US3222287A - Detergent composition - Google Patents

Detergent composition Download PDF

Info

Publication number
US3222287A
US3222287A US308074A US30807463A US3222287A US 3222287 A US3222287 A US 3222287A US 308074 A US308074 A US 308074A US 30807463 A US30807463 A US 30807463A US 3222287 A US3222287 A US 3222287A
Authority
US
United States
Prior art keywords
oxide
sodium
detergent
alkyl
arsine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US308074A
Inventor
Robert G Laughlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US168259A external-priority patent/US3147295A/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US308074A priority Critical patent/US3222287A/en
Application granted granted Critical
Publication of US3222287A publication Critical patent/US3222287A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/665Arsine oxides

Definitions

  • This invention relates to novel tertiary arsine oxide detergents and detergent compositions containing them.
  • a degree of bacteriostatic activity is also desirable in organic detergent compounds.
  • Another advantageous property for an organic detergent is a high degree of water solubility, particularly in electrolyte systems. This property is especially advantageous when formulating liquid detergent compositions containing high amounts of builder salts.
  • the arsine oxide-s of this invention are probably resonance hybrids, the major canonical forms of which are:
  • R is an alkyl, alkenyl, 2-hydroxyalkyl or 3-hydroxyalkyl radical ranging from to 18 carbon atoms in chain length and R and R are each alkyl, Z-hydroxyalkyl or 3-hydroxyalkyl groups containing from 1 to 3 carbon atoms.
  • the class of compounds described above will hereinafter be referred to more simply as RR'RAs- 0.
  • Examples of the compounds of this invention are dimethyldodecylarsine oxide, dimethyltetradecylarsine oxide, methylethyltetradecylarsine oxide, dimethylhexadecylarsine oxide, dimethyloctadecylarsine oxide, ethylpropylhexadecylarsine oxide, diethyldodecylarsine oxide, diethyltetradecylarsine oxide, dipropyldodecylarsine oxide, bis(Z-hydroxyethyl)dodecylarsine oxide,
  • Short chain tertiary arsine oxides as a broad class of compounds are known. It was surprising to find, however, that the particular trialkyl arsine oxides described above have highly desirable properties for use as organic detergents.
  • R, R and R must be as described above. If R is longer in chain length than 18 carbon atoms or shorter in chain length than 10' carbon atoms, desired detergency characteristics are not obtained. Likewise, if R and R" contain more than 3 carbon atoms, desired detergency characteristics are not obtained.
  • the most preferred tertiary arsine oxides are the Q C alkyldimethylarsine oxides; particularly desirable are C -C alkyldimethylarsine oxides.
  • the C -C alkyldimethylarsine oxides show bacteriostatic activity against Gram positive and Gram negative organisms. These arsine oxides also exhibit a desirable high degree of water solubility.
  • Tertiary arsine oxides of this invention can be prepared by oxidizing the corresponding tertiary arsine, for example, with hydrogen peroxide.
  • R can be derived from naturally occurring fats and oils or from synthetic sources. Mixtures of arsine oxides are very suitable wherein the R groups vary in chain length in the C to C range, as for example, the alkyl groups from coconut fatty alcohol (or distilled coconut fatty alcohol).
  • Compounds of this invention are useful per se as detergent and surface active agents. Desirably they are used with other materials to form detergent compositions, as for example, liquid, bar or granular compositions.
  • Such detergent compositions can contain the tertiary arsine oxides of this invention and water-soluble inorganic alkaline builder salts, water-soluble organic alkaline sequestrant builder salts or mixtures thereof in a ratio of arsine oxide to builder salt of about 4:1 to about 1:20.
  • Granular detergent compositions preferably contain about 5% to about 50% of the arsine oxides of this invention and liquid formulations preferably contain about 2% to about 30% of such arsine oxides.
  • Granular de' tergent compositions preferably contain at least an equal amount of an alkaline builder salt.
  • Liquid formulations preferably contain from about 5% to about 40% of a water soluble alkaline builder salt, the balance of the composition being a solvent such as water, and/or other liquid vehicles.
  • Water-soluble inorganic alkaline builder salts used alone or in admixture are alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates. (Ammonium or substituted ammonium salts can also be used.) Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, sodium tetraborate, sodium pyrophosphate, sodium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium monoand diortho phosphate and potassium bicarbonate, such inorganic builder salts enhance the detergency of the subject arsine oxides.
  • organic alkaline sequestrant builder salts used alone or in admixture are alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g., sodium and potassium ethylenediaminetetraacetate, sodium and potassium N-(Z-hydroxyethyl)-ethylenediaminetriacetates, sodium and potassium nitrilotriacetates and sodium, potassium and triethanolam-monium N-(Z-hydroxyethyl)-nitrilo diacetates.
  • alkali metal salts of phytic acid e.g., sodium phytate are also suitable as organic alkaline sequestrant builder salts (see US. Patent 2,739,942).
  • Anionic organic detergents which can be used in the compositions of this invention if desired include both the soap and non-soap detergents.
  • suitable soaps are the sodium, potassium, ammonium and alkylolammonium salts of higher fatty acids (C -C Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap.
  • water-soluble salts the sodium, potassium, ammonium, and alkylolammoniurn salts, for example.
  • Specific examples are: sodium lauryl sulfate; potassium N-methyl lauroyl tauride; triethanolamine dodecyl benzene sulfonate.
  • nonionic organic detergents which can be used in the compositions of this invention if desired are: polyethylene oxide condensates of alkyl phenols wherein the alkyl group contains from 6 to 12 carbon atoms (e.g., t-octylphenol) and the ethylene oxide is present in a molar ratio of ethylene oxide to alkyl phenol in the range of 10:1 to 25:1; condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine wherein the molecular weight of the condensation products ranges from 5000 to 11,000; the condensation products of from about to 30 moles of ethylene oxide with one mole of a straight or branched chain aliphatic alcohol containing from 8 to 18 carbon atoms (e.g., lauryl alcohol); C -C alkyl di- (C -C alkyl) amine oxides (e.g. dodecyl dimethyl amine oxide).
  • Preferred liquid detergent compositions contain about 2 to about 30% of the tertiary arsine oxides of the invention and about 5% to about 40% potassium pyrophosphate.
  • the C C alkyldirnethylarsine oxides are used in such preferred compositions.
  • Particularly desirable is dimethyldodecylarsine oxide which has good sudsing characteristics.
  • the detergent compositions of this invention can contain any of the usual adjuvants, diluents and additives, for example, ampholytic, cationic or zwitterionic detergents, perfumes, anti-tarnishing agents, anti-redeposition agents, bacteriostatic agents, dyes, fluorescers, suds builder, suds depressors and the like, without detracting from the advantageous properties of the composition.
  • adjuvants for example, ampholytic, cationic or zwitterionic detergents, perfumes, anti-tarnishing agents, anti-redeposition agents, bacteriostatic agents, dyes, fluorescers, suds builder, suds depressors and the like, without detracting from the advantageous properties of the composition.
  • compositions of the present invention exhibit superior and unexpected mildness characteristics.
  • mixtures of these two detergent compounds in aqueous solution are milder to the skin than either one alone. Thickening, dryness and cracking of the skin of test animals under exaggerated exposures to solutions of such mixtures are markedly reduced and in some cases disappear. This mildness effect is very advantageous since combinations of the alkylbenzenesulfonates and arsine oxides in compositions of the present invention are efficient detergents.
  • the cleansing compositions of this invention having superior mildness characteristics comprise mixtures of alkylbenzenesulfonates having alkyl radicals ranging from about 9 to about 15 carbon atoms and the tertiary arsine oxides of this invention, the ratio of the respective ingredients being in the range of about :1 to about 1:2.
  • alkylbenzenesulfonates in compositions of this invention are the water soluble salts, such as the alkali metal (e.g., sodium, potassium and lithium), ammonium and substituted ammonium (e.g., tn'ethanolamine) salts,
  • alkali metal e.g., sodium, potassium and lithium
  • ammonium and substituted ammonium e.g., tn'ethanolamine
  • alkylbenzenesulfonates usually contain mixtures of alkyl radicals in this range.
  • the preferred alkylbenzenesulfonate is one in which the alkyl radicals in the mixture average about 12 carbon atoms and are derived from a polypropylene which is predominantly tetrapropylene.
  • This alkylbenzenesulfonate is hereinafter referred to as dodecylbenzenesulfonate and is most commonly used as a sodium salt.
  • grade 10 represents ideal or perfect skin (soft, smooth and flexible) and the effect of a theoretically perfectly mild detergent; grade 1 represents severely irritated skin. Other values represents gradations of severity between these extremes.
  • Grade 1 in a guinea pig immersion test indicates severely thickened, dry, cracked and bleeding skin, i.e, extreme irritation.
  • Grade 1 in exaggerated tests on human subjects indicates severe redness and dryness of the skin. Thus, the exaggerated exposure tests on animals are much more extreme than those conducted on human subjects.
  • the graded guinea pig immersion tests consist of immersing the animal up to the thorax in the test solutions at 37 C. for a 4 /2 hour period per day for 3 consecutive days.
  • the animals are graded 3 days after the last immersion.
  • the grades given in the examples are the average of the results on not less than three animals. It will be understood by those with experience in biological experiments that there is variation in the reactions of individuals, within a group, to exposure to chemical solutions; this is true whether the individuals are guinea pigs or humans.
  • Example I 200 grams of PCl were placed in a 500 ml. glass flask with an open neck and paddle stirrer. The flask was cooled in an ice bath. 50 grams of cacodylic acid were added very slowly. The temperature was kept at 2527 C. and the mixture was stirred. The temperature was allowed to rise to 30 C. and stirring continued. The mixture was cooled to 10 C. in ice.
  • This mixture was acidified with 200 ml. of concentrated HCl (added slowly). Hydrolysis resulted and the mixture separated into two layers. The mixture was poured into a separatory funnnel and the lower layer (dimethylchloroarsine) was drawn off and dried and distilled.
  • Dodecyl magnesium bromide was formed by slowly reacting 39.2 grams of dodecylbromide and 3.82 grams of magnesium metal in 315 ml. of dry ethyl ether in a 500 ml. flask while stirring. 22.1 grams of the dimethylchloroarsine formed above was added drop-Wise to the thus formed dodecyl magnesium bromide at 10 C. over a period of 30 minutes. A white precipitate formed.
  • the reaction mixture was added to 200 grams of ice in a 1 liter beaker and dissolved with stirring. The solution was transferred to a separator funnel; Na SO was added to the emulsion. The mixture separated and the lower aqueous layer was discarded. The ether layer was dried and filtered. The ether was then distilled off.
  • the resulting dimethyldodecylarsine oxide was extracted with acetone. The acetone was then blown off with a nitrogen stream.
  • the arsine oxide had the following elemental analysis:
  • Water solubility of dimethyldodecylarsine oxide at room temperature was 40%.
  • the solubility of this compound in an electrolyte system was also excellent; 35 grams of the compound dissolved in 100 grams of a 20% aqueous solution of tetrapotassium ethylenediaminetetrw acetate.
  • the bacteriostatic efficacy of dimethyldodecylarsine oxide was determined. In an aqueous matrix, it required a concentration of only 20 ppm. of this compound to arrive at the bacteriostatic breakpoint of M. aureus (Gram positive) and of P. aeruginosa (Gram negative). Bacteriostatic breakpoint is that concentration of material at which the multiplication of an organism is stopped. This degree of bacteriostatic eflicacy is significant.
  • Test solution Grade 0.2% sodium dodecylbenzenesulfonate 3 0.2% dimethyldodecylarsine oxide 0.2% sodium dodecylbenzenesulfonate+0.1%
  • dimethyldodecylarsine oxide 9 1 Ungraded but extremely irritating.
  • arsine oxides are efficient solubilizers of calcium soap.
  • a 0.436% water solution of this composition was used to wash soiled dishes.
  • the water was at 115 F. and 7 grain hardness. 40 seconds of mechanical agitation provided more than 1" of stable suds.
  • Granular detergent Percent Diethyldodecylarsine oxide 10 Sodium dodecylbenzenesulfonate (The dodecyl group being derived from tetrapropylene 10 Sodium tripolyphosphate 50 Sodium sulfate 30 Granular detergent:
  • Dimethyltetradecylarsine oxide 10 Condensation product of one mole of nonyl phenol and nine moles of ethylene oxide 10 Sodium pyrophosphate 50 Sodium carbonate 3 Trisodium phosphate 3 Sodium sulfate 24 Liquid detergent:
  • Silica flour Detergent consisting of 85% trisodium phosphate and 15% bis(2-hydroxyethyl)-2-hydroxydodecylarsine oxide 15 What is claimed is:
  • a detergent composition consisting essentially of a tertiary arsine oxide detergent compound having the formula RRRAsO, wherein R is selected from the group consisting of alkyl, alkenyl, 2-hydroxyalkyl and 3-hydroxyalkyl radicals ranging in chain length from 10 to 18 carbon atoms and R and R" are each selected from the group consisting of alkyl, Z-hydroxyalkyl and 3-hydroxyalkyl radicals containing from 1 to 3 carbon atoms, and a material selected from the group consisting of Water-soluble inorganic alkaline builder salts, organic alkaline sequestrant builder salts and mixtures thereof, the ratio of said compound to said material being in the range of about 4:1 to about 1:20.
  • a detergent composition consisting essentially of a dimethylalkylarsine oxide compound, wherein the alkyl radical ranges in chain length from 10 to 18 carbon atoms, and a builder salt selected from the group consisting of water-soluble inorganic alkaline builder salts, organic alkaline sequestrant builder salts and mixtures thereof, the ratio of said compound to said builder salt being in the range of about 4:1 to about 1:20.
  • a liquid detergent composition consisting essentially of from about 2% to about 30% of a tertiary arsine oxide detergent compound as defined in claim 1, from about 5% to about 40% of a material selected from the group consisting of water soluble inorganic alkaline builder salts,
  • water soluble organic alkaline sequestrant builder salts and mixtures thereof and a water vehicle for said compound and said material.
  • arsine oxide compound is a dimethylalkylarsine oxide wherein the alkyl radical ranges in chain length from 12 to 14 carbon atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

United States Patent 7 Claims. (Cl. 252-461) This is a division of Serial No. 168,259 filed January 23, 1962, now U.S. Patent 3,147,295.
This invention relates to novel tertiary arsine oxide detergents and detergent compositions containing them.
In the constant improvement of organic detergent compounds, certain features have been found to be highly desirable. These features include resistance toward the ingredients imparting hardness to water, a high degree of detergency, and capacity for solubilization of hard water soaps, such as calcium soap. Although there are a number of organic detergents which have these characteristics, detergent compounds having additional desirable characteristics find a wider scope of application.
A degree of bacteriostatic activity is also desirable in organic detergent compounds.
Another advantageous property for an organic detergent is a high degree of water solubility, particularly in electrolyte systems. This property is especially advantageous when formulating liquid detergent compositions containing high amounts of builder salts.
It is a principal object of this invention to provide organic detergents and detergent compositions which have excellent detergency and alkaline earth soap solubilization characteristics as well as high aqueous solubility and a degree of bacteriostatic activity.
It is another object to provide preferred detergent compositions which have these characteristics and also have synergistic mildness properties.
It was found that these and other objects are achieved in a novel class of tertiary arsine oxides having the structure set forth below and in detergent compositions containing such compounds as hereinafter more fully described.
The arsine oxide-s of this invention are probably resonance hybrids, the major canonical forms of which are:
In the above formulas, R is an alkyl, alkenyl, 2-hydroxyalkyl or 3-hydroxyalkyl radical ranging from to 18 carbon atoms in chain length and R and R are each alkyl, Z-hydroxyalkyl or 3-hydroxyalkyl groups containing from 1 to 3 carbon atoms. The class of compounds described above will hereinafter be referred to more simply as RR'RAs- 0.
Examples of the compounds of this invention are dimethyldodecylarsine oxide, dimethyltetradecylarsine oxide, methylethyltetradecylarsine oxide, dimethylhexadecylarsine oxide, dimethyloctadecylarsine oxide, ethylpropylhexadecylarsine oxide, diethyldodecylarsine oxide, diethyltetradecylarsine oxide, dipropyldodecylarsine oxide, bis(Z-hydroxyethyl)dodecylarsine oxide,
"Ice,
bis (3-hydroxypropyl) dodecylarsine oxide, dimethyloleylarsine oxide, and dimethyl-Z-hydroxydodecylarsine oxide.
Short chain tertiary arsine oxides as a broad class of compounds are known. It was surprising to find, however, that the particular trialkyl arsine oxides described above have highly desirable properties for use as organic detergents.
It appears that only certain tertiary arsine oxides have the aforementioned desired characteristics; in these certain arsine oxides, R, R and R must be as described above. If R is longer in chain length than 18 carbon atoms or shorter in chain length than 10' carbon atoms, desired detergency characteristics are not obtained. Likewise, if R and R" contain more than 3 carbon atoms, desired detergency characteristics are not obtained.
The most preferred tertiary arsine oxides are the Q C alkyldimethylarsine oxides; particularly desirable are C -C alkyldimethylarsine oxides. The C -C alkyldimethylarsine oxides show bacteriostatic activity against Gram positive and Gram negative organisms. These arsine oxides also exhibit a desirable high degree of water solubility.
Tertiary arsine oxides of this invention can be prepared by oxidizing the corresponding tertiary arsine, for example, with hydrogen peroxide. In tertiary arsine oxides of this invention, R can be derived from naturally occurring fats and oils or from synthetic sources. Mixtures of arsine oxides are very suitable wherein the R groups vary in chain length in the C to C range, as for example, the alkyl groups from coconut fatty alcohol (or distilled coconut fatty alcohol).
Compounds of this invention are useful per se as detergent and surface active agents. Desirably they are used with other materials to form detergent compositions, as for example, liquid, bar or granular compositions. Such detergent compositions can contain the tertiary arsine oxides of this invention and water-soluble inorganic alkaline builder salts, water-soluble organic alkaline sequestrant builder salts or mixtures thereof in a ratio of arsine oxide to builder salt of about 4:1 to about 1:20.
Granular detergent compositions preferably contain about 5% to about 50% of the arsine oxides of this invention and liquid formulations preferably contain about 2% to about 30% of such arsine oxides. Granular de' tergent compositions preferably contain at least an equal amount of an alkaline builder salt. Liquid formulations preferably contain from about 5% to about 40% of a water soluble alkaline builder salt, the balance of the composition being a solvent such as water, and/or other liquid vehicles.
Water-soluble inorganic alkaline builder salts used alone or in admixture are alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates. (Ammonium or substituted ammonium salts can also be used.) Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, sodium tetraborate, sodium pyrophosphate, sodium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium monoand diortho phosphate and potassium bicarbonate, such inorganic builder salts enhance the detergency of the subject arsine oxides.
Examples of organic alkaline sequestrant builder salts used alone or in admixture are alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g., sodium and potassium ethylenediaminetetraacetate, sodium and potassium N-(Z-hydroxyethyl)-ethylenediaminetriacetates, sodium and potassium nitrilotriacetates and sodium, potassium and triethanolam-monium N-(Z-hydroxyethyl)-nitrilo diacetates. Mixed salts of these polycarboxylates are also suitable. The alkali metal salts of phytic acid, e.g., sodium phytate are also suitable as organic alkaline sequestrant builder salts (see US. Patent 2,739,942).
Anionic organic detergents which can be used in the compositions of this invention if desired include both the soap and non-soap detergents. Examples of suitable soaps are the sodium, potassium, ammonium and alkylolammonium salts of higher fatty acids (C -C Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap. Examples of anionic organic non-soap detergents are: alkyl glyceryl ether sulfonates; alkyl sulfates; alkyl monoglyceride sulfates or sulfonates; alkyl polyethenoxy ether sulfates; acyl sarcosinates; acyl esters of isethionates; acyl N- methyl taurides; alkylbenzenesulfonates; alkyl phenol polyethenoxy sulfonates. In these compounds the alkyl and acyl groups, respectively, contain 10 to 20 carbon atoms. They are used in the form of water-soluble salts, the sodium, potassium, ammonium, and alkylolammoniurn salts, for example. Specific examples are: sodium lauryl sulfate; potassium N-methyl lauroyl tauride; triethanolamine dodecyl benzene sulfonate.
The examples of nonionic organic detergents which can be used in the compositions of this invention if desired are: polyethylene oxide condensates of alkyl phenols wherein the alkyl group contains from 6 to 12 carbon atoms (e.g., t-octylphenol) and the ethylene oxide is present in a molar ratio of ethylene oxide to alkyl phenol in the range of 10:1 to 25:1; condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine wherein the molecular weight of the condensation products ranges from 5000 to 11,000; the condensation products of from about to 30 moles of ethylene oxide with one mole of a straight or branched chain aliphatic alcohol containing from 8 to 18 carbon atoms (e.g., lauryl alcohol); C -C alkyl di- (C -C alkyl) amine oxides (e.g. dodecyl dimethyl amine oxide).
Preferred liquid detergent compositions contain about 2 to about 30% of the tertiary arsine oxides of the invention and about 5% to about 40% potassium pyrophosphate. Desirably the C C alkyldirnethylarsine oxides are used in such preferred compositions. Particularly desirable is dimethyldodecylarsine oxide which has good sudsing characteristics.
The detergent compositions of this invention can contain any of the usual adjuvants, diluents and additives, for example, ampholytic, cationic or zwitterionic detergents, perfumes, anti-tarnishing agents, anti-redeposition agents, bacteriostatic agents, dyes, fluorescers, suds builder, suds depressors and the like, without detracting from the advantageous properties of the composition.
Certain mixtures of the arsine oxides of this invention and alkylbenzenesulfonates exhibit superior and unexpected mildness characteristics. In certain ranges, and under comparable conditions of exposure, mixtures of these two detergent compounds in aqueous solution are milder to the skin than either one alone. Thickening, dryness and cracking of the skin of test animals under exaggerated exposures to solutions of such mixtures are markedly reduced and in some cases disappear. This mildness effect is very advantageous since combinations of the alkylbenzenesulfonates and arsine oxides in compositions of the present invention are efficient detergents. The cleansing compositions of this invention having superior mildness characteristics comprise mixtures of alkylbenzenesulfonates having alkyl radicals ranging from about 9 to about 15 carbon atoms and the tertiary arsine oxides of this invention, the ratio of the respective ingredients being in the range of about :1 to about 1:2.
The alkylbenzenesulfonates in compositions of this invention are the water soluble salts, such as the alkali metal (e.g., sodium, potassium and lithium), ammonium and substituted ammonium (e.g., tn'ethanolamine) salts,
of sulfonated alkylbenzene in which the alkyl radicals range from about 9 to about 15 carbon atoms. Alkylbenzenesulfonates usually contain mixtures of alkyl radicals in this range. The preferred alkylbenzenesulfonate is one in which the alkyl radicals in the mixture average about 12 carbon atoms and are derived from a polypropylene which is predominantly tetrapropylene. This alkylbenzenesulfonate is hereinafter referred to as dodecylbenzenesulfonate and is most commonly used as a sodium salt.
In the testing of detergent compounds and compositions for mildness and for the unexpected mildness effect, skin is contacted by immersion or other means with a solution of the detergent under standardized conditions as more fully described below. A 1 to 10 scale is used to rate the effects of prolonged exposure on the skin. Grade 10 represents ideal or perfect skin (soft, smooth and flexible) and the effect of a theoretically perfectly mild detergent; grade 1 represents severely irritated skin. Other values represents gradations of severity between these extremes. Grade 1 in a guinea pig immersion test indicates severely thickened, dry, cracked and bleeding skin, i.e, extreme irritation. Grade 1 in exaggerated tests on human subjects indicates severe redness and dryness of the skin. Thus, the exaggerated exposure tests on animals are much more extreme than those conducted on human subjects.
There is a good correlation between the results of exaggerated exposure tests on animals and the results of normal use tests on humans; the former can be relied on to grade the relative mildness of detergents toward the human skin.
As used in the example, the graded guinea pig immersion tests consist of immersing the animal up to the thorax in the test solutions at 37 C. for a 4 /2 hour period per day for 3 consecutive days. The animals are graded 3 days after the last immersion. The grades given in the examples are the average of the results on not less than three animals. It will be understood by those with experience in biological experiments that there is variation in the reactions of individuals, within a group, to exposure to chemical solutions; this is true whether the individuals are guinea pigs or humans.
The following are examples which illustrate the tertiary arsine oxide compounds and compositions of this invention.
Example I 200 grams of PCl were placed in a 500 ml. glass flask with an open neck and paddle stirrer. The flask was cooled in an ice bath. 50 grams of cacodylic acid were added very slowly. The temperature was kept at 2527 C. and the mixture was stirred. The temperature was allowed to rise to 30 C. and stirring continued. The mixture was cooled to 10 C. in ice.
This mixture was acidified with 200 ml. of concentrated HCl (added slowly). Hydrolysis resulted and the mixture separated into two layers. The mixture was poured into a separatory funnnel and the lower layer (dimethylchloroarsine) was drawn off and dried and distilled.
Dodecyl magnesium bromide was formed by slowly reacting 39.2 grams of dodecylbromide and 3.82 grams of magnesium metal in 315 ml. of dry ethyl ether in a 500 ml. flask while stirring. 22.1 grams of the dimethylchloroarsine formed above was added drop-Wise to the thus formed dodecyl magnesium bromide at 10 C. over a period of 30 minutes. A white precipitate formed.
The reaction mixture was added to 200 grams of ice in a 1 liter beaker and dissolved with stirring. The solution was transferred to a separator funnel; Na SO was added to the emulsion. The mixture separated and the lower aqueous layer was discarded. The ether layer was dried and filtered. The ether was then distilled off.
The resulting dimethyldodecylarsine oxide was extracted with acetone. The acetone was then blown off with a nitrogen stream. The arsine oxide had the following elemental analysis:
Calculated Found in the above example.
Water solubility of dimethyldodecylarsine oxide at room temperature was 40%. The solubility of this compound in an electrolyte system was also excellent; 35 grams of the compound dissolved in 100 grams of a 20% aqueous solution of tetrapotassium ethylenediaminetetrw acetate.
The bacteriostatic efficacy of dimethyldodecylarsine oxide was determined. In an aqueous matrix, it required a concentration of only 20 ppm. of this compound to arrive at the bacteriostatic breakpoint of M. aureus (Gram positive) and of P. aeruginosa (Gram negative). Bacteriostatic breakpoint is that concentration of material at which the multiplication of an organism is stopped. This degree of bacteriostatic eflicacy is significant.
The following aqueous solutions (distilled water) were compared in graded guinea pig immersion tests:
Test solution: Grade 0.2% sodium dodecylbenzenesulfonate 3 0.2% dimethyldodecylarsine oxide 0.2% sodium dodecylbenzenesulfonate+0.1%
dimethyldodecylarsine oxide 9 1 Ungraded but extremely irritating.
A significant unexpected m-ildness effect is apparent in the solution of a mixture of alkylbenzene sulfonate and arsine oxide in a 2:1 ratio as compared to solutions of the individual detergents alone.
Built laundry detergent compositions containing 50% sodium tripolyphosphate, 30% sodium sulfate and 20% dimethyldodecylarsine oxide, diethyldodecylarsine oxide, dimethyltetradecylarsine oxide or diethyltetradecylarsine oxide, result in lipid soil detergency properties (using natural soiled cloth) superior to like formulations containing sodium dodecylbenzenesulfonate and approaching like formulations containing sodium tallow alkyl sulfate. The same basic formulation, but containing dimethyloctadecylarsine oxide or dimethylhexadecylarsine oxide or diethylhexadecylarsine oxide have satisfactory detergent characteristics but not as desirable as those compositions containing the C and C homologues.
The above described arsine oxides are efficient solubilizers of calcium soap.
The following granular detergent composition was prepared:
Percent Dimethyldodecylarsine oxide 17.5 Sodium sulfate 23.0
Percent Sodium tripolyphosphate 50.0 Sodium silicate 6.0 Water 3.5
A 0.436% water solution of this composition was used to wash soiled dishes. The water was at 115 F. and 7 grain hardness. 40 seconds of mechanical agitation provided more than 1" of stable suds.
The arsine oxides of this invention can be used in effective detergent compositions having the following formulations:
Granular detergent: Percent Diethyldodecylarsine oxide 10 Sodium dodecylbenzenesulfonate (The dodecyl group being derived from tetrapropylene 10 Sodium tripolyphosphate 50 Sodium sulfate 30 Granular detergent:
Dimethyltetradecylarsine oxide 10 Condensation product of one mole of nonyl phenol and nine moles of ethylene oxide 10 Sodium pyrophosphate 50 Sodium carbonate 3 Trisodium phosphate 3 Sodium sulfate 24 Liquid detergent:
Dimethyldodecylarsine oxide 6 Sodium dodecylbenzenesulfonate 6 Potassium pyrophosphate 20 Potassium toluene sulfonate 8 Sodium silicate 3.8 Carboxymethyl hydroxyethyl cellulose 0.3 Water Balance Liquid detergent:
Diethyltetradecylarsine oxide 10 Tetrasodium ethylenediaminetetraacetate 25 Water 65 Scourin-g cleanser:
Silica flour Detergent consisting of 85% trisodium phosphate and 15% bis(2-hydroxyethyl)-2-hydroxydodecylarsine oxide 15 What is claimed is:
1. A detergent composition consisting essentially of a tertiary arsine oxide detergent compound having the formula RRRAsO, wherein R is selected from the group consisting of alkyl, alkenyl, 2-hydroxyalkyl and 3-hydroxyalkyl radicals ranging in chain length from 10 to 18 carbon atoms and R and R" are each selected from the group consisting of alkyl, Z-hydroxyalkyl and 3-hydroxyalkyl radicals containing from 1 to 3 carbon atoms, and a material selected from the group consisting of Water-soluble inorganic alkaline builder salts, organic alkaline sequestrant builder salts and mixtures thereof, the ratio of said compound to said material being in the range of about 4:1 to about 1:20.
2. A detergent composition consisting essentially of a dimethylalkylarsine oxide compound, wherein the alkyl radical ranges in chain length from 10 to 18 carbon atoms, and a builder salt selected from the group consisting of water-soluble inorganic alkaline builder salts, organic alkaline sequestrant builder salts and mixtures thereof, the ratio of said compound to said builder salt being in the range of about 4:1 to about 1:20.
3. The detergent composition of claim 2 wherein the alkyl radical in the said arsine oxide compound ranges in chain length from 12 to 14 carbon atoms.
4. A detergent mixture of a water soluble alkylbenzenesulfonate salt having an alkyl radical ranging from about 9 to about 15 carbon atoms and a tertiary arsine oxide detergent compound as defined in claim 1, the ratio of alkylbenzene sulfonate to tertiary arsine oxide being in the range of about 10:1 to about 1:2, said mixture being 7 milder to the skin than an equal amount of either component alone.
5. A detergent mixture of a water soluble alkylbenzene sulfonate salt having an alkyl radical ranging from about 9 to about 15 carbon atoms and a dimethylalkylar-sin'e oxide wherein the alkyl ranges in chain length from 12 to 14 carbon atoms, the ratio of alkylbenzenesulfonate to tertiary arsine oxide being in the range of about 10:1 to about 1:2, said mixture being milder to the skin than an equal amount of either component alone.
6. A liquid detergent composition consisting essentially of from about 2% to about 30% of a tertiary arsine oxide detergent compound as defined in claim 1, from about 5% to about 40% of a material selected from the group consisting of water soluble inorganic alkaline builder salts,
water soluble organic alkaline sequestrant builder salts and mixtures thereof and a water vehicle for said compound and said material.
7. The detergent composition of claim 6, wherein the arsine oxide compound is a dimethylalkylarsine oxide wherein the alkyl radical ranges in chain length from 12 to 14 carbon atoms.
References Cited by the Examiner UNITED STATES PATENTS 2,169,976 8/1939 Guenther et a1. 252152 XR 2,644,005 6/1953 Urbschat 260440 3,001,945 9/1961 Drew et a1 252137 XR JULIUS GREENWALD, Primary Examiner.

Claims (1)

  1. 5. A DETERGENT MIXTURE OF WATER SOLUBLE ALKYLBENZENE SULFONATE SALT HAVING AN ALKYL RADICAL RANGING FROM ABOUT 9 TO ABOUT 15 CARBON ATOMS AND A DIMETHYLALKYLARSINE OXIDE WHEREIN THE ALKYL RANGES IN CHAIN LENGTH FROM 12 TO 14 CARBON ATOMS, THE RATIO OF ALKYLBENZENESULFONATE TO TERTIARY ARSINE OXIDE BEING IN THE RANGE OF ABOUT 10:1 TO ABOUT 1:2, SAID MIXTURE BEING MILDER TO THE SKIN THAN AN EQUAL AMOUNT OF EITHER COMPONENT ALONE.
US308074A 1962-01-23 1963-09-11 Detergent composition Expired - Lifetime US3222287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US308074A US3222287A (en) 1962-01-23 1963-09-11 Detergent composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US168259A US3147295A (en) 1962-01-23 1962-01-23 Tertiary arsine oxide detergent compounds
US308074A US3222287A (en) 1962-01-23 1963-09-11 Detergent composition

Publications (1)

Publication Number Publication Date
US3222287A true US3222287A (en) 1965-12-07

Family

ID=26863928

Family Applications (1)

Application Number Title Priority Date Filing Date
US308074A Expired - Lifetime US3222287A (en) 1962-01-23 1963-09-11 Detergent composition

Country Status (1)

Country Link
US (1) US3222287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309319A (en) * 1965-09-23 1967-03-14 Procter & Gamble Detergent-whitener compositions
US3391083A (en) * 1966-06-29 1968-07-02 Monsanto Co Surface active agents
US20070290107A1 (en) * 2006-06-20 2007-12-20 Gerard William Lang Plastic pegboard assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169976A (en) * 1934-01-26 1939-08-15 Ig Farbenindustrie Ag Process of producing assistants in the textile and related industries
US2644005A (en) * 1949-02-15 1953-06-30 Bayer Ag Organic arsenical compounds
US3001945A (en) * 1959-04-29 1961-09-26 Procter & Gamble Liquid detergent composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2169976A (en) * 1934-01-26 1939-08-15 Ig Farbenindustrie Ag Process of producing assistants in the textile and related industries
US2644005A (en) * 1949-02-15 1953-06-30 Bayer Ag Organic arsenical compounds
US3001945A (en) * 1959-04-29 1961-09-26 Procter & Gamble Liquid detergent composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309319A (en) * 1965-09-23 1967-03-14 Procter & Gamble Detergent-whitener compositions
US3391083A (en) * 1966-06-29 1968-07-02 Monsanto Co Surface active agents
US20070290107A1 (en) * 2006-06-20 2007-12-20 Gerard William Lang Plastic pegboard assembly

Similar Documents

Publication Publication Date Title
US3223647A (en) Mild detergent compositions
EP1032640B1 (en) Soap bar compositions comprising alpha sulfonated fatty acid alkyl esters and long chain fatty acids
US3793233A (en) Liquid detergent compositions
US3341459A (en) Detergent compositions
US3304263A (en) Phosphine oxide detergent composition
JPS61166895A (en) Liquid detergent composition
US3637511A (en) Detergent formulations
US3326746A (en) 1, 3-dioxane cleaning compositions
GB1087414A (en) Improvements in or relating to amine oxides as surfaceactive agents
SE413904B (en) DRY DETERGENT COMPOSITION CONTAINING A SULFATED ETHOXILATED HIGHER FATHIC ALCOHOL EMERGENCY
US3450637A (en) Detergent containing hydroxy alkyl amine oxide
US3819538A (en) Environmentally compatible laundry detergent
US3222287A (en) Detergent composition
EP0387063A2 (en) Detergent compositions
US3147295A (en) Tertiary arsine oxide detergent compounds
US3332875A (en) Detergent composition
US3441612A (en) Hydroxyalkylamine oxide
US4057506A (en) Heavy-duty liquid detergent
US3594324A (en) Detergent composition containing a synergistic combination of emc and gelatin as soil suspension agents
US4040781A (en) Novel 2-(alkylsulfinyl)ethyl sulfates and compositions employing same
US3441611A (en) Hydroxyalkylamine oxide detergent compounds
CA1112122A (en) Powdered detergent compositions
US3646100A (en) High molecular weight polysulfates
US4011264A (en) Carboxymethyloxysuccinates
US3531526A (en) Diamine dioxide detergent compounds