention is to provide novel electrically-conductive coatings having surface resistivity less than ohms per square. More specifically an object is to provide such conductive coatings which comprise a film of electrically insulating binder material and dispersed through this film as a disperse phase, a metal-containing semiconductor compound.
- Conductive coatings of the present invention may be made in a variety of embodiments which provide a variety of advantageous properties. All of the coatings are substantially independent of humidity or moisture for their conductive property and this humidity independence is especially advantageous in applications where the conductive coating must function in a dry atmosphere or in vacuum. Many embodiments comprise substantially clear transparent conductive coatings, which properties make these coatings especially useful as transparent conductive overcoats on insulating surfaces, for example, on a photographic film, a fabric, a printed surface, and the like. Mechanical properties of the conductive coatings are more or less variable according to the specific properties of the selected film-forming binder and a suitable insulating binder material may be selected from resins and colloid binders having a wide variety of mechanical properties.
- novel conductive coatings comprise a metal-containing semiconductor compound dispersed in an insulating, filmforming binder and which have resistance, expressed as surface resistivity, of less than 10 ohms per square.
- the semiconductor compound is dispersed in the insulating binder as particles ranging in size from colloidal down to molecular, generally less than 0.1 micron. In some embodiments the dispersion appears to be a solid solution, in others, a colloidal dispersion.
- a preferred method of making such conductive coatings is by coating a solution containing the semiconductor compound and the binder, both solubilized in a volatile solvent which evaporates leaving film of the binder material with a dispersion of the semiconductor in the binder.
- a complexing agent is used to solubilize the ordinarily insoluble semiconductor compound.
- conductive coatings will contain semiconductor compounds in concentrations ranging from as low as about 15% by volume of the finished coating up to about 90% by volume. Volume percentages, as expressed, are calculated from known densities of the respective semiconductor and binder components and from known weight ratios of these materials in the coating.
- the minimum volume percentage needed to provide the necessary conductivity will vary, depending upon the peculiar properties of the selected semiconductor and binder components, and to a great extent upon the method of making the coating. In embodiments in which a conductive coating is made by a solution coating method minimum effective semiconductor concentrations in the finished coating may be as low as about 15% by volume.
- Useful conductive coatings according to my invention have surface resistivity less than 10 ohms per square, as measured by the procedure described in Example I. For most applications I prefer conductive coatings having surface resistivity in the range from about 10 to 10 ohms per Square.
- Cuprous iodide and silver iodide are preferred metalcontaining semiconductor compounds that I have selected to illustrate certain preferred embodiments of the invention in detail.
- my invention contemplates use of other metal-containing semiconductor compounds.
- the invention contemplates use .of both ionic and electronic semiconductor compounds of both intrinsic and extrinsic semiconductor types.
- Examples of other semiconductor compounds contemplated for use in accordance with the invention include other cuprous and silver halides, halides of bismuth, gold, indium, iridium, lead, nickel, palladium, rhenium, tin, tellurium and tungsten; cuprous, cupric and silver thiocyanates, and iodomercurates, and other metal-containing semiconductor compounds.
- semiconductor as used herein, defines metal-containing compounds having electrical resistivity (specific resistance) in the range from 10* to 10 ohm-cm, as measured by standard procedures.
- surface resistivity conventionally refers to measurement of electrical leakage across an insulating surface and is usually measured on an insulating surface by procedures similar to that described in Example 1. In the present specification however, the term is used with reference to resistance of conducting films that apparently behave as conductors transmitting currents through the body of the coating of electrically conducting material. Resistivity (specific resistance) is the usually accepted measurement for the conductive property of conducting and semiconducting materials. However, in the case of thin conductive coatings, measurement of the conductive property in terms of surface resistivity provides a value that is useful in practice and involves a direct method of measurement.
- conductive coatings are prepared by solution coating methods, using a coating solution in which both the semiconductor compound and the film-forming binder are solubilized in a volatile liquid solvent.
- volatile I means capable of being readily evaporated from solution at temperature low enough to be non-destructive, usually below 150 C.
- the metalcontaining semiconductor compounds generally are not readily soluble in most volatile solvents such as water and organic solvents that are suitable for solubilizing most electrically insulating film-forming binders. Therefore we may employ as a solubilizing agent for the semiconductor compound, a compound that will form a soluble complex with the semiconductor.
- Example I illustrates a preferred embodiment of the invention in which a conductive coating is coated on an insulating film support by a solution coating method.
- Examplel A solution was prepared by stirring rapidly 3.83 g.
- the coating was clear and consisted of a dispersion of the colorless complex of the salt in the polyvinyl acetate.
- the sheet was immersed in water at room temperature for minutes to destroy the complex and to dissolve potassium iodide from the coating. Silver iodide remained dispersed in the coating. After the film had been washed and dried the coating Was optically clear and had turned pale yellow, the color characteristic of silver iodide.
- Surface resistivity (ohms per square) of the coating was measured by placing 1-inch long electrodes along opposite sides of a 1-inch square on the coated surface.
- graphite electrodes were formed by application of an aqueous suspension of colloidal graphite (Aquadag, Acheson Colloids Company) along opopsite sides of the square and then drying the applied suspension. Resistance was measured by a Keithley electrometer using applied potential of 3 volts D.C. Measurements were made at various relative humidities:
- alkali metal halides and ammonium halides may be used as complexing agents with silver halides, cuprous halides and with some other semiconducting metal halides such as stannous halides, lead halides and the like to form a complex that is most readily soluble in ketone solvents.
- some other semiconducting metal halides such as stannous halides, lead halides and the like
- Examples of volatile ketone solvents suitable for dissolving these complexes are acetone, methylethylketone, 2 pentanone, 3 pentanone, 2 hexanone, Z-heptanone, 4-heptanone, methylisopropylketone, ethylisopropylketone, diisopropylketone, methylisobutylketone, methyl t-butylketone, dia-cetyl, acetyl acetone, acetonyl acetone, diacetone alcohol, mesityl oxide, chloroacetone, cyclopentanone, cyclohexanone, acetophenone and benzophenone.
- a mixture of ketone solvents may be used, as in the above example, or in some embodiments a single ketone solvent may be used.
- other volatile solvents may be used in mixture with the ketone solvent to facilitate solubilizing of the binder material.
- organic solvents suitable for such use in mixture with a ketone are volatile alcohols, ethers, esters, Cellosolve solvents, paraffinic, cyclic and aromatic hydrocarbons, etc.
- a solution can be prepared by using a film-forming polymeric binder that contains a ketone group in the polymeric molecule, and using a solvent that is not a ketone.
- some solvents which are not ketones may be used to dissolve the iodide complex.
- Certain solvents such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, iso-amyl acetate, tetrahydrofuran, dimethylformamide, methyl Cellosolve, methyl Cellosolve acetate, ethyl acetate, and some others may be effective to dissolve the iodide complex without need for a ketone solvent or a ketone polymer.
- a suitable film-forming binder for the conductive layer may be selected from a number of available natural and synthetic electrically insulating polymeric materials according to the particular properties wanted.
- the present invention is not limited to any particular means for applying the coating solution and any suitable means may be used :such as whirl coat-ing, either with or without heat, dip coating, spray coating, bead application on continuous coating machines, wick application to a continuously moving web, hopper coating, etc. Drying of the coated solution to remove the volatile solvents may be effected at room temperature or at elevated temperatures. In some cases, drying at elevated temperatures or subsequent heating of the dried coating will improve con ductivity.
- Example 1 The coatings in Example 1 were prepared using a mixture of ketone solvents.
- Example 2 illustrates an embodi ment using a single ketone solvent with an alkali metal halide complexing agent and further illustrates an embodiment of the invention in which the coating is suitably conductive before the complexing agent is removed.
- Example 2 Coatings were prepared and tested as in Example 1, using the same weights of solid constituents, but using 25 ml. of acetone, and no cyclo'hexanone. Surface resistivity of the unwashed coating was 7.0x 10 ohms per square at 29% R.H., while the washed coatings gave a value of 4.6 l ohms per square at 29% R.H. Likewise, coatings were prepared using cyclohex-anone as the only solvent and similar results were observed.
- Example 3 The following ingredients were mixed, coated and tested as in Example 1: 1.4 g. of silver iodide, 0.45 g. of potassium iodide, 40 ml. of methylethyl ketone, 8 ml. of ethyl alcohol, 20 ml. of benzene and 1.0 g. of polyvinyl phthalate. Because this binder is soluble in Aquadag, a graphite dispersion, DAG No. 2412, in mineral spirits was used to make electrodes for testing. Surface resistivity of the coating after the water Wash treatment was 5 .4 o.p.s. at R.H. Another solution containing diethyl ketone, n-propanol and n-heptane as the solvent mixture was made and, when coated, gave similar results.
- Example 4 Illustrating preparation of a conducting layer in which no ketone is present: A coating solution was prepared containing 0.75 g. of silver iodide, 0.25 g. of sodium iodide, 50 ml. of methyl Cellosolve, 10 ml. of n-propanol, and 0.5 g. of polyvinyl formal (Formvar 12/85, Shawinigan Resins Company). The solution was whirl-coated on Mylar film, cured at 125 C. for '10 minutes, then washed in water for 10 minutes at room temperature. A clear coating resulted which had surface resistivity of 3 10 o.p.s. measured at 15% RH.
- a coating solution was prepared containing 0.75 g. of silver iodide, 0.25 g. of sodium iodide, 50 ml. of methyl Cellosolve, 10 ml. of n-propanol, and 0.5 g. of polyvinyl formal (For
- metal halides such as halides of metals from Groups 2A and 3A of the Periodic Table may be used as complexing agents for solubilizing silver iodide and some other semiconductor compounds in solutions preferably containing ketone solvent.
- Hydrogen iodide may be used to solubilize silver iodide in ketone solvents, and hydrogen iodide has the advantage that it is removed by evaporation as the coated solution dries. Thus the complexing agent is removed without need for a separate water-Wash step.
- Silver iodide 0.5 g., 0.75 ml. of 50% hydrogen iodide (aqueous), 5 ml. of acetone, 55 ml. of methyl ethyl ketone were mixed and agitated until the silver iodide was dissolved and 0125 g. of poly(methyl methacrylate was added.
- the solution was filtered, and whirl-coated on polyethylene terephthalate film support. The coating was heated at '80" C. for minutes.
- the surface resistivity was 2.0 l0 ohms per square at 45% R.H., and 2.3 10 ohms per square in a high vacuum.
- Quaternary ammonium iodide compounds may be used as solubilizing agents for silver iodide.
- N- methyl-N, N, N-tridodecyl ammonium iodide and N, N- dimethyl-N, N-didodecyl ammonium iodide are useful for complexing silver iodide.
- cuprous iodide which can be solubilized by alkali metal halides and ammonium halides, hydrogen iodide and other hydrogen halides in ketone solvents, as well as by other complexing agents in various solvents.
- Conducting coatings according to the invention may be prepared from a completely aqueous solvent system involving a suitable complexing agent.
- a suitable complexing agent e.g., sodium thiosulfate complex of cuprous iodide in aqueous solution with a water soluble binder.
- Example 5 A solution was prepared consisting of 1.5 g. of cuprous iodide, 0.6 ml. of ammonium ithiosulfate, 1.0 g. of cellulose acetate ('l6.7% acetyl, Water soluble), and 60 ml. of distilled water. The solution was whirl-coated on Mylar film base and cured at 150 C. for 5 minutes. Surface resistivity was measured as 2.7 'l0 o.p.s. at 15% R.H.
- Other film-forming binders suitable for use with aqueous solvent systems include polyvinyl alcohol, polyvinyl methyl ether maleic acid, polyethylene-maleic acid, methyl cellulose, carboxymethylcellulose, and gelatin.
- Suitable conducting coatings may also be prepared by mixing an aqueous solution of the semiconducting compound with an aqueous solution of a latex such as a styrene-but-adiene latex (Dow Latex 512R) and coating and drying the mixture. Conductivity of this coating may be improved by curing at elevated temperature (about 150 C.) for a few minutes.
- a latex such as a styrene-but-adiene latex (Dow Latex 512R)
- Example 6 illustrates an embodiment wherein a. semiconductor compound is solubilized by a nitrile solvent.
- Volatile n'itrile solvents may serve as both complexing agent and solvent for the complex and may be used for solubilizing cuprous iodide, copper iodomercurate and the like.
- Example 6 Cuprous iodide 1.4 g. was dissolved with stirring in 53 ml. of acetonitrile and 7 ml. of a 5% solution of cellulose acetate butyrate in acetonitrile was added. The solution was filtered and then whirl-coated on a Mylar film and cured at 100 C. for 10 minutes. After drying, the coating was clear and had a surface resistivity of 6.9)(10 ohms per square. After 24 hours at room temperature, the surface resistivity was measured as 9.0)(10 ohms per square. After 9 months, surface resistivity of the same coating was x10 ohms per square at 37% and 7 .7 10 ohms per square in high vacuum (1.5x 10 mm. Hg).
- Example 7 illustrates use of a mixed solvent system to solubilize a binder that is not readily soluble in the volatile nitrile liquid complexing agent.
- Example 7 Cuprous iodide (0.6 g.) was dissolved with stirring in 31 ml. of acetonitrile, and 23 ml. of ethylene chloride was added slowly with stirring. Then 6 ml, of 5% solution of poly(vinyl chloride acetate) (VMCH) in ethylene chloride was added slowly with stirring. The solution was filtered and then whirl-coated on Mylar film and when dry was cured at C. for 10 minutes. After aging overnight at room temperature, the coating had surface resistivity 8.5 10 ohms per square.
- VMCH poly(vinyl chloride acetate)
- nitrile solvents that could be substituted for acetonitrile in Examples 6 and 7 are propionitrile, and other volatile nitrile liquids.
- Another class of complexing agents for cuprous and silver halide is the class of volatile trialkyl phosphites, in which the alkyl constituents contain 1 to 5 carbon atoms.
- the complexes formed by these agents generally are soluble in a range of organic solvents somewhat broader than the range of organic solvents useful with the complexes described above.
- Ketone solvents are suitable as well as chlorinated hydrocarbons, Cellosolve solvents and the like.
- the preferred trialkyl phosphites complexing agents are volatile and can be separated from the complex and removed by evaporation from the coating as the solvents are evaporated. Therefore no washing step is necessary to remove these complexing agents.
- Example 8 Cuprous iodide (0.7 g.) was added to 50 ml. of methylethylketone and 1.5 ml, of trimethyl phosphite and the mixture was stirred until substantially all of the solids had dissolved. Then 10 ml. of a 5% solution of a terpolymer, poly(acrylonitrile vinylidene chloride acrylic acid), in
- Example 9 Cuprous iodide (0.6 g.) was dissolved in a mixture of 52 ml. of methyl Cellosolve containing 1.0 ml. of trimethyl phosphite and 8 ml. of a polyvinyl formal solution. (5% Formvar 12/85 in methyl Cellosolve.) The solution was filtered and then Whirl-coated on Mylar film and after drying was cured at 105 C. for 10 minutes. Surface resistivity after curing was 3.7 10 o.p.s. and 24 hours later was 5.8 10 o.p.s.
- Example 10 Silver iodide (1.5 g.) was added to 50 ml. of methylethylketone and 1.0 ml. of trimethyl phosphite and the mixture was stirred until all the solids had dissolved. Then 10 ml. of a 5% solution of poly(methyl methacrylate) (Lucite 41) in methylethyl ketone was added. The solution was whirl-coated on Mylar film and a clear coating resulted. Surface resistivity was 2.0 10 o.p.s.
- Diethyl sulfide is still another complexing agent for solubilizing cuprous iodide.
- Other dialkyl sulfides containing 1 to 5 carbon atoms in each alkyl group may be used and the complexes formed are soluble in several organic solvents such as chlorinated hydrocarbon solvents, etc.
- Example 11 Cuprous iodide (0.7 g.) was added to 50 ml. of ethylene chloride and 1.5 ml. of diethyl sulfide and the mixture was stirred until substantially all the solids had dissolved. Then 10 ml. of a 5% solution of a polyester adhesive (Du Pont 49,000) in ethylene chloride was added and the solution was whirl-coated on Mylar film. The coating was cured at 125 C. for 10 minutes, after which the coating was clear and surface resistivity was 6.5 X 10 o.p.s. After 24 hours at room temperature, surface resistivity of the coating was 3.6 10 -o.p.s.
- a polyester adhesive Du Pont 49,000
- Volatile primary, secondary and tertiary alkyl amines having alkyl groups contain 1 to 5 carbon atoms and may be used as solubilizing agents for cuprous iodide, silver iodide and other semiconductor compounds. Complexes formed with such amines are generally soluble in volatile ketone solvents.
- Example 12 Cuprous iodide was dissolved with stirring in 50 ml. of methyl ethyl ketone containing 5.5 ml. of triethylamine. Then 10 ml. of a 5% terpolymer solution, poly(methyl acrylate-vinylidine chloride-itaconic acid) in 90% methyl ethyl ketone and 10% cyclohexanone was added. The solution was filtered and then whirl-coated on Mylar film. Immediately after preparation, the clear uncured coating had surface resistivity of 3x10 ohms per square. After 3 days, surface resistivity was 1.3 10 o.p.s. When a freshly prepared coating was cured at 105 for 10 minutes, the surface resistivity was 3X10 ohms per square. After 3 days this sample had surface resistivity of 5.2 10 o.p.s.
- Example 13 Silver iodide (1.5 g.) was dissolved with stirring in 25 ml. of acetone, 25 ml. of acetone, 25 ml. of methyl ethyl ketone and 4.0 ml. of n-butylamine. Then 10 ml. of 5% polyvinyl acetate (Vinylite AYAT) solution in acetone was added. The solution was filtered and then whirlcoated on Mylar film with heat applied from above with a heat lamp and a hair dryer. After drying, the film was cured at 105 C. for 10 minutes and the surface resistivity was measured at 7.6 10 ohms per square.
- Vinylite AYAT polyvinyl acetate
- a conductive coating of the present invention might be substituted for the conductive film coated under a photoconductive layer in an electrophotography element of the kind described in US, Patent 2,833,675 patented May 6, 1958 to P. K. Weimer.
- a transparent coating according to my invention can be substituted for the graphite conductive overcoat on an electron sensitive photographic plate of the kind described in US. Patent No. 2,797,331 patented June 25, 1957 to H. B. Law et al., or can be substituted for the conductive metal overcoat on an electron recording plate of the kind described in US. Patent 2,748,288 patented May 29, 1956 to T. A. Saulnier, Jr.
- my conductive coatings may be substituted for those described for use in facsimile recording papers of the kind described in U.S. Patent No. 2,555,321 patented June 5, 1951 to H. R. Dalton et al.
- An insulating support coated with my conductive coating may be substituted for the conducting support described in US. Patent No. 3,075,859 patented January 29, 1963 to E. B. Relph et a1.
- My conductive coating is useful as the transparent conducting layer in recording mediums of the kin-d described in US. Patent 3,118,787 patented January 21, 1964 to Arthur Katchman.
- the conductive coating may comprise a binder that is alkali soluble so that the coating is removable, as for instance by alkaline photographic developer solutions.
- the conductive coating may be made removable by providing a water-soluble or alkalisoluble stripping layer between the film support and the conductive coating. For example, a one percent aqueous solution of polyvinyl methyl ether-maleic acid was found to be especially suitable for making such an alkali-soluble stripping layer.
- the conductive coating may be coated either as a surface coating or as a subsurface coating and may be coated on the side of the support with the sensitive material or on the back side, opposite the sensitive material.
- Conductive coatings may be made permanent or may be made to be removable by processing solutions in various embodiments of the invention. Conductive coatings may be used to provide antistatic, electrically conductive surfaces or subcoatings on a variety of supports, and especially to provide a conductive surface coating on an insulating support. For example, the conductive coatings may be applied as a subcoating to serve as an electrode on an insulating support, providing a conductive base for electrophoretic application of subsequent coatings. Metal plating can thus be applied to the surface of articles made of insulating synthetic resins. Conductive coatings may be used as thin conductive electrodes in making electrical condensers, resistors, and other electrical and electronic manufactures.
- the conductive coating may be used as an antistatic coating for phonograph records or magnetic recording tapes.
- the conductive coating may be used as an antistatic coating for synthetic fibers and filaments, fabric webs, carpets and the like.
- Supports on which conductive coatings according to the present invention may be applied usually, but not necessarily, Will be insulating surfaces.
- the binder for the conductive coating may be selected for particular adhesive properties to provide good adhesion to the support surface and in some cases solvents may be selected which are active to soften or partially dissolve the support surface in order to improve adhesion.
- solvents may be selected which are active to soften or partially dissolve the support surface in order to improve adhesion.
- a subbing layer or a protective layer may be necessary or advantageous between the support surface and the conducting surface.
- Some special treatment of the support surface may be advantageous to improve adhesion in some embodiments.
- Example 14 Cuprous iodide (2.4 g.) was dissolved in a mixture of 200 ml. methylethyl ketone and 4.0 ml. of trimethyl phosphite, then 40 ml. of a 5% solution of a terpolymer, poly(methylacrylate-vinylidene-chloride-itaconic acid) in 90% methylethyl ketone and 10% cyclohexanone, was added. The filtered solution was machine-coated by bead application on a subbed polyester film support to give a coverage of 5 mg. of copper per square foot. The coating was dried at 110 C. and then cured at 120 C, for 10 minutes.
- the coating was clear and surface resistivity was 1.7 l ohms per square.
- a protective layer of Vinylite VMCH was solution-coated from a ketone solvent over the conducting layer. This protective coating was dried at 95 C. and cured at 100 C, for 4 minutes. This layer serves as a barrier between the cuprous iodide layer and the silver halide photographic emulsion layer.
- Over the protective layer a thin subbing of cellulose nitrate (from a 1.4% solution in methanol) was applied to improve adhesion.
- a gelatin subbing layer and a gelatinsilver halide photographic emulsion of the Lippman type were coated over this subbing layer.
- a photographic film may be prepared as in Example 14 but with the subbing and photographic emulsion layers coated on the side of the support opposite the conductive coating.
- the conductive coating serves as an antistatic backing on the photographic film.
- the barrier layer may be omitted in such embodiments, but is useful to protect the conductive layer from processing solutions, A thin protective layer (e.g. 1-2 microns) over the conductive coating will not interfere with the antistatic function even though this overcoat is of an insulating material.
- the support with conductive layer and with or without the protective overcoat as made in Example 14 may also be used as a conductive base for an electrophotographic element.
- a photoconductive insulating layer such as a dispersion of photoconductive zinc oxide or photoconductive organic compound in an insulating resin binder may be coated on the conductive base of Example 14 to make a photoconductive recording element.
- Example 15 A direct electron recording film having a conductive layer coated over the sensitive emulsion layer is illustrated as follows.
- a subbed polyethylene terephthalate film support was coated with a fine grain, high resolution, low gel silver bromoiodide emulsion composition containing 80 grams of gelatin per mole of silver, a Saponin coating aid,
- Gelva C3V20 is a copolymer of poly(vinyl acetate) and crotonic acid.
- the outer conductive coating is effective in preventing accumulation of static charge during exposure of the film to a direct electron beam.
- the conductive coating is permeable by photographic developing and fixing solutions.
- the subbing on the Estar support is a terpolymer of vinyl methacrylate, vinylidine chloride and itaconic acid.
- Example 16 A transparent electrostatic recording film is prepared as follows.
- a 5 mil polyethylene terephthalate film support was coated with a coating solution containing 1 gram of Formvar 7/70, 3.3 grams of Mondur CB75 and 6 grams of cuprous iodide dissolved in 242 grams of acetonitrile.
- Formvar 7/70 is a poly(vinyl formal) resin containing 5-7% poly(vinyl alcohol) and 4050% poly(vinyl acetate), made by Shawinigan Resin Co.
- Mondur CB75 is a poly isocyanate crosslinking agent containing 75% solids having about 13% isocyanate and 1% free tolylene diisocyanate in ethyl acetate, made by Mobay Chemical Company. The solution was coated at a coverage of 5 mg.
- Butvar B76 is a poly(vinyl 'butyral) resin containing 9l3% poly(vinyl alcohol), 2.5% poly(vinyl acetate) and 84.588.5% poly(vinyl butyr'al) made by Shawinigan Resin Co. This overcoat is sufficiently insulating to prevent leakage of electrostatic charge through the overcoat to the conducting layer.
- This film is useful in electrostatic printing processes such as those described in U.S. Patent No. 2,933,556 to C. W. Barnes, Jr. patented May 13, 1957, U.S. Patent No. 2,919,170 to Herman Epstein patented December 29, 1959, U.S. Patent No. 2,931,688 to F. T. Innes et al. patented December 30, 1954, etc.
- a method of making an electrically conductive coating having surface resistivity in the range from 10- to 10 ohms per square and comprising a metalcontaining semiconductor compound dispersed in an electrically insulating film-forming 'binder material comprising the steps of solubilizing said semiconductor compound by means of a complexing agent that forms a soluble complex with the semiconductor compound and dissolving the solubilized semiconductor compound in a volatile liquid solvent, dissolving said binder material in said solution, coating the solution onto a support, evaporating the volatile solvent from the coated solution, and removing the complexing agent from the coating to leave a residual continuous film of said insulating binder material having dispersed therein particles of size less than 0.1 micron of said semiconductor compound.
- a method of making an electrically conductive coating having surface resistivity in the range from 10* to 10 ohms per square and comprising a metalcontaining semiconductor compound dispersed as a complex in an electrically insulating film-forming binder material comprising the steps of solubilizing said semiconductor compound by means of a complexing agent that forms a semiconducting complex with the semiconductor compound and dissolving the complexed semiconductor compound in a volatile liquid solvent, dissolving said binder material in said solution, coating the solution onto a support, and evaporating the volatile solvent from the coated solution to leave a residual continuous film of binder material having dispersed therein particles of size less than 0.1 micron of the semiconducting complex formed by the complexing agent with the semiconductor compound.
- said complexing agent is a member selected from the group consisting of alkali metal halides, ammonium halides, and hydrogen .12 :halides and said volatile liquid solvent comprises a volatile ketone liquid.
- said complexing agent is a member selected from the group consisting of alkali metal halides and ammonium halides and said volatile liquid solvent comprises a volatile ketone liquid.
- a manufacture comprising a support and coated thereon a conductive coating having surface resistivity in the range from 10 to 10 ohms per square, said conductive coating comprising a film-forming binder material having dispersed therein at least 15 volume percent of a semiconductor compound dispersed as particles of size less than about 011 micron.
- a manufacture comprising a support and coated thereon a conductive coating having surface resistivity in the range from 10 to 10 ohms .per square, said conductive coating comprising a film-forming binder material having dispersed therein at least 15 volume percent of silver iodide dispersed as particles of size less than about 0.1 micron.
- a manufacture comprising a support and coated thereon a conductive coating having surface resistivity in the range from 10 to 10 ohms per square, said conductive coating comprising a film-forming binder material having dispersed therein at least 15 volume percent of cuprous iodide dispersed as particles of size less than about 0.1 micron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Photoreceptors In Electrophotography (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR873522A FR1311860A (fr) | 1961-09-18 | 1961-09-18 | Nouveau produit à couche conductrice utilisable notamment en photographie |
US361229A US3245833A (en) | 1964-04-20 | 1964-04-20 | Electrically conductive coatings |
DE19651519124 DE1519124A1 (de) | 1964-04-20 | 1965-04-14 | Verfahren zur Herstellung elektrisch leitender Schichten auf elektrisch isolierendenOberflaechen |
FR13561A FR88325E (fr) | 1961-09-18 | 1965-04-16 | Nouveau produit à couche conductrice utilisable notamment en photographie |
GB16585/65A GB1106618A (en) | 1964-04-20 | 1965-04-20 | Electrically conducting coatings |
BE662725A BE662725A (enrdf_load_stackoverflow) | 1964-04-20 | 1965-04-20 | |
US435699A US3428451A (en) | 1960-09-19 | 1966-03-21 | Supports for radiation-sensitive elements and improved elements comprising such supports |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US361229A US3245833A (en) | 1964-04-20 | 1964-04-20 | Electrically conductive coatings |
Publications (1)
Publication Number | Publication Date |
---|---|
US3245833A true US3245833A (en) | 1966-04-12 |
Family
ID=23421182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US361229A Expired - Lifetime US3245833A (en) | 1960-09-19 | 1964-04-20 | Electrically conductive coatings |
Country Status (4)
Country | Link |
---|---|
US (1) | US3245833A (enrdf_load_stackoverflow) |
BE (1) | BE662725A (enrdf_load_stackoverflow) |
DE (1) | DE1519124A1 (enrdf_load_stackoverflow) |
GB (1) | GB1106618A (enrdf_load_stackoverflow) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3347362A (en) * | 1964-09-28 | 1967-10-17 | Minnesota Mining & Mfg | Pressure sensitive adhesive tapes with anti-static edge coatings |
US3389059A (en) * | 1965-01-27 | 1968-06-18 | Aqua Chem Inc | Method and apparatus for purifying water by distillation while preventing corrosionby selective phosphate and acid addition |
US3428451A (en) * | 1960-09-19 | 1969-02-18 | Eastman Kodak Co | Supports for radiation-sensitive elements and improved elements comprising such supports |
US3473960A (en) * | 1966-12-12 | 1969-10-21 | Ampex | Surface finishing of magnetic tape by solvent exchange |
US3490941A (en) * | 1966-03-29 | 1970-01-20 | Philips Corp | Impregnated paper for reproduction processes |
US3493369A (en) * | 1964-04-03 | 1970-02-03 | Appleton Coated Paper Co | Low electrical resistance varnish coatings on an insulating base |
US3496063A (en) * | 1966-02-15 | 1970-02-17 | Grace W R & Co | Electrographic reproduction article and method |
US3549361A (en) * | 1966-08-01 | 1970-12-22 | Eastman Kodak Co | Electrophotographic compositions and elements |
US3640853A (en) * | 1968-12-27 | 1972-02-08 | Rca Corp | Adhesion of nonconducting and conducting materials |
JPS4879649A (enrdf_load_stackoverflow) * | 1972-01-26 | 1973-10-25 | ||
US3769518A (en) * | 1970-12-26 | 1973-10-30 | Fuji Photo Film Co Ltd | Recording film for charged electron beam recording |
US3839033A (en) * | 1971-06-22 | 1974-10-01 | Canon Kk | Electrophotographic photosensitive member containing a nitrocellulose-polyvinyl pyrrolidone barrier layer |
US3860422A (en) * | 1972-02-28 | 1975-01-14 | Canon Kk | Photoconductive element with unsaponified alkyl vinyl ether-maleic anhydride copolymer interlayer |
US3885081A (en) * | 1967-09-28 | 1975-05-20 | Agfa Gevaert Nv | Sheet material |
US3898672A (en) * | 1972-01-28 | 1975-08-05 | Ricoh Kk | Electrosensitive recording member |
US3912668A (en) * | 1974-06-17 | 1975-10-14 | Ibm | Conductive paint formulations with very low electrical impedance in the Z-direction containing a metal carbide |
JPS50159339A (enrdf_load_stackoverflow) * | 1974-06-11 | 1975-12-23 | ||
US3963498A (en) * | 1971-12-27 | 1976-06-15 | Eastman Kodak Company | Silver halide element containing an organic semiconductor |
US3976489A (en) * | 1972-03-24 | 1976-08-24 | Polaroid Corporation | Silver halide photographic products with semiconductor sensitizers |
US4025342A (en) * | 1974-06-25 | 1977-05-24 | Eastman Kodak Company | Organic semiconductors used in photoconductor element |
US4025463A (en) * | 1974-06-25 | 1977-05-24 | Eastman Kodak Company | Organic semiconductor compositions |
US4025691A (en) * | 1974-06-25 | 1977-05-24 | Eastman Kodak Company | Organic semiconductor element |
US4069759A (en) * | 1974-07-27 | 1978-01-24 | Canon Kabushiki Kaisha | Light and heat formation of conductive image printing plate |
US4203769A (en) * | 1975-07-15 | 1980-05-20 | Eastman Kodak Company | Radiation-sensitive elements having an antistatic layer containing amorphous vanadium pentoxide |
US4248921A (en) * | 1977-06-24 | 1981-02-03 | Steigerwald Wolf Erhard | Method for the production of electrically conductive and solderable structures and resulting articles |
US4394441A (en) * | 1981-01-14 | 1983-07-19 | Fuji Photo Film Co., Ltd. | Photographic sensitive materials |
US4418141A (en) * | 1980-12-23 | 1983-11-29 | Fuji Photo Film Co., Ltd. | Photographic light-sensitive materials |
US4480003A (en) * | 1982-09-20 | 1984-10-30 | Minnesota Mining And Manufacturing Company | Construction for transparency film for plain paper copiers |
US4495276A (en) * | 1980-04-11 | 1985-01-22 | Fuji Photo Film Co., Ltd. | Photosensitive materials having improved antistatic property |
US4673628A (en) * | 1979-03-26 | 1987-06-16 | Canon Kabushiki Kaisha | Image forming member for electrophotography |
EP0247735A1 (en) * | 1986-05-01 | 1987-12-02 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member |
US4711816A (en) * | 1986-03-31 | 1987-12-08 | Minnesota Mining And Manufacturing Company | Transparent sheet material for electrostatic copiers |
US4988597A (en) * | 1989-12-29 | 1991-01-29 | Xerox Corporation | Conductive and blocking layers for electrophotographic imaging members |
US5006451A (en) * | 1989-08-10 | 1991-04-09 | Eastman Kodak Company | Photographic support material comprising an antistatic layer and a barrier layer |
WO1991007697A1 (en) * | 1989-11-15 | 1991-05-30 | Graphics Technology International Inc. | Transparent conductive coating dispersion containing cuprous iodide |
US5063125A (en) * | 1989-12-29 | 1991-11-05 | Xerox Corporation | Electrically conductive layer for electrical devices |
US5063128A (en) * | 1989-12-29 | 1991-11-05 | Xerox Corporation | Conductive and blocking layers for electrophotographic imaging members |
US5064715A (en) * | 1986-11-12 | 1991-11-12 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member containing hydrophobic silica |
US5108861A (en) * | 1990-08-28 | 1992-04-28 | Xerox Corporation | Evaporated cuprous iodide films as transparent conductive coatings for imaging members |
WO1992008168A1 (en) * | 1990-10-25 | 1992-05-14 | Graphics Technology International | Composition useful in transparent conductive coatings |
US5139922A (en) * | 1987-04-10 | 1992-08-18 | Matsushita Electronics Corporation | Method of making resist pattern |
US5213887A (en) * | 1991-09-03 | 1993-05-25 | Minnesota Mining And Manufacturing Company | Antistatic coatings |
US5259992A (en) * | 1992-02-14 | 1993-11-09 | Rexham Graphics Inc. | Conductivizing coating solutions and method of forming conductive coating therewith |
US5310640A (en) * | 1993-06-02 | 1994-05-10 | Eastman Kodak Company | Thermally processable imaging element comprising an electroconductive layer and a backing layer. |
US5348799A (en) * | 1991-09-03 | 1994-09-20 | Minnesota Mining And Manufacturing Company | Antistatic coatings comprising chitosan acid salt and metal oxide particles |
US5385796A (en) * | 1989-12-29 | 1995-01-31 | Xerox Corporation | Electrophotographic imaging member having unmodified hydroxy methacrylate polymer charge blocking layer |
US5468583A (en) * | 1994-12-28 | 1995-11-21 | Eastman Kodak Company | Cyclic bis-dicarboximide electron transport compounds for electrophotography |
EP0713135A2 (en) | 1994-11-21 | 1996-05-22 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles |
EP0720920A2 (en) | 1994-12-09 | 1996-07-10 | Eastman Kodak Company | Backing layer for laser ablative imaging |
EP0785464A1 (en) | 1996-01-18 | 1997-07-23 | Eastman Kodak Company | Imaging element having an electrically-conductive layer |
EP0789268A1 (en) | 1996-02-12 | 1997-08-13 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer |
US5674654A (en) * | 1996-09-19 | 1997-10-07 | Eastman Kodak Company | Imaging element containing an electrically-conductive polymer blend |
US5681677A (en) * | 1995-08-31 | 1997-10-28 | Eastman Kodak Company | Photoconductive element having a barrier layer |
US5705219A (en) * | 1991-04-22 | 1998-01-06 | Atotech Deutschland Gmbh | Method for coating surfaces with finely particulate materials |
US5849472A (en) * | 1997-03-13 | 1998-12-15 | Eastman Kodak Company | Imaging element comprising an improved electrically-conductive layer |
US5888712A (en) * | 1997-12-16 | 1999-03-30 | Eastman Kodak Company | Electrically-conductive overcoat for photographic elements |
US5955250A (en) * | 1997-12-16 | 1999-09-21 | Eastman Kodak Company | Electrically-conductive overcoat layer for photographic elements |
US5976776A (en) * | 1997-12-01 | 1999-11-02 | Eastman Kodak Company | Antistatic compositions for imaging elements |
US5981126A (en) * | 1997-09-29 | 1999-11-09 | Eastman Kodak Company | Clay containing electrically-conductive layer for imaging elements |
US6096491A (en) * | 1998-10-15 | 2000-08-01 | Eastman Kodak Company | Antistatic layer for imaging element |
US6207361B1 (en) | 1999-12-27 | 2001-03-27 | Eastman Kodak Company | Photographic film with base containing polymeric antistatic material |
US20030141487A1 (en) * | 2001-12-26 | 2003-07-31 | Eastman Kodak Company | Composition containing electronically conductive polymer particles |
US20060269855A1 (en) * | 2005-05-27 | 2006-11-30 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20090087593A1 (en) * | 2007-09-26 | 2009-04-02 | Shunichi Kondo | Antistatic optical film, polarizing plate, image display, and liquid crystal display |
CN102220109A (zh) * | 2011-04-25 | 2011-10-19 | 苏州晶讯科技股份有限公司 | 一种用于静电器件的浆料制备方法 |
WO2013182568A3 (de) * | 2012-06-06 | 2014-01-30 | Cht R. Beitlich Gmbh | Textilhilfsmittel und damit veredeltes textilprodukt |
CN112820485A (zh) * | 2021-02-05 | 2021-05-18 | 南京大学 | 一种绝缘降温复合薄膜 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4267233A (en) * | 1979-02-14 | 1981-05-12 | Teijin Limited | Electrically conductive fiber and method for producing the same |
JPS564147A (en) * | 1979-06-25 | 1981-01-17 | Kanzaki Paper Mfg Co Ltd | Electrostatic recording material |
CH659908A5 (de) * | 1982-05-26 | 1987-02-27 | Bbc Brown Boveri & Cie | Verfahren zur erhoehung der elektrischen oberflaechenleitfaehigkeit eines koerpers. |
US5190788A (en) * | 1990-08-16 | 1993-03-02 | Rcs Technology Corporation | Anti-static anti-bacterial fibers |
CN111806114B (zh) * | 2020-07-02 | 2022-04-01 | 昆山市生力包装材料有限公司 | 一种低温胶电化铝烫印箔及其生产方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB586322A (en) * | 1944-06-09 | 1947-03-14 | Eastman Kodak Co | Improvements relating to photographic films |
US2463282A (en) * | 1946-03-12 | 1949-03-01 | Du Pont | Coating composition containing antistatic agent |
-
1964
- 1964-04-20 US US361229A patent/US3245833A/en not_active Expired - Lifetime
-
1965
- 1965-04-14 DE DE19651519124 patent/DE1519124A1/de active Pending
- 1965-04-20 BE BE662725A patent/BE662725A/xx unknown
- 1965-04-20 GB GB16585/65A patent/GB1106618A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB586322A (en) * | 1944-06-09 | 1947-03-14 | Eastman Kodak Co | Improvements relating to photographic films |
US2463282A (en) * | 1946-03-12 | 1949-03-01 | Du Pont | Coating composition containing antistatic agent |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3428451A (en) * | 1960-09-19 | 1969-02-18 | Eastman Kodak Co | Supports for radiation-sensitive elements and improved elements comprising such supports |
US3493369A (en) * | 1964-04-03 | 1970-02-03 | Appleton Coated Paper Co | Low electrical resistance varnish coatings on an insulating base |
US3347362A (en) * | 1964-09-28 | 1967-10-17 | Minnesota Mining & Mfg | Pressure sensitive adhesive tapes with anti-static edge coatings |
US3389059A (en) * | 1965-01-27 | 1968-06-18 | Aqua Chem Inc | Method and apparatus for purifying water by distillation while preventing corrosionby selective phosphate and acid addition |
US3496063A (en) * | 1966-02-15 | 1970-02-17 | Grace W R & Co | Electrographic reproduction article and method |
US3490941A (en) * | 1966-03-29 | 1970-01-20 | Philips Corp | Impregnated paper for reproduction processes |
US3549361A (en) * | 1966-08-01 | 1970-12-22 | Eastman Kodak Co | Electrophotographic compositions and elements |
US3473960A (en) * | 1966-12-12 | 1969-10-21 | Ampex | Surface finishing of magnetic tape by solvent exchange |
US3885081A (en) * | 1967-09-28 | 1975-05-20 | Agfa Gevaert Nv | Sheet material |
US3640853A (en) * | 1968-12-27 | 1972-02-08 | Rca Corp | Adhesion of nonconducting and conducting materials |
US3769518A (en) * | 1970-12-26 | 1973-10-30 | Fuji Photo Film Co Ltd | Recording film for charged electron beam recording |
US3839033A (en) * | 1971-06-22 | 1974-10-01 | Canon Kk | Electrophotographic photosensitive member containing a nitrocellulose-polyvinyl pyrrolidone barrier layer |
US3963498A (en) * | 1971-12-27 | 1976-06-15 | Eastman Kodak Company | Silver halide element containing an organic semiconductor |
JPS4879649A (enrdf_load_stackoverflow) * | 1972-01-26 | 1973-10-25 | ||
US3898672A (en) * | 1972-01-28 | 1975-08-05 | Ricoh Kk | Electrosensitive recording member |
US3860422A (en) * | 1972-02-28 | 1975-01-14 | Canon Kk | Photoconductive element with unsaponified alkyl vinyl ether-maleic anhydride copolymer interlayer |
US3976489A (en) * | 1972-03-24 | 1976-08-24 | Polaroid Corporation | Silver halide photographic products with semiconductor sensitizers |
JPS50159339A (enrdf_load_stackoverflow) * | 1974-06-11 | 1975-12-23 | ||
US3912668A (en) * | 1974-06-17 | 1975-10-14 | Ibm | Conductive paint formulations with very low electrical impedance in the Z-direction containing a metal carbide |
US4025463A (en) * | 1974-06-25 | 1977-05-24 | Eastman Kodak Company | Organic semiconductor compositions |
US4025342A (en) * | 1974-06-25 | 1977-05-24 | Eastman Kodak Company | Organic semiconductors used in photoconductor element |
US4025691A (en) * | 1974-06-25 | 1977-05-24 | Eastman Kodak Company | Organic semiconductor element |
US4069759A (en) * | 1974-07-27 | 1978-01-24 | Canon Kabushiki Kaisha | Light and heat formation of conductive image printing plate |
US4203769A (en) * | 1975-07-15 | 1980-05-20 | Eastman Kodak Company | Radiation-sensitive elements having an antistatic layer containing amorphous vanadium pentoxide |
US4248921A (en) * | 1977-06-24 | 1981-02-03 | Steigerwald Wolf Erhard | Method for the production of electrically conductive and solderable structures and resulting articles |
US4877709A (en) * | 1979-03-26 | 1989-10-31 | Canon Kabushiki Kaisha | Image forming member for electrophotography |
US4737428A (en) * | 1979-03-26 | 1988-04-12 | Canon Kabushiki Kaisha | Image forming process for electrophotography |
US4673628A (en) * | 1979-03-26 | 1987-06-16 | Canon Kabushiki Kaisha | Image forming member for electrophotography |
US4701394A (en) * | 1979-03-26 | 1987-10-20 | Canon Kabushiki Kaisha | Image forming member for elecrophotography |
US4495276A (en) * | 1980-04-11 | 1985-01-22 | Fuji Photo Film Co., Ltd. | Photosensitive materials having improved antistatic property |
US4418141A (en) * | 1980-12-23 | 1983-11-29 | Fuji Photo Film Co., Ltd. | Photographic light-sensitive materials |
US4394441A (en) * | 1981-01-14 | 1983-07-19 | Fuji Photo Film Co., Ltd. | Photographic sensitive materials |
US4480003A (en) * | 1982-09-20 | 1984-10-30 | Minnesota Mining And Manufacturing Company | Construction for transparency film for plain paper copiers |
US4711816A (en) * | 1986-03-31 | 1987-12-08 | Minnesota Mining And Manufacturing Company | Transparent sheet material for electrostatic copiers |
US4733255A (en) * | 1986-05-01 | 1988-03-22 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member |
EP0247735A1 (en) * | 1986-05-01 | 1987-12-02 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member |
US5064715A (en) * | 1986-11-12 | 1991-11-12 | Minnesota Mining And Manufacturing Company | Dielectric coating for recording member containing hydrophobic silica |
US5139922A (en) * | 1987-04-10 | 1992-08-18 | Matsushita Electronics Corporation | Method of making resist pattern |
US5006451A (en) * | 1989-08-10 | 1991-04-09 | Eastman Kodak Company | Photographic support material comprising an antistatic layer and a barrier layer |
WO1991007697A1 (en) * | 1989-11-15 | 1991-05-30 | Graphics Technology International Inc. | Transparent conductive coating dispersion containing cuprous iodide |
US5063125A (en) * | 1989-12-29 | 1991-11-05 | Xerox Corporation | Electrically conductive layer for electrical devices |
US4988597A (en) * | 1989-12-29 | 1991-01-29 | Xerox Corporation | Conductive and blocking layers for electrophotographic imaging members |
US5063128A (en) * | 1989-12-29 | 1991-11-05 | Xerox Corporation | Conductive and blocking layers for electrophotographic imaging members |
US5385796A (en) * | 1989-12-29 | 1995-01-31 | Xerox Corporation | Electrophotographic imaging member having unmodified hydroxy methacrylate polymer charge blocking layer |
US5108861A (en) * | 1990-08-28 | 1992-04-28 | Xerox Corporation | Evaporated cuprous iodide films as transparent conductive coatings for imaging members |
WO1992008168A1 (en) * | 1990-10-25 | 1992-05-14 | Graphics Technology International | Composition useful in transparent conductive coatings |
JP3213616B2 (ja) | 1990-10-25 | 2001-10-02 | レクスハム・グラフィクス・インコーポレーテッド | 透明導電性コーティングに有用な組成物 |
US5306543A (en) * | 1990-10-25 | 1994-04-26 | Rexham Graphics Inc. | Composition useful in transparent conductive coatings |
US5705219A (en) * | 1991-04-22 | 1998-01-06 | Atotech Deutschland Gmbh | Method for coating surfaces with finely particulate materials |
US5457015A (en) * | 1991-09-03 | 1995-10-10 | Minnesota Mining And Manufacturing Company | Silver halide coated organic polymeric films utilizing chitosan acid salt antistatic protection layers |
US5213887A (en) * | 1991-09-03 | 1993-05-25 | Minnesota Mining And Manufacturing Company | Antistatic coatings |
US5348799A (en) * | 1991-09-03 | 1994-09-20 | Minnesota Mining And Manufacturing Company | Antistatic coatings comprising chitosan acid salt and metal oxide particles |
US5259992A (en) * | 1992-02-14 | 1993-11-09 | Rexham Graphics Inc. | Conductivizing coating solutions and method of forming conductive coating therewith |
EP0627658A1 (en) * | 1993-06-02 | 1994-12-07 | Eastman Kodak Company | Thermally processable imaging element comprising an electroconductive layer and a backing layer |
US5310640A (en) * | 1993-06-02 | 1994-05-10 | Eastman Kodak Company | Thermally processable imaging element comprising an electroconductive layer and a backing layer. |
EP0713135A2 (en) | 1994-11-21 | 1996-05-22 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles |
EP0720920A2 (en) | 1994-12-09 | 1996-07-10 | Eastman Kodak Company | Backing layer for laser ablative imaging |
US5468583A (en) * | 1994-12-28 | 1995-11-21 | Eastman Kodak Company | Cyclic bis-dicarboximide electron transport compounds for electrophotography |
US5681677A (en) * | 1995-08-31 | 1997-10-28 | Eastman Kodak Company | Photoconductive element having a barrier layer |
EP0785464A1 (en) | 1996-01-18 | 1997-07-23 | Eastman Kodak Company | Imaging element having an electrically-conductive layer |
EP0789268A1 (en) | 1996-02-12 | 1997-08-13 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer |
US5674654A (en) * | 1996-09-19 | 1997-10-07 | Eastman Kodak Company | Imaging element containing an electrically-conductive polymer blend |
US5849472A (en) * | 1997-03-13 | 1998-12-15 | Eastman Kodak Company | Imaging element comprising an improved electrically-conductive layer |
US5981126A (en) * | 1997-09-29 | 1999-11-09 | Eastman Kodak Company | Clay containing electrically-conductive layer for imaging elements |
US5976776A (en) * | 1997-12-01 | 1999-11-02 | Eastman Kodak Company | Antistatic compositions for imaging elements |
US5955250A (en) * | 1997-12-16 | 1999-09-21 | Eastman Kodak Company | Electrically-conductive overcoat layer for photographic elements |
US5888712A (en) * | 1997-12-16 | 1999-03-30 | Eastman Kodak Company | Electrically-conductive overcoat for photographic elements |
US6096491A (en) * | 1998-10-15 | 2000-08-01 | Eastman Kodak Company | Antistatic layer for imaging element |
US6207361B1 (en) | 1999-12-27 | 2001-03-27 | Eastman Kodak Company | Photographic film with base containing polymeric antistatic material |
US20030141487A1 (en) * | 2001-12-26 | 2003-07-31 | Eastman Kodak Company | Composition containing electronically conductive polymer particles |
US20060269855A1 (en) * | 2005-05-27 | 2006-11-30 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20080171275A1 (en) * | 2005-05-27 | 2008-07-17 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7449268B2 (en) | 2005-05-27 | 2008-11-11 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US8202674B2 (en) | 2005-05-27 | 2012-06-19 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7544450B2 (en) | 2005-05-27 | 2009-06-09 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20090234092A1 (en) * | 2005-05-27 | 2009-09-17 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7820780B2 (en) | 2005-05-27 | 2010-10-26 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20110028724A1 (en) * | 2005-05-27 | 2011-02-03 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20090087593A1 (en) * | 2007-09-26 | 2009-04-02 | Shunichi Kondo | Antistatic optical film, polarizing plate, image display, and liquid crystal display |
CN102220109A (zh) * | 2011-04-25 | 2011-10-19 | 苏州晶讯科技股份有限公司 | 一种用于静电器件的浆料制备方法 |
CN102220109B (zh) * | 2011-04-25 | 2013-10-02 | 苏州晶讯科技股份有限公司 | 一种用于静电器件的浆料制备方法 |
WO2013182568A3 (de) * | 2012-06-06 | 2014-01-30 | Cht R. Beitlich Gmbh | Textilhilfsmittel und damit veredeltes textilprodukt |
CN112820485A (zh) * | 2021-02-05 | 2021-05-18 | 南京大学 | 一种绝缘降温复合薄膜 |
Also Published As
Publication number | Publication date |
---|---|
GB1106618A (en) | 1968-03-20 |
DE1519124A1 (de) | 1972-03-16 |
BE662725A (enrdf_load_stackoverflow) | 1965-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3245833A (en) | Electrically conductive coatings | |
US3428451A (en) | Supports for radiation-sensitive elements and improved elements comprising such supports | |
US4025463A (en) | Organic semiconductor compositions | |
US3963498A (en) | Silver halide element containing an organic semiconductor | |
US4394441A (en) | Photographic sensitive materials | |
US3640708A (en) | Barrier layers for electrophotographic elements containing a blend of cellulose nitrate with a tetrapolymer having vinylidene chloride as the major constituent | |
US3639121A (en) | Novel conducting lacquers for electrophotographic elements | |
US3740217A (en) | Photoconductive coating employing an imbibed conductive interlayer | |
US3394001A (en) | Electrophotographic sensitive material containing electron-donor dye layers | |
US4025704A (en) | Organic semiconductors | |
US3874879A (en) | Article with oxidation protected adhesive and anti-static layer | |
US3783021A (en) | Conducting lacquers for electrophotographic elements | |
US4025691A (en) | Organic semiconductor element | |
US3656949A (en) | Method of producing an electrophotographic and electrographic recording member | |
US3684503A (en) | Novel electrophotographic elements containing electrically conducting solid dispersions | |
US4214907A (en) | Photosensitive material for electrophotography having a polyvinyl carbazole derivative, phthalocyanine, and an electron-acceptor | |
US3513102A (en) | Fluorescent coatings | |
US3736134A (en) | Humidity resistant photoconductive compositions | |
US3672988A (en) | Method of manufacturing bases for electrostatic recording material or electrophotographic material | |
US3300410A (en) | Conductive liquid developer for xerographic images | |
US4335195A (en) | Electrophotosensitive element has resin encapsulated CdS particles in binding resin | |
US5534397A (en) | Electron beam recording film with low visual and ultraviolet density | |
JPH0328707B2 (enrdf_load_stackoverflow) | ||
EP0080938A2 (en) | Electrically conductive interlayer for electrically activatable recording element | |
US4273845A (en) | Heat-developable photosensitive material |