US3208743A - Branched tapping spout - Google Patents

Branched tapping spout Download PDF

Info

Publication number
US3208743A
US3208743A US202856A US20285662A US3208743A US 3208743 A US3208743 A US 3208743A US 202856 A US202856 A US 202856A US 20285662 A US20285662 A US 20285662A US 3208743 A US3208743 A US 3208743A
Authority
US
United States
Prior art keywords
spout
branch
parts
liquid steel
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US202856A
Inventor
Shimizu Ryo
Kitazaki Kaoru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yawata Iron and Steel Co Ltd
Original Assignee
Yawata Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yawata Iron and Steel Co Ltd filed Critical Yawata Iron and Steel Co Ltd
Priority to US202856A priority Critical patent/US3208743A/en
Application granted granted Critical
Publication of US3208743A publication Critical patent/US3208743A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • F27D3/145Runners therefor

Definitions

  • This invention relates to a tapping spout. More particularly the present invention relates to a Y-branched tapping spout wherein the rise of a liquid steel on the wall is controlled and the flow of the liquid steel is smoothed.
  • the conventional tapping spout is a single spout.
  • a branched spout together with a plurality of ladles.
  • the shape of such branched spout has casued difficult problems including the flow velocity of the liquid steel through the spout and the relative positions of the furnace and ladles.
  • the control of the rise of the liquid steel on the wall of the spout branch and the smoothing of the liquid steel flow through the branched spout are problems important to safety measures.
  • the known branched spouts are merely branched in two directions forward. Therefore, in such a spout, the liquid steel flowing out of the tap will flow through the spout and will branch at the branching point. However, in such case, the liquid steel flow will rise high along the spout wall. Such rise will fluctuate depending chiefly on the flow velocity and the branching angle. According to experiments, if the diameter of the tap is D cm., the width of the spout is 1 cm., the flow velocity of the liquid steel is V cm./ sec. and the branching angle is 6 degrees, the height of the rise will be given as in the following formula:
  • the branching angle should be as small as possible.
  • the branching point will have to be moved toward the tap or the position of the ladle will have to be moved far away from the tap and then inefficiency will be unavoidable in the actual factory equipment.
  • the streamline of the liquid steel flow after the branching will be in a direction depending on the size of the branching angle.
  • Such streamline will be diverted by the branch wall and will come off the branch wall at an angle of about half the branching angle 0 and will snake through the spout. Therefore, it is preferable that the shape of the branched spout will be curved outward in the direction of the reflected streamline so that the flow within the spout can be smoothed.
  • the present invention has as its object the solution of such problems as are mentioned above.
  • An object of the present invention is to smooth the liquid steel flow in the branched spout while keeping the spacing between the ladies and the fixed distance between the tap and the ladle.
  • Another object of the present invention is to reduce the rise of the liquid steel on the spout wall after the branching while keeping the spacing between the ladles and the fixed distance between the tap and the ladle.
  • FIGURE 1 is a plan view of a conventional branched tapping spout and a liquid steel flow therein.
  • FIGURE 2 is a sectional view on line aa' in FIG- UR-E 1.
  • FIGURE 3 is a plan view of a spout according to the present invention and a liquid steel flow therein.
  • FIGURE 4 is a sectional view on line b-b' in FIG- URE 3.
  • a liquid steel flowing out of a tap will fiow through a spout A as indicated by the arrow 1 and will branch into branch spouts B and B' at a branching point T.
  • the liquid steel flow will rise high along the spout wall as indicated by the arrow 2 in FIG- URE 2. This rise is according to the above mentioned empirical formula.
  • a tapping spout having a main spout part A is branched into diverging branch spouts B and B' having first branch parts starting at points 5 and a branching point T and diverging at an angle 0.
  • the branch spout B and B have further diverged parts extending in the direction in which the liquid steel comes off the branch wall and starting at the points 6 and 6', respectively and diverging from the first branch parts at an angle 0/2.
  • the branching point T of the tapping spout A is spaced from the end of spout part A a distance such that the tap opening operation is not interrupted.
  • the maximum of the branching angle 0 is degrees, because, if it is larger than 90 degrees, the branch spout will be in the form of W and the liquid steel flow will turn and will not be proper.
  • Said further diverged parts are at a position to receive the part of the wave form of the rise of the liquid steel flow in the branching part which flows 0d the wall of the branch spout such that this part of the wave flows substantially axially of the spout branch. That is to say, the distance X cm. from the branching point T to the highest point of the rise of the liquid steel flow as it flows against the wall of the branch spout.
  • X 4.2 l0 sin 6-V'D -i wherein 0 is a branching angle, V is a fl-ow velocity in cm./ sec. of a liquid steel in the main spout part A, D is a diameter in cm. of a tap 10 of a furnace F for the like and l is a width in cm. of the main spout part. This is according to experiments and therefore the distance X can be determined by this empirical formula.
  • the present invention is constructed as described above, even if the branching angle is reduced considerably, the proper spacing of the ladles can be maintained by the further diverging of the branch spouts B and B and the distance L from the branching point T to the line between the ends of the branch spouts can be made short for economy in the use of the factory equipment. Further, by the reduction of the branching angle 0, the rise of the liquid steel on the spout wall in the branching part can be reduced as indicated by the arrow 2 in FIGURE 4 and the flow through the spout can 'be smoothed with a great effect.
  • the first branch parts will flow substantially longitudinally axially in the further diverged parts.

Description

p 1965 RYO SHIMIZU ET AL 3,208,743
BRANCHED TAPPING SPOUT Filed June 15. 1962 R 0 Shiny/2a aoru K/lazak/ INVENTORS BY Wm, M WM ATTORNEYS United States Patent 3,208,743 BRANCHED TAPPING SPOUT Ryo Shimizu, Itabitsu, Kokura, and Kaoru Kitazaki, Yawata, Japan, assignors to Yawata Iron & Steel Co., Ltd., Tokyo, Japan, a corporation of Japan Filed June 15, 1962, Ser. No. 202,856 2 Claims. (Cl. 266-38) This invention relates to a tapping spout. More particularly the present invention relates to a Y-branched tapping spout wherein the rise of a liquid steel on the wall is controlled and the flow of the liquid steel is smoothed.
The conventional tapping spout is a single spout. However, with the enlargement of furnaces, there has been a tendency to use :a branched spout together with a plurality of ladles. The shape of such branched spout has casued difficult problems including the flow velocity of the liquid steel through the spout and the relative positions of the furnace and ladles. Specifically the control of the rise of the liquid steel on the wall of the spout branch and the smoothing of the liquid steel flow through the branched spout are problems important to safety measures.
The known branched spouts are merely branched in two directions forward. Therefore, in such a spout, the liquid steel flowing out of the tap will flow through the spout and will branch at the branching point. However, in such case, the liquid steel flow will rise high along the spout wall. Such rise will fluctuate depending chiefly on the flow velocity and the branching angle. According to experiments, if the diameter of the tap is D cm., the width of the spout is 1 cm., the flow velocity of the liquid steel is V cm./ sec. and the branching angle is 6 degrees, the height of the rise will be given as in the following formula:
Therefore, it is preferable that the branching angle should be as small as possible. However, in order to reduce the branching angle 0 where the positions of the branched spout ends because of the arrangement of receivers or the ladles are fixed, the branching point will have to be moved toward the tap or the position of the ladle will have to be moved far away from the tap and then inefficiency will be unavoidable in the actual factory equipment.
Further, the streamline of the liquid steel flow after the branching will be in a direction depending on the size of the branching angle. Such streamline will be diverted by the branch wall and will come off the branch wall at an angle of about half the branching angle 0 and will snake through the spout. Therefore, it is preferable that the shape of the branched spout will be curved outward in the direction of the reflected streamline so that the flow within the spout can be smoothed. In case the branching angle 6 is reduced without using such a curve, there cannot be avoided the disadvantage that, in order to keep the spacing between the forward ends of the branched spout, the branches of the spout will have to be made very long and the liquid steel flow through the spout will flow off the branch wall at an angle of 0/2 and will snake.
The present invention has as its object the solution of such problems as are mentioned above.
ice
An object of the present invention is to smooth the liquid steel flow in the branched spout while keeping the spacing between the ladies and the fixed distance between the tap and the ladle.
Another object of the present invention is to reduce the rise of the liquid steel on the spout wall after the branching while keeping the spacing between the ladles and the fixed distance between the tap and the ladle.
Other objects of the present invention will be made clear in the following explanation and the accompanying drawings.
FIGURE 1 is a plan view of a conventional branched tapping spout and a liquid steel flow therein.
FIGURE 2 is a sectional view on line aa' in FIG- UR-E 1.
FIGURE 3 is a plan view of a spout according to the present invention and a liquid steel flow therein.
FIGURE 4 is a sectional view on line b-b' in FIG- URE 3.
The known conventional branched spout shall be explained with reference to FIGURE 1.
In such spout, a liquid steel flowing out of a tap will fiow through a spout A as indicated by the arrow 1 and will branch into branch spouts B and B' at a branching point T. In such case, the liquid steel flow will rise high along the spout wall as indicated by the arrow 2 in FIG- URE 2. This rise is according to the above mentioned empirical formula.
The device according to the present invention shall be explained in the following with reference to FIGURES 3 and 4.
In FIGURE 3, a tapping spout having a main spout part A is branched into diverging branch spouts B and B' having first branch parts starting at points 5 and a branching point T and diverging at an angle 0. The branch spout B and B have further diverged parts extending in the direction in which the liquid steel comes off the branch wall and starting at the points 6 and 6', respectively and diverging from the first branch parts at an angle 0/2.
In this case, the branching point T of the tapping spout A is spaced from the end of spout part A a distance such that the tap opening operation is not interrupted. The maximum of the branching angle 0 is degrees, because, if it is larger than 90 degrees, the branch spout will be in the form of W and the liquid steel flow will turn and will not be proper.
The further diverged parts 6 and 6' as shown in FIG- URE 3 start near the point where the liquid steel flows off the spout branch wall as shown in FIGURE 1.
Said further diverged parts are at a position to receive the part of the wave form of the rise of the liquid steel flow in the branching part which flows 0d the wall of the branch spout such that this part of the wave flows substantially axially of the spout branch. That is to say, the distance X cm. from the branching point T to the highest point of the rise of the liquid steel flow as it flows against the wall of the branch spout.
X=4.2 l0 sin 6-V'D -i wherein 0 is a branching angle, V is a fl-ow velocity in cm./ sec. of a liquid steel in the main spout part A, D is a diameter in cm. of a tap 10 of a furnace F for the like and l is a width in cm. of the main spout part. This is according to experiments and therefore the distance X can be determined by this empirical formula.
As the present invention is constructed as described above, even if the branching angle is reduced considerably, the proper spacing of the ladles can be maintained by the further diverging of the branch spouts B and B and the distance L from the branching point T to the line between the ends of the branch spouts can be made short for economy in the use of the factory equipment. Further, by the reduction of the branching angle 0, the rise of the liquid steel on the spout wall in the branching part can be reduced as indicated by the arrow 2 in FIGURE 4 and the flow through the spout can 'be smoothed with a great effect.
Example Interval between ladies cm 300 Branching angle degrees 60 Distance between branching point and further diverged part cm. 70 Diameter of tap cm. 15
Efltective width 1 of the main spout part cm. 40
4 the first branch parts will flow substantially longitudinally axially in the further diverged parts.
2. A tapping spout, comprising a main spout part, and diverging branch spout-s each having a first branch part, the first branch parts of the respective branch spouts diverging from each other at an angle 0, and having further diverged parts, said further diverged parts diverging finom the respective first branch parts at an angle 0/2 and each having the central longitudinal axis thereof in substantial alignment with the point along the length of the sidewall of the respective first branch part at which the flow of liquid steel against the sidewall of the first branch reaches its highest point, said point being at .a distance X in centimeters from the point at which the sidewalls of first branch parts against which the liquid steel flows diverge, s-aid distance X being according to the formula X =4.2 10- (sin 0)-V-D "-l' wherein V is the flow velocity in car/sec. of the liquid steel in the main spout part, D the diameter in cm. of a tap, and l the width in cm. of the main spout part.
References Cited by the Examiner UNITED STATES PATENTS 1,061,280 5/13 Ford 26638 MORRIS O. WOLK, Primary Examiner. JAMES H. TAYMAN, JR., Examiner.

Claims (1)

1. A TAPING SPOUT, COMPRISING A MAIN SPOUT PART, AND DIVERGING BRANCH SPOUTS EACH HAVING A FIRST BRANCH PART, THE FIRST BRANCH PARTS OF THE RESPECTIVE BRANCH SPOUT DIVERGING FROM EACH OTHER AT AN ANGLE0, AND HAVING FURTHER DIVERGED PARTS, SAID FURTHER DIVERGED PARTS DIVERGING FROM THE RESPECTIVE FIRST BRANCH PARTS AT AN ANGLE OF 0/2 AND FROM A POINT ALONG THE LENGTH OF THE FIRST BRANCH PARTS SUCH THAT LIQUID STEEL WHICH FLOWS AGAINST THE SIDE WALL OF THE FIRST BRANCH PARTS WILL FLOW SUBSTANTIALLY LONGITUDINALLY AXIALLY IN THE FURTHER DIVERGED PARTS.
US202856A 1962-06-15 1962-06-15 Branched tapping spout Expired - Lifetime US3208743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US202856A US3208743A (en) 1962-06-15 1962-06-15 Branched tapping spout

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US202856A US3208743A (en) 1962-06-15 1962-06-15 Branched tapping spout

Publications (1)

Publication Number Publication Date
US3208743A true US3208743A (en) 1965-09-28

Family

ID=22751529

Family Applications (1)

Application Number Title Priority Date Filing Date
US202856A Expired - Lifetime US3208743A (en) 1962-06-15 1962-06-15 Branched tapping spout

Country Status (1)

Country Link
US (1) US3208743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365187A (en) * 1965-10-20 1968-01-23 Bethlehem Steel Corp Runner system for blast furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1061280A (en) * 1913-01-13 1913-05-13 Edward L Ford Ladle-runner.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1061280A (en) * 1913-01-13 1913-05-13 Edward L Ford Ladle-runner.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365187A (en) * 1965-10-20 1968-01-23 Bethlehem Steel Corp Runner system for blast furnace

Similar Documents

Publication Publication Date Title
CH260256A (en) Process for stirring and distributing molten glass, and apparatus for carrying out the process.
US3208743A (en) Branched tapping spout
ES403455A1 (en) Process for separating non-metallic inclusions from hot liquid metal
GB1083262A (en) Methods of and apparatus for use in the continuous casting of steel
OA01832A (en) Method and device for the continuous refining of cast iron into steel.
US2979270A (en) Oxygen lances for open-hearth furnaces and the like
GB1379179A (en) Apparatus for pouring molten metal
US4740241A (en) Dual action lance for ladles
JPS561252A (en) Tundish for continuous casting
JPS5757812A (en) Molten iron desulfurizing device
US3556502A (en) Reaction vessel for reacting together two liquids of different specific gravities
US2653497A (en) Rolling mill turn-up guide
KR20130019562A (en) Tapping spout structure for converter
GB1187973A (en) Improvements in and relating to the Treating or Refining of Metals.
SU7250A1 (en) Guide to the foundry chute during centrifugal casting of pipes
GB1470190A (en) Nozzle for a lance head
GB1245206A (en) Apparatus for the introduction of substances into metallic melts
CH411015A (en) Process for heating slabs or steel billets with the addition of tellurium and a furnace for carrying out this process
SU1131794A1 (en) Device for supplying hydraulic mix into conveying pipeline
SU846563A2 (en) Device for treatment of liquid metal with reagents
DE1801131C3 (en) Induction crucible furnace
GB1278624A (en) Apparatus for the continuous casting of metal
CH248745A (en) Process for using the heat contained in the fumes as they exit from at least one furnace.
FR1058181A (en) Process for the preliminary refining of pig iron or cast iron for steel in the ladle, in a martin furnace or in an electric furnace
SU420681A1 (en) METHOD OF STEEL REFINATION