US3221711A - Ridge firing arrangement for process heaters - Google Patents

Ridge firing arrangement for process heaters Download PDF

Info

Publication number
US3221711A
US3221711A US370893A US37089364A US3221711A US 3221711 A US3221711 A US 3221711A US 370893 A US370893 A US 370893A US 37089364 A US37089364 A US 37089364A US 3221711 A US3221711 A US 3221711A
Authority
US
United States
Prior art keywords
floor
tube
ridge
floor level
furnace chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US370893A
Inventor
Harold L Beggs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcorn Combustion Co
Original Assignee
Alcorn Combustion Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcorn Combustion Co filed Critical Alcorn Combustion Co
Priority to US370893A priority Critical patent/US3221711A/en
Application granted granted Critical
Publication of US3221711A publication Critical patent/US3221711A/en
Assigned to FIRST PENNSYLVANIA BANK N A, A NATIONAL BANKING ASSOCIATION reassignment FIRST PENNSYLVANIA BANK N A, A NATIONAL BANKING ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SELAS CORPORATION OF AMERICA A CORP OF PA
Anticipated expiration legal-status Critical
Assigned to SELAS CORPORATION OF AMERICA A CORP. OF PA reassignment SELAS CORPORATION OF AMERICA A CORP. OF PA RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST PENNSYLVANIA BANK N.V., FOR ITSELF AND AS AGENT FOR THE PHILADELPHIA NATIONAL BANK
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces

Definitions

  • a radiant furnace chamber having a low floor level is provided.
  • the floor is formed into at least one ridge projecting upward from this low floor level to describe an upper floor level.
  • Main burners penetrate the floor upward through the ridge and are arranged to form a main flame burst above the upper floor level.
  • the tube coil has a generally horizontal serpentine configuration with flow arranged to progress generally downward.
  • Enlarged critical tubes, which are situated toward the downstream end of the path of the process fluid through the coil, are positioned in the trough so that heat input to these critical tubes from the main flame burst is relatively low. Trim burners can be mounted in the troughs where sensitive control of the heat input curve is desired.
  • Radiant tube coils are generally fired from either one side (single fired) or from opposite sides (double fired). Double firing evens out the heat input about the peripheries of tubes. With double firing, for a given heat input, the maximum point film temperature is less than that for single firing.
  • the invention here disclosed is adaptable to both single and double fired designs, but double fired designs are preferred.
  • FIGURE I is an end view in section which depicts a fired heater including the present advance. This figure is taken along line II of FIGURE II.
  • FIGURE II is a side view in section taken along line IIII of FIGURE I.
  • FIGURE III is an end view in section which shows a single fired embodiment of this invention.
  • Main flame bursts 9 are elevated vis-a-vis tube coils 11.
  • Floor 4 defines ridges 12 whose upper extremities 13 project upward to form high floor level 14 above low floor level 16.
  • Main burners 17 as well as small trim burners 18 penetrate floor 4 via ridges 12 and low levels 16.
  • Burners 17 and 18 communicate with furnace chamber 6 to introduce fuel and air therein.
  • Burners 17 an 18 are operatively associated with setting 1 so that main flame bursts 9 and trim flame bursts 19 are formed and combustion gases are generated. The combustion gases exit furnace chamber 6 via convection section 21' and stack 22.
  • Process fluid (supplied from a source not shown) after being preheated in convection coils 23, is coursed in flow series through upright tube coils 11.
  • Coils 11 define substantially horizontal serpentine tube configurations arranged for generally downward flow.
  • radiant tube coils 11 are disposed between main flame bursts 9 for double firing.
  • radiant tube coils 11 are arranged against side walls 5 for single firing. The process fluid is introduced into radiant coils 11 at their upper ends 24, and passes generally downward therethrough for exit via lower ends 26.
  • trim burners 18 can be arranged in troughs 28. Adjustment of trim burners 18 as well as adjustment of main burners 17 is well known to furnace designers and operators.
  • a fired heater comprising a setting which includes a roof arch and a floor as well as walls all cooperating to define a furnace chamber therein,
  • the floor defining a low floor level
  • the floor having at least one ridge projecting upward from the low floor level
  • the ridge having an upper extremity which defines a high floor level
  • the floor defining at least one trough below the high floor level
  • At least one main burner penetrating the floor via the upper extremity of the ridge and communicating with the furnace chamber to introduce fuel and air therein and arranged so that a main flame burst is formed above the high floor level
  • At least one tube coil arranged to form a generally horizontal configuration in the furnace chamber
  • the tube coil having an upper end communicating in flow series with a source of process fluid so that the fluid courses generally downward therethrough
  • the tube coil having a lower end communicating in flow series with means for exhausting the process fluid therefrom,
  • the tube coil including at least one enlarged critical tube situated downstream in the path of process fluid flow
  • a fired heater comprising a setting which includes a roof arch and a floor as Well as opposed end walls and opposed side walls all cooperating to define a furnace chamber therein,
  • the floor corrugated to define a raised ridge projecting upward from the low floor level and disposed between the side walls,
  • the ridge having an upper extremity which defines a high floor level
  • the ridge spaced from each of the side walls to define lateral troughs between the ridge and the side walls
  • At least one main burner penetrating the floor via the ridge and communicating with the furnace chamber to introduce fuel and air therein and arranged so that a ,main flame burst is formed above the high floor level
  • each of the tube coils mounted longitudinally relative the ridge and having an upper end communicating in flow series with a source of process fluid so that the fluid courses generally downward therethrough,
  • each of the tube coils having a lower end communicating in flow series with means for exhausting the process fluid therefrom,
  • At least one ofthe tube coils including an enlarged critical tube situated downstream in the path of process fluid flow
  • the critical tube positioned in one of the troughs so that heat input to the critical tube from the main flame burst is reduced.
  • a fired heater comprising a setting which includes a roof arch and a floor as well as opposed end walls and opposed side walls all defining a furnace chamber therein,
  • the floor corrugated to define at least two raised elongated ridges each projecting upward from the low floor level
  • the ridges each having an upper extremity which extremities define a high floor level
  • the floor defining a depressed elongated trough between the ridges
  • At least one main burner penetrating the floor through each of the ridges and communicating with the furnace chamber to introduce fuel and air therein and arranged so that main flame bursts are formed above the high floor level
  • the tube coil having an upper end communicating in flow series with a source of process fluid so that the process fluid courses generally downward therethrough
  • the coil having a lower end communicating in flow series with means for exhausting the process fluid therefrom,
  • the tube coil mounted longitudinally relative the ridges and disposed between the flame bursts for double firthe tube coil including at least one critical tube situated downstream in the path of process fluid flow and having a diameter substantially larger than that of the rest of the tube coil,
  • the critical tube positioned in the trough so that heat input to the critical tube from the main flame bursts is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

3 Sheets-Sheet 1 ATTORNEY H. L. BEGGS RIDGE FIRING ARRANGEMENT FOR PROCESS HEATERS Filed May 28, 1964 5 7 6 MEX m NL IMJ mm; 0 0 o N O 0 O O O 0 0 O o O O 0 o m\ o o m o o o 0 01v 0 o o o o No 0 a o o o o o o 06 o o o o o o o o 0 of o o o o o 0 0 0 W0 m 1 1 m E INVENTOR Dec. 7, 1965 H. BEGGS RIDGE FIRING ARRANGEMENT FOR PROCESS HEATERS Filed May 28, 1964 3 Sheets-Sheet 2 HAROLD L. 856G S ATTORNEY H. L. BEGGS 3,221,711
.R IDGE FIRING ARRANGEMENT FOR PROCESS HEATERS Dec. 1, 1965 3 Sheets-Sheet 5 Filed May 28. 1964 ATTORNEY F/GE United States Patent 3,221,711 RIDGE FIRING ARRANGEMENT FOR PROCESS HEATERS Harold L. Beggs, St. Davids, Pa., assignor to Alcorn Combustion Company, New York, N.Y., a corporation of Delaware Filed May 28, 1964, Ser. No. 370,893 6 Claims. (Cl. 122-240) This disclosure relates to fired heaters used in the petroleum refining industry. The invention contemplates mounting at least one main burner on an elevated ridge above the floor. By this expedient critical tubes (those susceptible of high point film temperatures) can be positioned in troughs below the main flame burst so that film temperature can be controlled. Trim burners may also be mounted in the troughs for sensitive regulation of the heat input curve.
In fluid heaters such as those employed in vacuum service, it is desired to elevate the bulk temperature of the fluid to be heated to the level required for vaporization without subjecting the fluid to thermal cracking. Thermal cracking of the fluid wastes ingredients; but worse than this cracking usually deposits coke in the tubes. By impeding heat transfer to the fluid, coke deposits in the tubes hasten burning through of tube walls. In this regard hot spots on the interiors of tube walls raise point film temperatures and increase the tendency toward thermal crackmg.
The thermal cracking problem is aggravated by large tube sizes. In vacuum installations, with an increase in vapor pressure, larger tube sizes sometimes become neces sa'ry along the path of the fluid to keep fluid pressure drops within reasonable limits. The enlarged tubes avoid suppressing vaporization thereby obviating the superheating of the process fluid in its liquid state, but these larger tube sizes reduce the mass velocity through the tubes impairing the ability of the process stream to cool the tube metal. With reduced cooling the point temperature of process fluid at the tube wall elevates and the tendency toward thermal cracking becomes most critical. Toward the outlets of the tube banks, where tube sizes are largest, the thermal cracking problem is most acute.
The present teaching offers a heater design which avoids thermal cracking in vacuum installations. A radiant furnace chamber having a low floor level is provided. The floor is formed into at least one ridge projecting upward from this low floor level to describe an upper floor level. Main burners penetrate the floor upward through the ridge and are arranged to form a main flame burst above the upper floor level. The tube coil has a generally horizontal serpentine configuration with flow arranged to progress generally downward. Enlarged critical tubes, which are situated toward the downstream end of the path of the process fluid through the coil, are positioned in the trough so that heat input to these critical tubes from the main flame burst is relatively low. Trim burners can be mounted in the troughs where sensitive control of the heat input curve is desired.
Radiant tube coils are generally fired from either one side (single fired) or from opposite sides (double fired). Double firing evens out the heat input about the peripheries of tubes. With double firing, for a given heat input, the maximum point film temperature is less than that for single firing. The invention here disclosed is adaptable to both single and double fired designs, but double fired designs are preferred.
These and other features will appear more fully from the accompanying drawings wherein:
FIGURE I is an end view in section which depicts a fired heater including the present advance. This figure is taken along line II of FIGURE II.
3,221,711 Patented Dec. 7, 1965 FIGURE II is a side view in section taken along line IIII of FIGURE I.
FIGURE III is an end view in section which shows a single fired embodiment of this invention.
Basically, these designs call upon known design principles and market-available components. Setting 1 with end walls 2, roof arch 3, floor 4, and side walls 5, define furnace chamber 6 therein. Steel frame 7 transmits loads to foundations 8.
Main flame bursts 9 are elevated vis-a-vis tube coils 11. Floor 4 defines ridges 12 whose upper extremities 13 project upward to form high floor level 14 above low floor level 16. Main burners 17 as well as small trim burners 18 penetrate floor 4 via ridges 12 and low levels 16. Burners 17 and 18 communicate with furnace chamber 6 to introduce fuel and air therein. Burners 17 an 18 are operatively associated with setting 1 so that main flame bursts 9 and trim flame bursts 19 are formed and combustion gases are generated. The combustion gases exit furnace chamber 6 via convection section 21' and stack 22.
Process fluid (supplied from a source not shown) after being preheated in convection coils 23, is coursed in flow series through upright tube coils 11. Coils 11 define substantially horizontal serpentine tube configurations arranged for generally downward flow. In the embodiment of FIGURES I and II radiant tube coils 11 are disposed between main flame bursts 9 for double firing. In the embodiment of FIGURE III radiant tube coils 11 are arranged against side walls 5 for single firing. The process fluid is introduced into radiant coils 11 at their upper ends 24, and passes generally downward therethrough for exit via lower ends 26.
As the process fluid courses downward through radiant coils 11, it is usually necessary to increase tube diameters so that vapor suppression is avoided and so that pressure drop through radiant coil 11 is kept within reasonable limits. Downstream tubes such as 27 have diameters suificiently large that film temperature control becomes extremely difficult. These are the critical tubes.
The primary consideration in this design in to keep point film temperatures in these critical tubes 27 within acceptable limits. Towards this objective floor 4 defines troughs 28 below the levels of main flame bursts 9. In the embodiment of FIGURES I and II troughs 28 are between adjacent ridges 12. In the embodiment of FIG- URE III lateral troughs 28 are between side walls 5 and ridge 12. Critical tubes 27 .are disposed in troughs 28 so that the effect of main flame bursts 9 on these tubes is reduced.
Where sensitive control of the heat input curve is called for, trim burners 18 can be arranged in troughs 28. Adjustment of trim burners 18 as well as adjustment of main burners 17 is well known to furnace designers and operators.
It will be apparent to those skilled in furnace design that Wide deviations in the detail of this disclosure can be made without departing from the main theme of invention set forth in the claims.
What is claimed is:
1. A fired heater comprising a setting which includes a roof arch and a floor as well as walls all cooperating to define a furnace chamber therein,
the floor defining a low floor level,
the floor having at least one ridge projecting upward from the low floor level,
the ridge having an upper extremity which defines a high floor level,
the floor defining at least one trough below the high floor level,
at least one main burner penetrating the floor via the upper extremity of the ridge and communicating with the furnace chamber to introduce fuel and air therein and arranged so that a main flame burst is formed above the high floor level,
means in the vicinity of the roof arch for exhausting combustion gases from the furnace chamber,
at least one tube coil arranged to form a generally horizontal configuration in the furnace chamber,
the tube coil having an upper end communicating in flow series with a source of process fluid so that the fluid courses generally downward therethrough,
the tube coil having a lower end communicating in flow series with means for exhausting the process fluid therefrom,
the tube coil including at least one enlarged critical tube situated downstream in the path of process fluid flow,
the critical tube positioned in the trough so that heat input to the critical tube from the main flame burst is reduced.
2. The heater of claim 1 with at least one trim burnermounted in the trough,
means for adjusting the heat output of the trim burner.
3. A fired heater comprising a setting which includes a roof arch and a floor as Well as opposed end walls and opposed side walls all cooperating to define a furnace chamber therein,
the floor having a low floor level,
the floor corrugated to define a raised ridge projecting upward from the low floor level and disposed between the side walls,
the ridge having an upper extremity which defines a high floor level,
the ridge spaced from each of the side walls to define lateral troughs between the ridge and the side walls,
at least one main burner penetrating the floor via the ridge and communicating with the furnace chamber to introduce fuel and air therein and arranged so that a ,main flame burst is formed above the high floor level,
means in the vicinity of the roofvarch for exhausting combustion gases from the furnace chamber,
two tube coils describing vertical planes in the furnace chamber with each of the coils adjacent one of the side walls and with each of the coils arranged to form a generally horizontalserpentine configuration,
each of the tube coils mounted longitudinally relative the ridge and having an upper end communicating in flow series with a source of process fluid so that the fluid courses generally downward therethrough,
each of the tube coils having a lower end communicating in flow series with means for exhausting the process fluid therefrom,
at least one ofthe tube coils including an enlarged critical tube situated downstream in the path of process fluid flow,
the critical tube positioned in one of the troughs so that heat input to the critical tube from the main flame burst is reduced.
4. The heater of claim 3 with at least one trim burner mounted in the same lateral trough as the critical tube,
means for adjusting the heat output of the trim burner.
5. A fired heater comprising a setting which includes a roof arch and a floor as well as opposed end walls and opposed side walls all defining a furnace chamber therein,
the floor having a low floor level,
the floor corrugated to define at least two raised elongated ridges each projecting upward from the low floor level,
The ridges each having an upper extremity which extremities define a high floor level,
the floor defining a depressed elongated trough between the ridges,
at least one main burner penetrating the floor through each of the ridges and communicating with the furnace chamber to introduce fuel and air therein and arranged so that main flame bursts are formed above the high floor level,
means in the vicinity of the roof arch for exhausting combustion gases from the furnace chamber,
atleast one tube coil describing a vertical plane in the furnace chamber and arranged to form a generally horizontal serpentine configuration,
the tube coil having an upper end communicating in flow series with a source of process fluid so that the process fluid courses generally downward therethrough,
the coil having a lower end communicating in flow series with means for exhausting the process fluid therefrom,
the tube coil mounted longitudinally relative the ridges and disposed between the flame bursts for double firthe tube coil including at least one critical tube situated downstream in the path of process fluid flow and having a diameter substantially larger than that of the rest of the tube coil,
the critical tube positioned in the trough so that heat input to the critical tube from the main flame bursts is reduced.
6. The heater of claimS with at least one trim burner mounted in the trough,
means for adjusting the heat output of the trim burner.
References Cited by the Examiner UNITED STATES PATENTS 10/1935 Gibson 122-356 1/1954 Mekler 122356 X

Claims (1)

1. A FIRED HEATER COMPRISING A SETTING WHICH INCLUDES A ROOF ARCH AND A FLOOR AS WELL AS WALLS ALL COOPERATING TO DEFINE A FURANCE CHAMBER THEREIN, THE FLOOR DEFINING A LOW FLOOR LEVEL, THE FLOOR HAVING AT LEAST ONE RIDGE PROJECTING UPWARD FROM THE LOW FLOOR LEVEL, THE RIDGE HAVING AN UPPER EXTREMITY WHICH DEFINES A HIGH FLOOR LEVEL, THE FLOOR DEFINING AT LEAST ONE TROUGH BELOW THE HIGH FLOOR LEVEL, AT LEAST ONE MAIN BURNER PENETRATING THE FLOOR VIA THE UPPER EXTREMITY OF THE RIDGE AND COMMUNICATING WITH THE FURNACE CHAMBER TO INTRODUCE FUEL AND AIR THEREIN AND ARRANGED SO THAT A MAIN FLAME BURST IS FORMED ABOVE THE HIGH FLOOR LEVEL, MEANS IN THE VICINITY OF THE ROOF ARCH FOR EXHAUSTING COMBUSTION GASES FROM THE FURNACE CHAMBER, AT LEAST ONE TUBE COIL ARRANGED TO FORM A GENERALLY HORIZONTAL CONFIGURATION IN THE FURNACE CHAMBER, THE TUBE COIL HAVING AN UPPER END COMMUNICATING IN FLOW SERIES WITH A SOURCE OF PROCESS FLUID SO THAT THE FLUID COURSES GENERALLY DOWNWARD THERETHROUGH, THE TUBE COIL HAVING A LOWER END COMMUNICATING IN FLOW SERIES WITH MEANS FOR EXHAUSTING THE PROCESS FLUID THEREFROM, THE TUBE COIL INCLUDING AT LEAST ONE ENLARGED CRITICAL TUBE SITUATED DOWNSTREAM IN THE PATH OF PROCESS FLUID FLOW, THE CRITICAL TUBE POSITIONED IN THE TROUGH SO THAT HEAT INPUT TO THE CRITICAL TUBE FROM THE MAIN FLAME BURST IS REDUCED.
US370893A 1964-05-28 1964-05-28 Ridge firing arrangement for process heaters Expired - Lifetime US3221711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US370893A US3221711A (en) 1964-05-28 1964-05-28 Ridge firing arrangement for process heaters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US370893A US3221711A (en) 1964-05-28 1964-05-28 Ridge firing arrangement for process heaters

Publications (1)

Publication Number Publication Date
US3221711A true US3221711A (en) 1965-12-07

Family

ID=23461617

Family Applications (1)

Application Number Title Priority Date Filing Date
US370893A Expired - Lifetime US3221711A (en) 1964-05-28 1964-05-28 Ridge firing arrangement for process heaters

Country Status (1)

Country Link
US (1) US3221711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970511A (en) * 1972-12-19 1976-07-20 Societe Nationale Des Poudres Et Expolsifs, Antar Petroles De L'atlantique: Antargaz Process and installation for concentrating dilute solutions of corrosive products
US4494485A (en) * 1983-11-22 1985-01-22 Gas Research Institute Fired heater
US5353749A (en) * 1993-10-04 1994-10-11 Zurn Industries, Inc. Boiler design

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2017243A (en) * 1933-03-28 1935-10-15 Webster Engineering Company Fluid heating apparatus
US2667449A (en) * 1949-10-01 1954-01-26 Lummus Co Heating of hydrocarbon fluids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2017243A (en) * 1933-03-28 1935-10-15 Webster Engineering Company Fluid heating apparatus
US2667449A (en) * 1949-10-01 1954-01-26 Lummus Co Heating of hydrocarbon fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970511A (en) * 1972-12-19 1976-07-20 Societe Nationale Des Poudres Et Expolsifs, Antar Petroles De L'atlantique: Antargaz Process and installation for concentrating dilute solutions of corrosive products
US4494485A (en) * 1983-11-22 1985-01-22 Gas Research Institute Fired heater
US5353749A (en) * 1993-10-04 1994-10-11 Zurn Industries, Inc. Boiler design

Similar Documents

Publication Publication Date Title
US3677234A (en) Heating apparatus and process
US2211903A (en) Oil cracking and polymerizing heater
US3385271A (en) Tube heater
US3221711A (en) Ridge firing arrangement for process heaters
US2823652A (en) Helical coil heater
US2993479A (en) Fluid heaters
US3259110A (en) Fired heater arrangement for film temperature control
US2114269A (en) Heating apparatus and method
US3385269A (en) Tube heating furnace
US1536427A (en) Heating apparatus for gas-fired ovens
US2598840A (en) Heater for hydrocarbon fluid
US3002505A (en) Tube heater
US2396200A (en) Fluid heater
US2043095A (en) Method of and apparatus for heating fluids
US2081927A (en) Heating process and apparatus
GB1194733A (en) Furnace for Heating Reactant Fluids
US2129900A (en) Heating of fluids
US2324553A (en) Heating of fluids
US2017229A (en) Method and apparatus for heating galvanizing tanks
US2355923A (en) Baffle for oil burning furnaces
US2340289A (en) Furnace construction
US2034362A (en) Pipe heater construction
US2051880A (en) Apparatus for heating fluids
US3130714A (en) Tube furnace
US2149831A (en) Heating of fluids

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST PENNSYLVANIA BANK N A 19TH FL.CENTRE SQ WEST

Free format text: SECURITY INTEREST;ASSIGNOR:SELAS CORPORATION OF AMERICA A CORP OF PA;REEL/FRAME:003997/0981

Effective date: 19820217

AS Assignment

Owner name: SELAS CORPORATION OF AMERICA A CORP. OF PA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST PENNSYLVANIA BANK N.V., FOR ITSELF AND AS AGENT FOR THE PHILADELPHIA NATIONAL BANK;REEL/FRAME:004096/0520

Effective date: 19821231