US3234422A - Collector for barrier grid storage tube - Google Patents

Collector for barrier grid storage tube Download PDF

Info

Publication number
US3234422A
US3234422A US121599A US12159961A US3234422A US 3234422 A US3234422 A US 3234422A US 121599 A US121599 A US 121599A US 12159961 A US12159961 A US 12159961A US 3234422 A US3234422 A US 3234422A
Authority
US
United States
Prior art keywords
collector
electrode
electrons
barrier grid
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US121599A
Inventor
Michael F Toohig
Cyril L Day
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
International Telephone and Telegraph Corp
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US644686A external-priority patent/US2934653A/en
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to US121599A priority Critical patent/US3234422A/en
Priority to BE619682A priority patent/BE619682A/en
Priority to FR902814A priority patent/FR81913E/en
Application granted granted Critical
Publication of US3234422A publication Critical patent/US3234422A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/1092Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices sensing by means of TV-scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/62Electrostatic lenses
    • H01J29/622Electrostatic lenses producing fields exhibiting symmetry of revolution
    • H01J29/624Electrostatic lenses producing fields exhibiting symmetry of revolution co-operating with or closely associated to an electron gun
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/58Tubes for storage of image or information pattern or for conversion of definition of television or like images, i.e. having electrical input and electrical output
    • H01J31/60Tubes for storage of image or information pattern or for conversion of definition of television or like images, i.e. having electrical input and electrical output having means for deflecting, either selectively or sequentially, an electron ray on to separate surface elements of the screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/401Compensating positionally unequal response of the pick-up or reproducing head
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/257Picture signal generators using flying-spot scanners

Definitions

  • the present invention relates to barrier grid storage tubes and more particularly to the secondary emission collector electrode assemblies incorporated in such tubes.
  • Barrier grid storage tubes are commonly used in such devices as computers, being employed in binary computers for data storage and in a number of radar applications for information storage and/or processing. These tubes are well-known in the art, as shown for example in US. Patent 2,503,949 of April 23, 1948 to A.
  • Such tubes conventionally include an electron gun assembly including a cathode heated by a suitable filament, a control grid and an accelerating anode, positioned within an elongated envelope at one end thereof.
  • Suitable deflecting and focusing elements are conventionally provided for causing the electron beam produced by the electron gun to scan a target electrode assembly positioned within the envelope at the other end thereof.
  • the target electrode assembly comprises a grid or screen arranged on one side of a dielectric sheet and a metal plate arranged on the other.
  • a pattern of repetitive signals is applied to the metallic target substrate in synchronism with the scanning electron beam, no signal will appear at the output of the tube after a few cycles. If a moving signal is present 'in this pattern of repetitive signals (i.e., the background pattern) only the moving signal will appear in the output.
  • the tube can be used in radar MTI or infrared applications where it is desirable to cancel out background radiation and observe only the moving targets.
  • the barrier grid tube further includes a collector electrode and an associated electron optical system for focusing the signal electrons from the target onto the collector electrode, the collector electrode and the electron optical system being normally positioned between the gun and the target.
  • the output signal from the barrier grid tube may be obtained from the target electrode, but it is preferable to obtain the output signal from the collector electrode.
  • the collector is maintained at a positive potentialwith respect to the target, and the secondary electrons produced'hy the electron beam on the storage surface are directed. toward the collector electrode, from which an output signal is obtained.
  • barrier grid tube operation is the relativelyhigh backplate-to-collector capacitance. High frequency components of the input signal applied to the backplate are thereby capacitively coupled to the collector. These capacitively coupled signals may be greater in strength than the residual signal from the target in the cancellation mode and thus limit the operation of the tube in this mode.
  • An object of the present invention is to provide animproved collector for a barrier grid tube particularly one wherein backplate-to-collector capacitance is minimized and an additional stage of signal amplification is obtained.
  • an improved collector wherein a collector ring is enclosed within a suitable chamber and is shielded from the rest of the tube electrodes in a specific instance by awire mesh.
  • FIG. 1 is a cross-sectional view'of a barrier grid storage tube incorporating one embodiment of an improved collector electrode following the principles of the present invention
  • I FIG. 2 is a detailed view of another embodiment of a collector electrode following the principles of the present invention.
  • a barrier grid storage tube generally identified as 1.
  • the tube includes an elongated envelope 2 having an electron gun assembly 3 positioned therein adjacent end 4.
  • the electron gun assembly 3 may be any conventional type, as is well known in the art, including a cathode heated by a suitable filament, a control grid, and suitable accelerating anodes.
  • the cathode, filament, control grid and accelerating elements are connected to suitable sources of voltage by leads 5, as is well known in the art.
  • the electron beam 6 produced by the electron gun assembly 3 may be deflected vertically and horizontally by suitable deflecting electrodes 7 positioned within the envelope 2 and connected to suitable deflecting circuits by conductors 8 and 9, it being understood that the vertical and horizontal deflection of the electron beam may be provided by deflecting coils arranged on the exterior of the envelope 2 rather than by internal deflecting elements 7.
  • a shield electrode 10 is positioned within the envelope 2 and is connected to a suitable source of potential, for example l00 volts, by lead 11.
  • a novel secondary emission collecting electrode 12 is positioned within envelope 2 in front of shield electrode 1t and is adapted to be connected to a suitable external source of voltageby lead 13. Secondary emission collecting electrode 12 will be discussed more fully hereinbelow.
  • Secondary emission accelerating electrodes 14 and 15 are located between collecting electrode 12 and a target electrode 16 and are adapted respectively to be connected to suitable external sources of voltage by leads 17 and 18.
  • the target electrode 16 is preferably spherical shaped and includes spherical metal backing plate 19 and spherical dielectric and grid elements generally identified as 20 disposed on the side of the metal backing. plate 19 toward the electronic gun assembly 3 for scanning by electron beam 6.
  • the metal backing plate 19 of the target electrode 16 is adapted to be connected to a suitable source of input voltage by lead 21, for example, video input signals.
  • an input signal is applied via conductor 21 to backing plate 19.
  • An electron beam 6 from electron gun 3 is scanned across dielectric and grid 29 by means of deflecting elements 7.
  • As the dielectric surface is scanned by the electron beam secondary electrons are emitted and drawn away toward collector electrode 12 which is maintained, during tube operation, at a high positive potential relative to the potential of dielectric 26. Since the secondary electrons from the dielectric surface are emitted in all directions at relatively low velocity, electrodes 14 and 15, maintained during tube operation at different potentials, are used to form a focusing electrostatic field for directing the secondary emission toward the collector electrode 12.
  • the degree of secondary emission is a function of the input signal applied to the backing plate through input conductor 21, thus the output signal from collector electrode 12 will be a function of the input signal applied to conductor 21.
  • collector 12 is an annular structure, the wall of which is colinear with the other electrodes except that a major portion of the wall 120 is formed in the general shape of an open-sided toroid. This is the collector dynode.
  • a collector ring 121 is located within the chamber formed by wall 12a at approximately the center of the circular cross section of the toroid.
  • the collector Wall 12a is biased at approximately 100 to 350 volts above the potential of the barrier grid assembly 20 by a potential source connected to lead 13.
  • Collector ring 12b is biased approximately 50 to 100 volts above the potential of Wall 12a by a suitable potential source connected to lead 12d.
  • a fine mesh screen 120 is mounted across an opening in the collector wall of the inside diameter of the toroid such that the mesh separates the interior of the toroid from the interior of the storage tube.
  • the secondary electrons emitted from the target electrode 16 are electronically focused and accelerated by electrodes 14 and 15, and are attracted to collector electrode 12.
  • the velocity of the secondary electrons carry them into the toroid through mesh 12c and past collector ring 1212 until they strike the inner surface of wall 12a, which is constructed of a highly emissive material, for example beryllium-copper or silver-magnesium.
  • the secondary electrons, in striking the inner surface of wall 12a release further electrons, herein referred to as tertiary electrons, which are attracted to, and are collected by collector ring 12b.
  • the tertiary electrons collected by collector ring 1212 are a function of the information originally written on the target electrode, and may be removed as an output signal from ring 12b by suitable output means such as conductive lead 12a.
  • suitable output means such as conductive lead 12a.
  • the fact that the secondary electrons from the target electrode are not directly collected by ring 1211, but instead release a proportional number of tertiary electrons from highly emissive wall 12a, provides a stage of signal amplification which increases signal detectability and decreases the design requirements of any output preamplifier which may be used.
  • it is also possible to provide a selected value range for the output signal by selecting an appropriate material for the toroid surface.
  • the mesh 12c which extends across the toroid opening is preferably composed of tungsten wires and is approximately 92 percent transparent.
  • the mesh serves to eliminate the undesired capacitive coupling between the target electrode and the collector electrode, and also shields the collector ring from the high frequency signals present on backplate 19 during the writing mode.
  • the collector wall 12a need not necessarily be in the form of an open-sided toroid, but may describe other forms for example wall 12a may form an isosceles triangle with mesh 126, as shown by wall 122 in FIG. 2. Both the curved wall 12:: of FIG. 1 and the angular wall 12a of FIG. 2, when struck by secondary electrons passing through mesh 12c, will emit tertiary electrons in a direction toward collector ring 12b.
  • a barrier grid storage tube comprising a first electron beam source, an electron emissive target electrode, means for scanning said beam across said target electrode and means applying a varying input signal thereto for storing a charge pattern thereon, said beam causing emission of secondary electrons from said target electrode in accordance with said charge pattern and input signal, a collector electrode structure positioned to collect secondary electrons from said barrier grid, said collector having an electron emissive surface for emitting further electrons in response to said secondary electrons directed thereon, an output electrode adjacent said surface for collecting said further electrons, and an electron permeable electrostatic shielding means for passing said secondary electrons to said surface while electrostatically shielding said surface and output electrode from the remainder of said tube.
  • a collector electrode structure for collecting secondary electrons from said barrier grid comprising an annular inner wall having an electron emissive surface for emitting further electrons in response to said secondary electrons directed thereon, an inner concentric output electrode for collecting said further electrons and producing an output signal characteristic thereof, and a mesh enclosing said wall and output electrode for passing said secondary electrons to said wall while electrostatically shielding said wall and output electrode from the remainder of said tube.
  • a collector electrode structure according to claim 2 wherein said wall is in the shape of an annular angle having an inner open side.
  • a ring shaped collector electrode structure comprising an inner wall having an annular depressed surface and an electron emissive coating on said surface for emitting tertiary electrons in response to said secondary electrons directed thereon, accelerating and focusing electrodes directing said secondary electrons to said collector electrode, a concentric output electrode mounted within said depression to collect said tertiary electrons and produce an output signal characteristic thereof, an output conductor coupled to said output electrode, and a mesh enclosing said depression to pass said secondary electrons to said surface while electrostatically shielding said surface and output electrode from the remainder of said storage tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microwave Tubes (AREA)

Description

Feb. 1966 M. F. TOOHIG ETAL 3,234,422
COLLECTOR FOR BARRIER GRID STORAGE TUBE Filed July 3, 1961 W Vv k @7 2, A l l M/K INVENTORS. MICHAEL TooH/c;
R. L. DAY
ATTORNEY United States Patent COLLECTOR FOR BER GRID STORAGE TUBE Michael F. Toohig, Fort Wayne, and Cyril L. Day, Huntington, Ind., assignors to International Telephone and Telegraph Corporation, Nutley, N.J., a corporation of Maryland Filed July 3, 1961, Ser. No. 121,599 12 Claims. (Cl. 313-68) The present invention relates to barrier grid storage tubes and more particularly to the secondary emission collector electrode assemblies incorporated in such tubes. Barrier grid storage tubes are commonly used in such devices as computers, being employed in binary computers for data storage and in a number of radar applications for information storage and/or processing. These tubes are well-known in the art, as shown for example in US. Patent 2,503,949 of April 23, 1948 to A. S. Jensen, et al. Such tubes conventionally include an electron gun assembly including a cathode heated by a suitable filament, a control grid and an accelerating anode, positioned within an elongated envelope at one end thereof. Suitable deflecting and focusing elements are conventionally provided for causing the electron beam produced by the electron gun to scan a target electrode assembly positioned within the envelope at the other end thereof. The target electrode assembly comprises a grid or screen arranged on one side of a dielectric sheet and a metal plate arranged on the other.
If a pattern of repetitive signals is applied to the metallic target substrate in synchronism with the scanning electron beam, no signal will appear at the output of the tube after a few cycles. If a moving signal is present 'in this pattern of repetitive signals (i.e., the background pattern) only the moving signal will appear in the output. The tube can be used in radar MTI or infrared applications where it is desirable to cancel out background radiation and observe only the moving targets.
In aperation an input signal is often applied to the metal plate of the target assembly (the backplate). The
electron beam from the electron gun is caused to scan the dielectric sheet, providing secondary emission greater than unity. Each area of the target electrode formed by the screen or grid forms, in essence, a separate capacit-or with the metal backing plate and thus may be charged positively or negatively by the electron beam depending on the polarity of the input signal applied to the metal plate and screen of the target assembly. These charges may subsequently be taken off the target electrode assem bly by a subsequent scanning by the electron beam. The barrier grid tube further includes a collector electrode and an associated electron optical system for focusing the signal electrons from the target onto the collector electrode, the collector electrode and the electron optical system being normally positioned between the gun and the target.
The output signal from the barrier grid tube may be obtained from the target electrode, but it is preferable to obtain the output signal from the collector electrode. The collector is maintained at a positive potentialwith respect to the target, and the secondary electrons produced'hy the electron beam on the storage surface are directed. toward the collector electrode, from which an output signal is obtained.
One of the disadvantages of barrier grid tube operation is the relativelyhigh backplate-to-collector capacitance. High frequency components of the input signal applied to the backplate are thereby capacitively coupled to the collector. These capacitively coupled signals may be greater in strength than the residual signal from the target in the cancellation mode and thus limit the operation of the tube in this mode.
An object of the present invention is to provide animproved collector for a barrier grid tube particularly one wherein backplate-to-collector capacitance is minimized and an additional stage of signal amplification is obtained.
According to the present invention an improved collector is provided wherein a collector ring is enclosed within a suitable chamber and is shielded from the rest of the tube electrodes in a specific instance by awire mesh.
The present invention is explained with reference to the drawings in which:
FIG. 1 is a cross-sectional view'of a barrier grid storage tube incorporating one embodiment of an improved collector electrode following the principles of the present invention; and I FIG. 2 is a detailed view of another embodiment of a collector electrode following the principles of the present invention.
Referring to FIG. 1, there is shown in schematic form with non-essential details eliminated, a barrier grid storage tube generally identified as 1. The tube includes an elongated envelope 2 having an electron gun assembly 3 positioned therein adjacent end 4. The electron gun assembly 3 may be any conventional type, as is well known in the art, including a cathode heated by a suitable filament, a control grid, and suitable accelerating anodes. The cathode, filament, control grid and accelerating elements are connected to suitable sources of voltage by leads 5, as is well known in the art. The electron beam 6 produced by the electron gun assembly 3 may be deflected vertically and horizontally by suitable deflecting electrodes 7 positioned within the envelope 2 and connected to suitable deflecting circuits by conductors 8 and 9, it being understood that the vertical and horizontal deflection of the electron beam may be provided by deflecting coils arranged on the exterior of the envelope 2 rather than by internal deflecting elements 7. A shield electrode 10 is positioned within the envelope 2 and is connected to a suitable source of potential, for example l00 volts, by lead 11. A novel secondary emission collecting electrode 12 is positioned within envelope 2 in front of shield electrode 1t and is adapted to be connected to a suitable external source of voltageby lead 13. Secondary emission collecting electrode 12 will be discussed more fully hereinbelow. Secondary emission accelerating electrodes 14 and 15 are located between collecting electrode 12 and a target electrode 16 and are adapted respectively to be connected to suitable external sources of voltage by leads 17 and 18. The target electrode 16 is preferably spherical shaped and includes spherical metal backing plate 19 and spherical dielectric and grid elements generally identified as 20 disposed on the side of the metal backing. plate 19 toward the electronic gun assembly 3 for scanning by electron beam 6. The metal backing plate 19 of the target electrode 16 is adapted to be connected to a suitable source of input voltage by lead 21, for example, video input signals.
The operating principles of the barrier grid tube are well known and it is felt unnecessary to restate them in detail. In brief, an input signal is applied via conductor 21 to backing plate 19. An electron beam 6 from electron gun 3 is scanned across dielectric and grid 29 by means of deflecting elements 7. As the dielectric surface is scanned by the electron beam, secondary electrons are emitted and drawn away toward collector electrode 12 which is maintained, during tube operation, at a high positive potential relative to the potential of dielectric 26. Since the secondary electrons from the dielectric surface are emitted in all directions at relatively low velocity, electrodes 14 and 15, maintained during tube operation at different potentials, are used to form a focusing electrostatic field for directing the secondary emission toward the collector electrode 12. The degree of secondary emission is a function of the input signal applied to the backing plate through input conductor 21, thus the output signal from collector electrode 12 will be a function of the input signal applied to conductor 21.
Referring to the secondary emission collector electrode 12 in more detail, it is seen that it is located intermediate shield electrode 143 and accelerating electrode 14. In FIG. 1 collector 12 is an annular structure, the wall of which is colinear with the other electrodes except that a major portion of the wall 120 is formed in the general shape of an open-sided toroid. This is the collector dynode. A collector ring 121; is located within the chamber formed by wall 12a at approximately the center of the circular cross section of the toroid. The collector Wall 12a is biased at approximately 100 to 350 volts above the potential of the barrier grid assembly 20 by a potential source connected to lead 13. Collector ring 12b is biased approximately 50 to 100 volts above the potential of Wall 12a by a suitable potential source connected to lead 12d. A fine mesh screen 120 is mounted across an opening in the collector wall of the inside diameter of the toroid such that the mesh separates the interior of the toroid from the interior of the storage tube. The secondary electrons emitted from the target electrode 16 are electronically focused and accelerated by electrodes 14 and 15, and are attracted to collector electrode 12. The velocity of the secondary electrons carry them into the toroid through mesh 12c and past collector ring 1212 until they strike the inner surface of wall 12a, which is constructed of a highly emissive material, for example beryllium-copper or silver-magnesium. The secondary electrons, in striking the inner surface of wall 12a release further electrons, herein referred to as tertiary electrons, which are attracted to, and are collected by collector ring 12b.
The tertiary electrons collected by collector ring 1212 are a function of the information originally written on the target electrode, and may be removed as an output signal from ring 12b by suitable output means such as conductive lead 12a. The fact that the secondary electrons from the target electrode are not directly collected by ring 1211, but instead release a proportional number of tertiary electrons from highly emissive wall 12a, provides a stage of signal amplification which increases signal detectability and decreases the design requirements of any output preamplifier which may be used. Thus, it is also possible to provide a selected value range for the output signal by selecting an appropriate material for the toroid surface.
The mesh 12c which extends across the toroid opening is preferably composed of tungsten wires and is approximately 92 percent transparent. The mesh serves to eliminate the undesired capacitive coupling between the target electrode and the collector electrode, and also shields the collector ring from the high frequency signals present on backplate 19 during the writing mode.
The collector wall 12a need not necessarily be in the form of an open-sided toroid, but may describe other forms for example wall 12a may form an isosceles triangle with mesh 126, as shown by wall 122 in FIG. 2. Both the curved wall 12:: of FIG. 1 and the angular wall 12a of FIG. 2, when struck by secondary electrons passing through mesh 12c, will emit tertiary electrons in a direction toward collector ring 12b.
It is seen from the above discussion that a unique collector for a storage tube has been devised which eliminates the undesired backplate to collector capacitance, and provides an amplification stage for the collector output signal. It is to be understood that while two specific configurations have been shown for the collector wall, many more suitable shapes may be designed using the principles of the present invention.
While we have described above the principles of our invention in connection with specific apparatus, it is to be clearly understood that this description is made only by way of example and not as a limitation to the scope of our invention as set forth in the objects thereof and in the accompanying claims.
We claim: r
1. In a barrier grid storage tube comprising a first electron beam source, an electron emissive target electrode, means for scanning said beam across said target electrode and means applying a varying input signal thereto for storing a charge pattern thereon, said beam causing emission of secondary electrons from said target electrode in accordance with said charge pattern and input signal, a collector electrode structure positioned to collect secondary electrons from said barrier grid, said collector having an electron emissive surface for emitting further electrons in response to said secondary electrons directed thereon, an output electrode adjacent said surface for collecting said further electrons, and an electron permeable electrostatic shielding means for passing said secondary electrons to said surface while electrostatically shielding said surface and output electrode from the remainder of said tube.
2. In a barrier grid storage tube, a collector electrode structure for collecting secondary electrons from said barrier grid comprising an annular inner wall having an electron emissive surface for emitting further electrons in response to said secondary electrons directed thereon, an inner concentric output electrode for collecting said further electrons and producing an output signal characteristic thereof, and a mesh enclosing said wall and output electrode for passing said secondary electrons to said wall while electrostatically shielding said wall and output electrode from the remainder of said tube.
3. A collector electrode structure according to claim 2 wherein said emissive surface on said wall is berylliumcopper.
4. A collector electrode structure according toclaim 2 wherein said emissive surface on said wall is silver-magnesium.
' 5. A collector electrode structure according to claim 2 wherein said mesh is composed of finely spaced tungsten wires.
6. A collector electrode structure according to claim 2 wherein said Wall is in the shape of a toroid having an open inner side.
7. A collector electrode structure according to claim 6 wherein said mesh is mounted across said open side of said toroid.
8. A collector electrode structure according to claim 7 wherein said output electrode is a ring mounted within said toroid.
9. A collector electrode structure according to claim 2 wherein said wall is in the shape of an annular angle having an inner open side.
10. A collector electrode structure according to claim 9 wherein said mesh is mounted across the open side of said angle.
11. A collector electrode structure according to claim 9 wherein said output electrode is a ring mounted within said annular angle.
12. In a storage tube of the type having a target elcctrode wherein secondary electrons characteristic of information stored therein are periodically released, a ring shaped collector electrode structure comprising an inner wall having an annular depressed surface and an electron emissive coating on said surface for emitting tertiary electrons in response to said secondary electrons directed thereon, accelerating and focusing electrodes directing said secondary electrons to said collector electrode, a concentric output electrode mounted within said depression to collect said tertiary electrons and produce an output signal characteristic thereof, an output conductor coupled to said output electrode, and a mesh enclosing said depression to pass said secondary electrons to said surface while electrostatically shielding said surface and output electrode from the remainder of said storage tube.
References Cited by the Examiner UNITED STATES PATENTS Schlesinger 313--105 Snyder 313-68 Snyder et a1. 31368 Palluel 313105 Jensen 313-68 X Day 313--68 X 10 GEORGE N. WESTBY, Primary Examiner.
RALPH G. NILSON, Examiner.

Claims (1)

1. IN A BARRIER GRID STORAGE TUBE COMPRISING A FIRST ELECTRON BEAM SOURCE, AN ELECTRON EMISSIVE TARGET ELECTRODE, MEANS FOR SCANNING SAID BEAM ACROSS SAID TARGET ELECTRODE AND MEANS APPLYING A VARYING INPUT SIGNAL THERETO FOR STORING A CHARGE PATTERN THEREON, SAID BEAM CAUSING EMISSION OF SECONDARY ELECTRONS FROM SAID TARGET ELECTRODE IN ACCORDANCE WITH SAID CHARGE POSITIONED TO COLLECT SECONDCOLLECTOR ELECTRODE STRUCTURE POSITIONED TO COLLECT SECONDARY ELECTRONS FROM SAID BARRIER GRID, SAID COLLECTOR HAVING AN ELECTRON EMISSIVE SURFACE FOR EMITTING FURTHER ELECTRONS IN RESPONSE TO SAID SECONDARY ELECTRONS DIRECTED THEREON, AN OUTPUT ELECTRODE ADJACENT SAID SURFACE FOR COLLECTING SAID FURTHER ELECTRONS, AND AN ELECTRON PERME-
US121599A 1957-03-07 1961-07-03 Collector for barrier grid storage tube Expired - Lifetime US3234422A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US121599A US3234422A (en) 1957-03-07 1961-07-03 Collector for barrier grid storage tube
BE619682A BE619682A (en) 1961-07-03 1962-07-03 Collector for memory tube with stop grid
FR902814A FR81913E (en) 1957-03-07 1962-07-03 Electric discharge tube applicable in particular as electronic memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US644686A US2934653A (en) 1957-03-07 1957-03-07 Readout system
US121599A US3234422A (en) 1957-03-07 1961-07-03 Collector for barrier grid storage tube

Publications (1)

Publication Number Publication Date
US3234422A true US3234422A (en) 1966-02-08

Family

ID=26819637

Family Applications (1)

Application Number Title Priority Date Filing Date
US121599A Expired - Lifetime US3234422A (en) 1957-03-07 1961-07-03 Collector for barrier grid storage tube

Country Status (2)

Country Link
US (1) US3234422A (en)
FR (1) FR81913E (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2227031A (en) * 1937-02-24 1940-12-31 Loewe Radio Inc Phototube with electron multiplier
US2470875A (en) * 1946-04-12 1949-05-24 Rca Corp Storage tube
US2501637A (en) * 1946-04-12 1950-03-21 Jr Richard L Snyder Electron signal storage tube
US2565515A (en) * 1938-11-29 1951-08-28 Int Standard Electric Corp Electron multiplier with secondary emissive grids
US2598919A (en) * 1950-06-30 1952-06-03 Rca Corp Barrier grid storage tube
US3020622A (en) * 1957-06-28 1962-02-13 Itt Method of making target electrode for barrier storage grid tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2227031A (en) * 1937-02-24 1940-12-31 Loewe Radio Inc Phototube with electron multiplier
US2565515A (en) * 1938-11-29 1951-08-28 Int Standard Electric Corp Electron multiplier with secondary emissive grids
US2470875A (en) * 1946-04-12 1949-05-24 Rca Corp Storage tube
US2501637A (en) * 1946-04-12 1950-03-21 Jr Richard L Snyder Electron signal storage tube
US2598919A (en) * 1950-06-30 1952-06-03 Rca Corp Barrier grid storage tube
US3020622A (en) * 1957-06-28 1962-02-13 Itt Method of making target electrode for barrier storage grid tube

Also Published As

Publication number Publication date
FR81913E (en) 1963-11-29

Similar Documents

Publication Publication Date Title
US2690517A (en) Plural beam electron gun
US2288402A (en) Television transmitting tube
US2452619A (en) Cathode-ray tube
US2322807A (en) Electron discharge device and system
US2837689A (en) Post acceleration grid devices
US3154710A (en) Cathode-ray display system having electrostatic magnifying lens
US3295010A (en) Image dissector with field mesh near photocathode
US3742343A (en) Ion gauges
US3906237A (en) Ion gauges
US3234422A (en) Collector for barrier grid storage tube
US2286280A (en) Electronic device
US3250949A (en) Electron gun
US2172738A (en) Cathode ray tube
US3197661A (en) Signal storage tubes
GB953881A (en) Low-power-deflection cathode ray tube
US2971108A (en) Electron discharge device
US3202853A (en) Electron beam tube with less than three hundred mils spacing between the target electrode and photocathode electrode
US2520244A (en) Television pickup tube
US3133220A (en) Post deflection accelerated tube
US4001618A (en) Electron discharge image tube with electrostatic field shaping electrode
US2563490A (en) Cathode arrangement fob television
US3205391A (en) Negative-lens type deflection magnifying means for electron beam in cathode ray tubes
US2338036A (en) Cathode ray device
US2873398A (en) Direct viewing moving target indicator cathode-ray storage tube
GB551665A (en) Improvements in cathode ray tubes