US3207018A - Jam sensing mechanism for a bottom wrap inserting machine - Google Patents

Jam sensing mechanism for a bottom wrap inserting machine Download PDF

Info

Publication number
US3207018A
US3207018A US303113A US30311363A US3207018A US 3207018 A US3207018 A US 3207018A US 303113 A US303113 A US 303113A US 30311363 A US30311363 A US 30311363A US 3207018 A US3207018 A US 3207018A
Authority
US
United States
Prior art keywords
web
driven
rollers
severing
pressure rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US303113A
Inventor
John A Rauenbuehler
John H Trumble
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cutler Hammer Inc
Original Assignee
Cutler Hammer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cutler Hammer Inc filed Critical Cutler Hammer Inc
Priority to US303113A priority Critical patent/US3207018A/en
Priority to US357917A priority patent/US3229878A/en
Priority to GB27940/64A priority patent/GB1000345A/en
Application granted granted Critical
Publication of US3207018A publication Critical patent/US3207018A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B27/00Bundling particular articles presenting special problems using string, wire, or narrow tape or band; Baling fibrous material, e.g. peat, not otherwise provided for
    • B65B27/08Bundling paper sheets, envelopes, bags, newspapers, or other thin flat articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/14Packaging paper or like sheets, envelopes, or newspapers, in flat, folded, or rolled form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/02Advancing webs by friction roller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • Y10T83/091Responsive to work sensing means
    • Y10T83/096Detector supported on or urged against work
    • Y10T83/098Resiliently biased
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/444Tool engages work during dwell of intermittent workfeed
    • Y10T83/4587Dwell initiated by disengagement of surface of moving frictional feed means from work
    • Y10T83/4592Feed means has rotary motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/748With work immobilizer
    • Y10T83/7487Means to clamp work
    • Y10T83/7493Combined with, peculiarly related to, other element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/748With work immobilizer
    • Y10T83/7487Means to clamp work
    • Y10T83/7547Liquid pressure actuating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/748With work immobilizer
    • Y10T83/7487Means to clamp work
    • Y10T83/7573Including clamping face of specific structure

Definitions

  • this invention relates to improvements in machines for inserting sheet wraps under stacked articles such as newspapers and the like.
  • the bottom wrap inserter device incorporating this invention is generally of the type described and claimed in the following copending applications: Frank S. Hyer, Serial No. 227,898, filed October 2, 1962; Frank S. Hyer et al., Serial No. 227,929, filed October 2, 1962; and Dwight H. Hurlbut et al., Serial No. 230,955, filed October 16, 1962.
  • Bottom wrap inserting machines of this type are designed to handle the high speed output of modern mailroom apparatus.
  • web jams that occur in these machines cause much loss of time before the machines can be cleared and restored to operation. The longer a web is allowed to feed into a machine after it has started to jam, the tighter the jam becomes, and consequently the longer it takes to clear the machine.
  • FIGURE 1 is a side elevational view of a complete bottom wrap inserter device with a portion of the cover elements removed;
  • FIG. 2 is an end elevational View of a portion of the device to a larger scale
  • FIG. 3 is a front elevational view of that portion of the device shown in FIG. 2 to a larger scale;
  • FIG. 4 is a sectional view taken generally along line 4-4 of FIG. 3;
  • FIGS. 5 and 6 are views similar to FIG. 4 showing different operating positions of various parts
  • FIG. 7 is an elevational view of that portion of the device as indicated by line 7-7 of FIG. 4;
  • FIG. 8 is a partial sectional view as indicated by line 8-8 in FIG. 4;
  • FIG. 9 is a partially schematic and partially diagrammatic view of the control system for the device.
  • FIG. 1 Pictured in FIG. 1 is a counter-stacker unit 2 of the type described in the Howdle et al. Patent No. 2,819,661, granted January 4, 1958 and now Reissue No. 25,018, connected to the device, which is the version described as utilizing an output conveyor 2a and power of such a counter-stacker unit 2 to run its various components.
  • Output conveyor 2a delivers loose stacked and alined articles, such as stacks of newspapers, to a cutter-drive unit 4 and output conveyor 6 of the bottom wrap inserter.
  • bottom wrap material such as kraft paper
  • Electrical control components for the device are mounted on a panel behind a door 24 in the frame of the device.
  • a drawer which houses the pneumatic components for the device, such as an air manifold, and solenoid operated slide valves.
  • the electrical power supply source is taken from the counter-stacker control circuit as will be described more fully later, and the air supply manifold is connected to a suitable source of pressure air supply. All connections made from the components to the various limit switches and air cylinders within the cutter-drive unit 4 are of the plug-in or quick-disconnect type to facilitate removal of the cutter-drive unit in its entirety (FIG. 2).
  • the cutter-drive unit 4 consists of three main sections: a lower or base section 4a; an upper or power section 41); and a pressure roll transfer section 40 which are hinged together in a manner described and claimed in the aforementioned copending application of Dwight H. Hurlbut et al. to provide easy access to the interior of the unit.
  • a locking mechanism is provided to insure that the upper section 412 is properly positioned upon the lower section 4a before the unit can function.
  • the locking mechanism consists of a pair of levers 26 which are pivotally mounted at their lower ends to the outside surfaces of the end plates of lower section 4a, and have at their upper ends latching members 26a which engage surfaces on the upper section 4b to lock the latter to the lower section 4a.
  • Levers 26 are spring biased toward the locked position, and the mechanism is unlocked by manually turning a handle which is rigidly secured to a shaft 28 which has a pair of cams 28a also secured to it.
  • Cams 28a cooperate with a pair of rollers 26b secured one each to the levers 26 to move the levers and hence the latching members out of engagement with the surfaces on upper section 4b.
  • One of the levers 26 has a lower extension which trips open a limit switch 6L8 whenever the unit is not completely locked shut, and in this way provides an electrical interlock safety feature, as can be more clearly seen in FIG. 9.
  • Power is supplied to the upper section through a gear drive.
  • the sprocket 14 drives a gear 30 through a com mon shaft 32 located in the lower section 4a.
  • Gear 30 in turn drives a gear 34 which is attached to one end of a shaft 36 located in upper section 4b.
  • Shaft 36 has another gear attached at its other end which, through an idler gear, drives a gear attached to a shaft 38, also located in the upper section 4b.
  • Shafts 36 and 38 have a plurality of rubber drive rollers 36a and 38a, respectively, rigidly secured thereto at spaced intervals along their axes.
  • Pressure roll transfer section 40 is pivotally mounted on bearings about shaft 32.
  • Section 40 comprises a pair of end plates 40 bolted one at each end to a member 42, and a pair of idler shafts 44 and 46 rotatably mounted between the end plates.
  • Shafts 44 and 46 have a plurality of rubber idler rollers 44a and 46a, respectively, rigidly secured thereto at intervals corresponding to those of rollers 36a and 38a on shafts 36 and 38.
  • An air cylinder AC1 is attached at one end to the frame of the cutter-drive unit 4 and has a lever 4211 which is bolted to its piston rod and connects to a clevis 42b attached to member 42 near its center.
  • the section 40 rotates clockwise to cause idler rollers 44a to engage drive rollers 36a, and when the air cylinder retracts, the section rotates counterclockwise to cause idler rollers 46a to engage drive rollers 38a.
  • member 42 also has secured to it a pair of brackets 48 extending upwardly and inwardly of the unit 4. Brackets 48 have leg portions 48a bent at right angles to the brackets, and have secured to the legs 48a means for receiving threaded pins 48b. With rollers 38a and 46a engaged as shown in FIG. 4, pins 48b lie behind a curved guide plate 50 mounted rigidly to lower section 4a and are in close proximity to a pair of clearance holes 50a formed in the guide plate 50.
  • the pins 48b extend through holes 50a a predetermined distance which is adjustable by threading the pins into leg portions 48a and locking the pins in position with a pair of jam nuts 480.
  • a cutter-blade assembly 52 is pivotally mounted upon a fixed shaft 54 within the lower section 4a.
  • the cutterblade assembly 52 has a yoke portion 52a that pivots on the shaft 54 at one end and supports a bracket 52b, carrying a saw-toothed blade 520, at its other end.
  • Bracket 52b is mounted on yoke 52a by four bolts which take into tapped holes in bracket 52b and fit into a pair of slots in yoke 52a. Lengthwise adjustment of the cutterblade assembly 52 is afforded by sliding the bracket 52b along the yoke 52a, within the limits of the slots, and then tightening down the four bolts.
  • An air cylinder AC2 provides the motive force for the cutter-blade assembly through its piston rod which is hreaded to a U-shaped adaptor and a clevis attached to the yoke 52a.
  • the upper section 4b has a pair of guide plates 56 and 58 rigidly attached to it.
  • Plate 58 overlies a flat portion of guide plate 50 as can be seen in FIGS. 4, 5 and 6.
  • Another guide plate 60 is pivotally mounted from a shaft 62 rigidly mounted to the lower section 4a, as seen most clearly in FIGS. 7 and 8.
  • a tight fitting rubber sleeve 62a surrounds shaft 62 midway between its ends.
  • the guide plate 60 is bolted at each end to the upper surfaces of the horizontal legs of bracket 60a by pairs of bolts 60e which also secure a pair of. manual trip levers 60c to the underside of said horizontal legs.
  • a pair of brackets 60] are attached to the underside of the free end of guide plate 60.
  • the vertical legs of brackets 60 have clearance holes to receive the horizontal portions of a pair of rods 64a which are threaded into a pair of spring housing members 64 at their lower ends.
  • Spring housing members 64 have guide posts 64b secured at their other ends which fit into pilot clearance holes formed in a pair of brackets 66a secured to a tie rod 66 which forms part of the frame of unit 4.
  • Housing members 64 also have recesses 640 formed in their lower ends concentrically with guide posts 64b and helical compression springs 64d are placed around posts 64b with the ends bearing against the upper surface of brackets 66a and the bottoms of recesses 640, thus providing an upward bias upon guide plate 60.
  • the uppermost position of guide plate 60 is determined by a bolt 54a (FIGS. 6 and 7) which bears against the underside of the right hand end of guide plate 60 as seen in FIG. 6.
  • Bolt 54a applies a counterclockwise moment upon guide plate 60 about shaft 62, and therefore, any upward adjustment of bolt 54a will lower the upper position of the left hand end of guide plate 60.
  • the lower limit of plate 60 is determined by the bottom surfaces of spring housing members 64 when they contact the upper surfaces of brackets 66a.
  • the housing members 64 may be threaded up or down on the rods 64a to increase or decrease the amount of travel of guide plate 60. I am nuts are provided to lock the adjusting nut 54a and the spring housing members 64 in place once the final adjustments are completed.
  • a third bracket 60g secured to the underside of the free end of guide plate 60 has a rod 68 pivotally attached to its vertical leg. At its other end rod 68 is attached to the actuator to a limit switch 4LS. Limit switch 4LS is preset to trip upon a slight downward travel of guide plate 60 as will be more fully described later.
  • Air cylinder AC3 is rigidly mounted between tie rod 66 and shaft 54 by a pair of brackets 70 and 72.
  • Air cylinder AC3 is the motor element for a web brake or backlash member 74, which protrudes through an opening 6001 in the guide plate 60 and holds the web of bottom wrap against the rubber sleeve 62a to prevent the web from falling out of the device when it is severed.
  • a brake bar 74a is threaded onto the piston rod of air cylinder AC3 and held in place by a jam nut 74b.
  • a flat, rectangular bearing member 72a is bolted to the bracket 72 and shaft 54 by a pair of socket head bolts 72b which pass through slots in bearing member 720: and enlarged clearance holes in bracket 72 and take into threaded holes in the shaft 54.
  • Bearing member 72a is brought just into contact with brake bar 74a to insure that the length of brake bar 74a and the .axes of shaft 62'and rubber sleeve 62a are parallel, and then bolts 72b are tightened to lock the bearing member in place.
  • the motor DM of counter-stacker unit 2 is connected to a three-phase, 60 cycle A.C. source, such as 220 or 440 volts, through lines L1, L2 and L3, while its control components, and hence the components to control the bottom wrap device, are connected to a more common volt, 60 cycle A.C. source through supply lines L4 and L5.
  • the air supply manifold is connected to a suitable source ofair pressure.
  • the upper section 4b of cutter-drive unit 4 is locked to the lower section 4a by the locking mechanism, thereby closing the safety interlock limit switch 6LS.
  • a START pushbutton switch PBI located on the counter-stacker is momentarily depressed to cause current to flow from line L4 through the operating coil of a main contactor M, the START switch PB1, a normally closed pushbutton STOP switch PB2, which is also located on the counter-stacker unit, and the closed safety interlock limit switch 6L8.
  • Main contactor M therefore energizes to close its normally open contacts M1, M2 and M3 which connect drive motor DM to supply lines L1, L2 and L3, respectively, to drive the counter-stacker 2, conveyors 2a and 6 and cutterdrive unit 4.
  • Main contactor M also closes a contact M4 which completes a holding circuit around START switch PBl, thereby maintaining contactor M energized when switch FBI is released, and a contact M5, which connects line L4 of the counter-stacker unit to the control circuit for the bottom wrap device.
  • a selector switch S1 located on the frame of the bottom wrap device (FIG. 1) is moved to its RUN position and a second pushbutton START switch PB3, also located on the bottom wrap device (FIG. 1) is momentarily depressed.
  • Current then flows from line L4, through contact M5, selector switch S1, START switch PBS, 9. closed contact 4LS2 of a limit switch 4LS, and the coil of a control relay lCR to line L5, thus energizing relay 1CR and closing its normally open contacts 1CR1, 1CR3 and 1CR5 and opening its normally closed contacts 1CR2 and 1CR4.
  • Contacts 1CR1 close to provide a holding circuit around START switch PBS to maintain relay 1CR energized when switch PBS is released.
  • Contact 1CR2 opens a circuit to an alarm device while contact C1R3 closes to cause current to flow from line L4,
  • a second STOP pushbutton switch could be mounted on the bottom wrap device if desired, and it would be connected in series with the STOP switch PB2.
  • limit switch lLS located within the counter-stacker unit to open its contacts 1 and close its contacts 2 and holds the limit switch in this position until the stack of papers passes and the limit switch actuator is released by the trailing edge. Opening the contacts 1 of limit switch lLS opens the circuit to solenoid 2SOL which deenergizes and allows the valve SV2 to be spring returned to its left-hand position which directs air to the top of the piston of air cylinder AC2 and retracts the cutter-blade assembly 52.
  • section 40 As section 40 rotates to this position, it closes contacts 2LS2 of limit switch 2L8 which causes current to flow from line L4, through contacts M5 and 1CR3, contacts 2 of limit switch ILS, limit switch 3LS, contact 2LS2, closed contacts ICRS and a solenoid 3SOL to line L5. This energizes solenoid 3SOL which pushes a spring return slide valve SVS to its left-hand position against the bias of its spring.
  • valve SV3 directs air flow to the top of the piston of air cylinder AC3, retracting brake member 74a from engagement with rubber sleeve 62a on shaft 62 just shortly after the rollers 46a and 38a engage the web 18a. These rollers then drive the web 13a up through the guide plates 50 and 58, around rollers 36a and under the oncoming stack of papers.
  • solenoid ISOL allows slide valve SV1 to be spring return to its left-hand position, and thereby direct air to the bottom of the piston of air cylinder AC1 to rotate the pressure roll transfer section 40 to cause idler rollers 44a and drive rollers 36a to engage the web 18a. In so doing, section 40 trips a limit switch 2L8 which is connected to the member 42 through a lever 420 to simultaneously extend the cutter-blade assembly 52 and the brake member 74 (FIG. 6).
  • the operation does not always run as smoothly as described.
  • Jams of the web 18a within the cutterdrive unit result in loss of time and money.
  • the longer a web is allowed to be fed in under a jam condition often means a longer time required to clear the jam and restore the machine to service.
  • An operator cannot always see the jam the minute it starts to build up, and even if he could, there is still human reflex time to consider.
  • the present invention incorporates an electromechanical device to automatically sense and clear the jam as soon as it starts to build up.
  • FIG. 4 shows the cutter-drive unit after a bundle has tripped the limit switch 1LS to cause the brake bar 74a to release the web 18a and the pressure roll transfer section to move rollers 46a into engagement with the web and drive rollers 38a to drive the web up through guide plates 50 and 58.
  • the leading edge of web 18a fails to get through the opening between plates 56 and 60, which starts a jam as shown (FIG. 4).
  • the jam exerts a Wedge-like pressure between the two plates, and the stationary plate 56 forces the jam to move the hinged plate 60 downwardly against the bias of springs 64d.
  • plate 60 trips limit switch 418 which opens a contact 4LS2 to drop out relay ICR and closes a contact 4LS1 which energizes solenoid 3801, upon reclosure of normally closed contact 1CR4 as relay lCR drops out.
  • Solenoid 3SOL moves valve SV3 to the left as described before to cause the brake bar 74a to retract from the rubber sleeve 62a.
  • Deenergization of relay lCR also reopens contact lCRS which deenergizes solenoid ISOL to cause the transfer section to engage rollers 36a and 44a, and recloses normally closed contacts 1CR2 to energize an alarm device to alert an operator of the jam condition.
  • the weight of the dancer roll assembly 22 pulls the web 18a down and free of the cutter-drive unit. This condition is illustrated in FIG. 5.
  • the limit switch 4L8 recloses its contact 4LS2 and reopens its contact 4LS1.
  • the opening of contact 4LS1 drops out solenoid 3SOL which in turn extends the brake member 74.
  • the closing of contact 4LS2 sets up a circuit for relay ICR, but does not energize it because START switch PB3 is not depressed.
  • the operator turns the selector switch S1 to LOAD to prevent the control relay 1CR from being energized should anyone accidentally push the START button P133.
  • the operator tears ofi the damaged web and folds over the leading edge of new web to attain a clean, straight edge.
  • a device for feeding a web from a source of supply comprising a pair of spaced driven rollers, a pair of spaced pressure rollers, means for moving said pressure rollers into web gripping relation with said driven rollers alternately, a guide member for guiding said web between a first set of driven and pressure rollers and beyond, said guide member being pivotally mounted and spring biased to a normal position against said web, and means responsive to movement of said guide member a given distance against the bias of said spring to cause the first mentioned means to move the pressure roller of said first set of driven and pressure rollers out of engagement with the web.
  • a device for feeding a web from a source of supply comprising a pair of spaced driven rollers, a pair of spaced pressure rollers, means for moving said pressure rollers into web gripping relation with said driven rollers alternately, guide members for guiding said web between a first set of driven and pressure rollers and between a second set of driven and pressure rollers, stop means mounted to cooperate with said means for moving said pressure rollers, said stop means extending into the area of the path of the Web upon engagement of said second set of driven and pressure rollers and retracting from said area upon engagement of said first set of driven and pressure rollers, whereby said stop means will engage with the leading edge of said web when said web is being manually fed into said device.
  • stop means are adjustable, means being adjusted to extend into said area a distance wherein said means do not interfere with the web when said second set of driven and pressure rollers are driving said web.
  • a device for feeding a web from a source of supply, the combination with a pair of spaced driven rollers, a pair of spaced pressure rollers, means for movlng said pressure rollers into web gripping relation with said driven rollers alternately, a web severing member for severing said Web into individual sheets of predetermined length and means for moving said member into a Web severing position, a web brake member, means for moving said brake member into a web gripping relation with a cooperating stationary member, control means to operate said means to move said web severing member and said means to move said brake member as aforestated upon the release of said first set of driven and pressure rollers under normal operating conditions, and a web tensioning member placed between said first set of driven and pressure rollers and said source of supply, of guide means for guiding said web between a first set of driven and pressure rollers and beyond, said guide means comprising a pivotally mounted member spring biased to a normal position against said web, and means responsive to movement of said pivotally mounted guide

Description

Sept. 21, 1965 J. A. RAUENBUEHLER ETAL 3,207,018
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE Filed Aug. 19, 1963 7 Sheets-Sheet 1 P 1965 J. A. RAUENBUEHLER ETAL 3,207,018
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE 7 Sheets-Sheet 2 Filed Aug. 19, 1963 P 1965 J. A. RAUENBUEHLER ETAL 3,207,018
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE 7 Sheets-Sheet 3 Filed Aug. 19, 1963 I IH Sept. 21, 1965 J. A. RAUENBUEHLER ETAL 3,207,013
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE Filed Aug. 19, 1963 7 Sheets-Sheet 4 kowy. ramme QE K K/QUZ,
SWW
p 21,1965. J. A. RAUENBUEHLER ETAL 3,207,018
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE Filed Aug. 19, 1963 7 Sheets-Sheet 5 se W WX m3. 5mm
Sept.
1965 J. A. RAUENBUEHLER ETAL 3,207,018
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE Filed Aug. 19, 1963 7 Sheets-Sheet 6 in? W mammal a Se t. 21, 1965 J. A. RAUENBUEHLER EITAL 3,207,018
JAM SENSING MECHANISM FOR A BOTTOM WRAP INSERTING MACHINE 7 Sheets-Sheet 7 Filed Aug. 19, 1963 M/ 1.. M2 DM LZ-o 3 M3 2 e w W! l I w 0 3 m w w 2 M C U M w 4 4 2 0 H M T 03 P ml m w m s o 5 MW T M w P R O l 5, s s 4: M M i MECHANISM MAN/FOLD United States Patent JAM SENSING MEQHANISM FOR A BOTTOM WRAP INSERTING MACHINE John A. Rauenbuehler, New Berlin, and John H. Trumble,
Wauwatosa, Wis., assignol's to Cutler-Hammer, Inc., Milwaukee, Wis., a corporation of Delaware Filed Aug. 19, 1963, Ser. No. 303,113
7 Claims. (Cl. 83-67) This invention relates to bottom sheet wrap inserting machines.
More particularly, this invention relates to improvements in machines for inserting sheet wraps under stacked articles such as newspapers and the like.
The bottom wrap inserter device incorporating this invention is generally of the type described and claimed in the following copending applications: Frank S. Hyer, Serial No. 227,898, filed October 2, 1962; Frank S. Hyer et al., Serial No. 227,929, filed October 2, 1962; and Dwight H. Hurlbut et al., Serial No. 230,955, filed October 16, 1962.
Bottom wrap inserting machines of this type are designed to handle the high speed output of modern mailroom apparatus. However, web jams that occur in these machines cause much loss of time before the machines can be cleared and restored to operation. The longer a web is allowed to feed into a machine after it has started to jam, the tighter the jam becomes, and consequently the longer it takes to clear the machine.
It is therefore a primary object of this invention to provide an improved bottom wrap inserting and cut-off machine having a jam sensing mechanism.
It is another object of this invention to provide an improved bottom wrap inserting and cut-oif machine having means for automatically sensing and clearing a jam.
It is still another object of this invention to provide a machine of the aforementioned type which is easily and quickly reloaded after a jam has been cleared.
It is still another object of this invention to provide a machine of the aforementioned type which has safety means to prevent the web from being driven upon reloading the machine until'the device is put into normal operating condition.
These and other objects will appear in the following description and claims when taken in conjunction with the drawings, in which:
FIGURE 1 is a side elevational view of a complete bottom wrap inserter device with a portion of the cover elements removed;
FIG. 2 is an end elevational View of a portion of the device to a larger scale;
FIG. 3 is a front elevational view of that portion of the device shown in FIG. 2 to a larger scale;
FIG. 4 is a sectional view taken generally along line 4-4 of FIG. 3;
FIGS. 5 and 6 are views similar to FIG. 4 showing different operating positions of various parts;
FIG. 7 is an elevational view of that portion of the device as indicated by line 7-7 of FIG. 4;
FIG. 8 is a partial sectional view as indicated by line 8-8 in FIG. 4; and
FIG. 9 is a partially schematic and partially diagrammatic view of the control system for the device.
Pictured in FIG. 1 is a counter-stacker unit 2 of the type described in the Howdle et al. Patent No. 2,819,661, granted January 4, 1958 and now Reissue No. 25,018, connected to the device, which is the version described as utilizing an output conveyor 2a and power of such a counter-stacker unit 2 to run its various components. Output conveyor 2a delivers loose stacked and alined articles, such as stacks of newspapers, to a cutter-drive unit 4 and output conveyor 6 of the bottom wrap inserter.
3,287,818 Patented Sept. 21, 1965 "ice Counter-stacker output conveyor 2a is driven from a drive motor DM (FIG. 9) through a chain 8 and sprocket connection. A second sprocket 10 secured to the same shaft as the sprocket for chain 8 supplied the mechanical power to cutter-drive unit 4 and bottom wrap inserter output conveyor 6 through a chain 12 and sprockets 14 and 16, respectively.
A supply roll 18 of bottom wrap material, such as kraft paper, is placed on a cradle assembly 20 located below the output conveyor 6, and a web of material 18a is payed off the roll and threaded around a dancer roll assembly 22 and into the cutter-drive unit 4.
Electrical control components for the device are mounted on a panel behind a door 24 in the frame of the device. In line with door 24 and on the opposite side of the frame is a drawer which houses the pneumatic components for the device, such as an air manifold, and solenoid operated slide valves. The electrical power supply source is taken from the counter-stacker control circuit as will be described more fully later, and the air supply manifold is connected to a suitable source of pressure air supply. All connections made from the components to the various limit switches and air cylinders within the cutter-drive unit 4 are of the plug-in or quick-disconnect type to facilitate removal of the cutter-drive unit in its entirety (FIG. 2).
Referring to FIG. 2, the cutter-drive unit 4 consists of three main sections: a lower or base section 4a; an upper or power section 41); and a pressure roll transfer section 40 which are hinged together in a manner described and claimed in the aforementioned copending application of Dwight H. Hurlbut et al. to provide easy access to the interior of the unit.
A locking mechanism is provided to insure that the upper section 412 is properly positioned upon the lower section 4a before the unit can function. The locking mechanism consists of a pair of levers 26 which are pivotally mounted at their lower ends to the outside surfaces of the end plates of lower section 4a, and have at their upper ends latching members 26a which engage surfaces on the upper section 4b to lock the latter to the lower section 4a. Levers 26 are spring biased toward the locked position, and the mechanism is unlocked by manually turning a handle which is rigidly secured to a shaft 28 which has a pair of cams 28a also secured to it. Cams 28a cooperate with a pair of rollers 26b secured one each to the levers 26 to move the levers and hence the latching members out of engagement with the surfaces on upper section 4b. One of the levers 26 has a lower extension which trips open a limit switch 6L8 whenever the unit is not completely locked shut, and in this way provides an electrical interlock safety feature, as can be more clearly seen in FIG. 9.
Power is supplied to the upper section through a gear drive. The sprocket 14 drives a gear 30 through a com mon shaft 32 located in the lower section 4a. Gear 30 in turn drives a gear 34 which is attached to one end of a shaft 36 located in upper section 4b. Shaft 36 has another gear attached at its other end which, through an idler gear, drives a gear attached to a shaft 38, also located in the upper section 4b. Shafts 36 and 38 have a plurality of rubber drive rollers 36a and 38a, respectively, rigidly secured thereto at spaced intervals along their axes.
Pressure roll transfer section 40 is pivotally mounted on bearings about shaft 32. Section 40 comprises a pair of end plates 40 bolted one at each end to a member 42, and a pair of idler shafts 44 and 46 rotatably mounted between the end plates. Shafts 44 and 46 have a plurality of rubber idler rollers 44a and 46a, respectively, rigidly secured thereto at intervals corresponding to those of rollers 36a and 38a on shafts 36 and 38. An air cylinder AC1 is attached at one end to the frame of the cutter-drive unit 4 and has a lever 4211 which is bolted to its piston rod and connects to a clevis 42b attached to member 42 near its center. When the air cylinder AC1 extends, the section 40 rotates clockwise to cause idler rollers 44a to engage drive rollers 36a, and when the air cylinder retracts, the section rotates counterclockwise to cause idler rollers 46a to engage drive rollers 38a.
With reference to FIGS. 3, 4, and 6, it can be seen that member 42 also has secured to it a pair of brackets 48 extending upwardly and inwardly of the unit 4. Brackets 48 have leg portions 48a bent at right angles to the brackets, and have secured to the legs 48a means for receiving threaded pins 48b. With rollers 38a and 46a engaged as shown in FIG. 4, pins 48b lie behind a curved guide plate 50 mounted rigidly to lower section 4a and are in close proximity to a pair of clearance holes 50a formed in the guide plate 50. When the pressure roll transfer section 40 is rotated clockwise so that the rollers 36a and 44a are engaged, the pins 48b extend through holes 50a a predetermined distance which is adjustable by threading the pins into leg portions 48a and locking the pins in position with a pair of jam nuts 480.
A cutter-blade assembly 52 is pivotally mounted upon a fixed shaft 54 within the lower section 4a. The cutterblade assembly 52 has a yoke portion 52a that pivots on the shaft 54 at one end and supports a bracket 52b, carrying a saw-toothed blade 520, at its other end. Bracket 52b is mounted on yoke 52a by four bolts which take into tapped holes in bracket 52b and fit into a pair of slots in yoke 52a. Lengthwise adjustment of the cutterblade assembly 52 is afforded by sliding the bracket 52b along the yoke 52a, within the limits of the slots, and then tightening down the four bolts. An air cylinder AC2 provides the motive force for the cutter-blade assembly through its piston rod which is hreaded to a U-shaped adaptor and a clevis attached to the yoke 52a.
The upper section 4b has a pair of guide plates 56 and 58 rigidly attached to it. Plate 58 overlies a flat portion of guide plate 50 as can be seen in FIGS. 4, 5 and 6. Another guide plate 60 is pivotally mounted from a shaft 62 rigidly mounted to the lower section 4a, as seen most clearly in FIGS. 7 and 8. A tight fitting rubber sleeve 62a surrounds shaft 62 midway between its ends. A pair of L-shaped brackets 60a having bearings 60b mounted in their vertical legs, swing freely at the ends of shaft 62 (FIG. 8). The guide plate 60 is bolted at each end to the upper surfaces of the horizontal legs of bracket 60a by pairs of bolts 60e which also secure a pair of. manual trip levers 60c to the underside of said horizontal legs.
A pair of brackets 60] are attached to the underside of the free end of guide plate 60. The vertical legs of brackets 60 have clearance holes to receive the horizontal portions of a pair of rods 64a which are threaded into a pair of spring housing members 64 at their lower ends. Spring housing members 64 have guide posts 64b secured at their other ends which fit into pilot clearance holes formed in a pair of brackets 66a secured to a tie rod 66 which forms part of the frame of unit 4. Housing members 64 also have recesses 640 formed in their lower ends concentrically with guide posts 64b and helical compression springs 64d are placed around posts 64b with the ends bearing against the upper surface of brackets 66a and the bottoms of recesses 640, thus providing an upward bias upon guide plate 60. The uppermost position of guide plate 60 is determined by a bolt 54a (FIGS. 6 and 7) which bears against the underside of the right hand end of guide plate 60 as seen in FIG. 6. Bolt 54a applies a counterclockwise moment upon guide plate 60 about shaft 62, and therefore, any upward adjustment of bolt 54a will lower the upper position of the left hand end of guide plate 60. The lower limit of plate 60 is determined by the bottom surfaces of spring housing members 64 when they contact the upper surfaces of brackets 66a. The housing members 64 may be threaded up or down on the rods 64a to increase or decrease the amount of travel of guide plate 60. I am nuts are provided to lock the adjusting nut 54a and the spring housing members 64 in place once the final adjustments are completed.
A third bracket 60g secured to the underside of the free end of guide plate 60, has a rod 68 pivotally attached to its vertical leg. At its other end rod 68 is attached to the actuator to a limit switch 4LS. Limit switch 4LS is preset to trip upon a slight downward travel of guide plate 60 as will be more fully described later.
An air cylinder AC3 is rigidly mounted between tie rod 66 and shaft 54 by a pair of brackets 70 and 72. Air cylinder AC3 is the motor element for a web brake or backlash member 74, which protrudes through an opening 6001 in the guide plate 60 and holds the web of bottom wrap against the rubber sleeve 62a to prevent the web from falling out of the device when it is severed. A brake bar 74a is threaded onto the piston rod of air cylinder AC3 and held in place by a jam nut 74b. A flat, rectangular bearing member 72a is bolted to the bracket 72 and shaft 54 by a pair of socket head bolts 72b which pass through slots in bearing member 720: and enlarged clearance holes in bracket 72 and take into threaded holes in the shaft 54. Bearing member 72a is brought just into contact with brake bar 74a to insure that the length of brake bar 74a and the .axes of shaft 62'and rubber sleeve 62a are parallel, and then bolts 72b are tightened to lock the bearing member in place.
With reference particularly to FIG. 9, the motor DM of counter-stacker unit 2 is connected to a three-phase, 60 cycle A.C. source, such as 220 or 440 volts, through lines L1, L2 and L3, while its control components, and hence the components to control the bottom wrap device, are connected to a more common volt, 60 cycle A.C. source through supply lines L4 and L5. The air supply manifold is connected to a suitable source ofair pressure. The upper section 4b of cutter-drive unit 4 is locked to the lower section 4a by the locking mechanism, thereby closing the safety interlock limit switch 6LS.
To start the device a START pushbutton switch PBI located on the counter-stacker is momentarily depressed to cause current to flow from line L4 through the operating coil of a main contactor M, the START switch PB1, a normally closed pushbutton STOP switch PB2, which is also located on the counter-stacker unit, and the closed safety interlock limit switch 6L8. Main contactor M therefore energizes to close its normally open contacts M1, M2 and M3 which connect drive motor DM to supply lines L1, L2 and L3, respectively, to drive the counter-stacker 2, conveyors 2a and 6 and cutterdrive unit 4. Main contactor M also closes a contact M4 which completes a holding circuit around START switch PBl, thereby maintaining contactor M energized when switch FBI is released, and a contact M5, which connects line L4 of the counter-stacker unit to the control circuit for the bottom wrap device. I
A selector switch S1, located on the frame of the bottom wrap device (FIG. 1) is moved to its RUN position and a second pushbutton START switch PB3, also located on the bottom wrap device (FIG. 1) is momentarily depressed. Current then flows from line L4, through contact M5, selector switch S1, START switch PBS, 9. closed contact 4LS2 of a limit switch 4LS, and the coil of a control relay lCR to line L5, thus energizing relay 1CR and closing its normally open contacts 1CR1, 1CR3 and 1CR5 and opening its normally closed contacts 1CR2 and 1CR4. Contacts 1CR1 close to provide a holding circuit around START switch PBS to maintain relay 1CR energized when switch PBS is released. Contact 1CR2 opens a circuit to an alarm device while contact C1R3 closes to cause current to flow from line L4,
through contacts M5 and 1CR3, contacts 1 of a limit switch lLS, contacts 2LS1 of a limit switch ZLS and a solenoid 2SOL to line L5. Solenoid ZSOL energizes therefore and pushes a spring return slide valve SV2 to its right-hand position, directing air to the underside of the piston of air cylinder AC2 and causing the cutterblade assembly 52 to raise to its upper, or cutting position. A second STOP pushbutton switch could be mounted on the bottom wrap device if desired, and it would be connected in series with the STOP switch PB2.
As counter-stacker 2 delivers a stack of papers to its output conveyor 2a, the leading edge of the stack trips a limit switch lLS, located within the counter-stacker unit to open its contacts 1 and close its contacts 2 and holds the limit switch in this position until the stack of papers passes and the limit switch actuator is released by the trailing edge. Opening the contacts 1 of limit switch lLS opens the circuit to solenoid 2SOL which deenergizes and allows the valve SV2 to be spring returned to its left-hand position which directs air to the top of the piston of air cylinder AC2 and retracts the cutter-blade assembly 52.
As cutter-blade assembly 52 retracts it closes a limit switch SLS which allows current to flow from line L4, through contacts M5 and 1CR3, the contacts 2 of limit switch lLS, limit switch 3LS and solenoid ISOL to line 5. This current flow energizes solenoid 1SOL which pushes a spring return slide valve SV1 to its right-hand position against the bias of its spring. In this position, valve SV1 directs air flow to the top of the piston of air cylinder AC1 which rotates the pressure roll transfer section 40 counterclockwise to engage idler rollers 46a with drive rollers 38a, pinching the web 18a between them (FIG. 4). As section 40 rotates to this position, it closes contacts 2LS2 of limit switch 2L8 which causes current to flow from line L4, through contacts M5 and 1CR3, contacts 2 of limit switch ILS, limit switch 3LS, contact 2LS2, closed contacts ICRS and a solenoid 3SOL to line L5. This energizes solenoid 3SOL which pushes a spring return slide valve SVS to its left-hand position against the bias of its spring. In this position, valve SV3 directs air flow to the top of the piston of air cylinder AC3, retracting brake member 74a from engagement with rubber sleeve 62a on shaft 62 just shortly after the rollers 46a and 38a engage the web 18a. These rollers then drive the web 13a up through the guide plates 50 and 58, around rollers 36a and under the oncoming stack of papers.
Proper tension is placed upon web 18a by the dancer roll assembly 22. An electromagnetic brake BR prevents the spindle of the cradle assembly 20, and hence the supply roll 18, from rotating while the brake BR is deenergized. When web 1&1 feeds up through the cutter-drive unit 4, the web raises the dancer roll. Upon raising a predetermined amount, a frame member of the dancer roll assembly 22 closes a limit switch 5LS to energize the brake BR and release the spindle. The weight of the dancer roll assembly causes the web to pay off the roll 18 as the assembly 22 moves downward until the limit switch SLS reopens and the brake BR is again applied to the spindle.
When the trailing edge of the stack of newspapers releases the actuator of limit switch lLS, the switch recloses its contacts 1 and reopens its contacts 2 which open the circuit to solenoid 1SOL to deenergize the latter. Deenergization of solenoid ISOL allows slide valve SV1 to be spring return to its left-hand position, and thereby direct air to the bottom of the piston of air cylinder AC1 to rotate the pressure roll transfer section 40 to cause idler rollers 44a and drive rollers 36a to engage the web 18a. In so doing, section 40 trips a limit switch 2L8 which is connected to the member 42 through a lever 420 to simultaneously extend the cutter-blade assembly 52 and the brake member 74 (FIG. 6). Contacts 2LS1 close to complete the circuit from line L4 through contacts M5 and ICRS, 1IS1, 2LS1 and solenoid ZSOL to line L5, thereby energizing solenoid ZSOL. The latter pushes slide valve SV2 to its right-hand position and it in turn directs air flow to the underside of the piston in the air cylinder AC2 to raise the cutter-blade assembly 52. The contacts 2LS2 open to deenergize the solenoid 3SOL which allows its valve SV3 to be spring returned to its right-hand position, which direct air to under side of the piston of air cylinder AC3 and raises the brake member 74.
This completes a cycle in a smooth running operation of placing a sheet of wrap under a stack of newspapers, and like cycles will be repeated every time a stack of papers trips and releases the limit switch 1LS.
However, the operation does not always run as smoothly as described. Jams of the web 18a within the cutterdrive unit result in loss of time and money. The longer a web is allowed to be fed in under a jam condition often means a longer time required to clear the jam and restore the machine to service. An operator cannot always see the jam the minute it starts to build up, and even if he could, there is still human reflex time to consider. The present invention incorporates an electromechanical device to automatically sense and clear the jam as soon as it starts to build up.
FIG. 4 shows the cutter-drive unit after a bundle has tripped the limit switch 1LS to cause the brake bar 74a to release the web 18a and the pressure roll transfer section to move rollers 46a into engagement with the web and drive rollers 38a to drive the web up through guide plates 50 and 58. However, for one reason or another, the leading edge of web 18a fails to get through the opening between plates 56 and 60, which starts a jam as shown (FIG. 4). The jam exerts a Wedge-like pressure between the two plates, and the stationary plate 56 forces the jam to move the hinged plate 60 downwardly against the bias of springs 64d. The movement of plate 60 trips limit switch 418 which opens a contact 4LS2 to drop out relay ICR and closes a contact 4LS1 which energizes solenoid 3801, upon reclosure of normally closed contact 1CR4 as relay lCR drops out. Solenoid 3SOL moves valve SV3 to the left as described before to cause the brake bar 74a to retract from the rubber sleeve 62a. Deenergization of relay lCR also reopens contact lCRS which deenergizes solenoid ISOL to cause the transfer section to engage rollers 36a and 44a, and recloses normally closed contacts 1CR2 to energize an alarm device to alert an operator of the jam condition. The weight of the dancer roll assembly 22 pulls the web 18a down and free of the cutter-drive unit. This condition is illustrated in FIG. 5.
When the jam is relieved and the plat 60 is returned to its original position by spring 6401, the limit switch 4L8 recloses its contact 4LS2 and reopens its contact 4LS1. The opening of contact 4LS1 drops out solenoid 3SOL which in turn extends the brake member 74. The closing of contact 4LS2 sets up a circuit for relay ICR, but does not energize it because START switch PB3 is not depressed.
To reload the device, the operator turns the selector switch S1 to LOAD to prevent the control relay 1CR from being energized should anyone accidentally push the START button P133. The operator then tears ofi the damaged web and folds over the leading edge of new web to attain a clean, straight edge. With one hand he pulls back on one of the manual trip levers 60c which pivot plate 60 the same as would a jam, thereby again tripping limit switch 4LS to reclose contact 4LS1 and energize solenoid SSOL to retract brake member 74 and with the other hand he feeds the web into the cutter-drive unit past the disengaged rollers 38a and 46a. Should the operator feed the paper too far, the leading edge will stop against the pins 4S1: which protrude through the holes a when the rollers 36a and 4411 are engaged. If the webs were not stopped here there would be the chance that drive rollers 36a and pressure rollers 44a would catch the edge and feed it through the device, possibly causing injury to the operator and/or damage to the device. Once the web is in place the operator can release the lever 600 which will extend brake 74 again. To start the machine, the operator must turn selector switch S1 to RUN and push START button PB3. The machine is now ready to receive more stacks of papers.
We claim:
1. In a device for feeding a web from a source of supply, the combination comprising a pair of spaced driven rollers, a pair of spaced pressure rollers, means for moving said pressure rollers into web gripping relation with said driven rollers alternately, a guide member for guiding said web between a first set of driven and pressure rollers and beyond, said guide member being pivotally mounted and spring biased to a normal position against said web, and means responsive to movement of said guide member a given distance against the bias of said spring to cause the first mentioned means to move the pressure roller of said first set of driven and pressure rollers out of engagement with the web.
2. The combination according to claim 1 together with a web brake member, means for moving said brake member into web gripping relation with a cooperating stationary member upon the release of said first set of driven and pressure rollers under normal operating conditions, and means for holding said brake member out of web gripping relation with said cooperating stationary member upon the release of said first set of driven and pressure rollers in response to the aforementioned movement of said guide member.
3. The combination according to claim 1 together with a stationary guide membermounted in close proximity and substantially parallel to the normal springbiased position of said pivotally mounted guide member and said web, said guide members forming a passage for said web, and between which a web jam exerts an outward force upon said members to cause said pivotally mounted member to move away from said stationary guide member.
4. The combination according to claim 2 together with a web tensioning member placed between said first set of driven and pressure rollers and said source of supply, and said web tensioning member aids in pulling the web back out from said device upon' the release of said first set of driven and pressure rollers and hold-off of said brake member in response to the aforementioned movement of said guide member.
5. In a device for feeding a web from a source of supply, the combination comprising a pair of spaced driven rollers, a pair of spaced pressure rollers, means for moving said pressure rollers into web gripping relation with said driven rollers alternately, guide members for guiding said web between a first set of driven and pressure rollers and between a second set of driven and pressure rollers, stop means mounted to cooperate with said means for moving said pressure rollers, said stop means extending into the area of the path of the Web upon engagement of said second set of driven and pressure rollers and retracting from said area upon engagement of said first set of driven and pressure rollers, whereby said stop means will engage with the leading edge of said web when said web is being manually fed into said device.
6. The combination according to claim 5 wherein said stop means are adjustable, means being adjusted to extend into said area a distance wherein said means do not interfere with the web when said second set of driven and pressure rollers are driving said web.
7. In a device, for feeding a web from a source of supply, the combination with a pair of spaced driven rollers, a pair of spaced pressure rollers, means for movlng said pressure rollers into web gripping relation with said driven rollers alternately, a web severing member for severing said Web into individual sheets of predetermined length and means for moving said member into a Web severing position, a web brake member, means for moving said brake member into a web gripping relation with a cooperating stationary member, control means to operate said means to move said web severing member and said means to move said brake member as aforestated upon the release of said first set of driven and pressure rollers under normal operating conditions, and a web tensioning member placed between said first set of driven and pressure rollers and said source of supply, of guide means for guiding said web between a first set of driven and pressure rollers and beyond, said guide means comprising a pivotally mounted member spring biased to a normal position against said web, and means responsive to movement of said pivotally mounted guide member a given distance against the bias of said spring to cause the first mentioned means to moveto pressure roller of said first set of driven and pressure rollers out of engagement with said web, to hold said severing memher out of its web severing position, and to hold said brake out of Web gripping relation with said cooperating stationary member, said web tensioning member aiding in pulling said web from the device upon the release of said first set of driven and pressure rollers and hold-off of said web severing member and said brake member in response to the aforementioned movement of said pivotally mounted guide member.
References Cited by the Examiner UNITED STATES PATENTS 1,957,711 5/34 Heyman 83-453 2,273,961 2/42 Hoppe 53-66 2,733,062 1/56 Corey 271-57 2,860,462 11/58 Sykes 53-66 3,004,728 10/ 6 1 Ihle 226-25 FOREIGN PATENTS 107,238 6/17 Great Britain.
ANDREW R. IUHASZ, Primary Examiner.
LEON PEAR, Examiner.

Claims (1)

  1. 7. IN A DEVICE FOR FEEDING A WEB FROM A SOURCE OF SUPPLY, THE COMBINATION WITH A PAIR OF SPACED DRIVEN ROLLERS, A PAIR OF SPACED PRESSURE ROLLERS, MEANS FOR MOVING SAID PRESSURE ROLLERS INTO WEB GRIPPING RELATION WITH SAID DRIVEN ROLLERS ALTERNATELY, A WEB SEVERING MEMBER FOR SEVERING SAID WEB INTO INDIVIDUAL SHEETS OF PREDETERMINED LENGTH AND MEANS FOR MOVING SAID MEMBER INTO A WEB SEVERING POSITION,A WEB BRAKE MEMBER, MEANS FOR MOVING SAID BRAKE MEMBER INTO A WEB GRIPPING RELATION WITH A COOPERATING STATIONARY MEMBER, CONTROL MEANS TO OPERATE SAID MEANS TO MOVE SAID WEB SEVERING MEMBER AND SAID MEANS TO MOVE SAID BRAKE MEMBER AS AFORESTATED UPON THE RELEASE OF SAID FIRST SET OF DRIVEN AND PRESSURE ROLLERS UNDER NORMAL OPERATING CONDITIONS, AND A WEB TENSIONING MEMBER PLACED BETWEEN SAID FIRST SET OF DRIVEN AND PRESSURE ROLLERS AND SAID SOURCE OF SUPPLY, OF GUIDE MEANS FOR GUIDING SAID WEB BETWEEN A FIRST SET OF DRIVEN AND PRESSURE ROLERS AND BEYOND, SAID GUIDE MEANS COMPRISING A PIVOTALLY MOUNTED MEMBER SPRING BIASED TO A NORMAL POSITION AGAINST SAID WEB, AND MEANS RESONSIVE TO MOVEMENT OF SAID PIVOTALLY MOUNTED GUIDE MEMBER A GIVEN DISTANCE AGAINST THE BIAS OF SAID SPRING TO CAUSE THE FIRST MENTIONED MEANS TO MOVE TO PRESSURE ROLLER OF SAID FIRST SET OF DRIVEN AND PRESSURE ROLLERS OUT OF ENGAGEMENT WITH SAID WEB, TO HOLD SAID SEVERING MEMBER OUT OF ITS WEB SEVERING POSITION, AND TO HOLD SAID BRAKE OUT OF WEB GRIPPING RELATION WITH SAID COOPERATING STATIONARY MEMBER, SAID WEB TENSIONING MEMBER AIDING IN PULLING SAID WEB FROM THE DEVICE UPON THE RELEASE OF SAID FIRST SET OF DRIVEN AND PRESSURE ROLLERS AND HOLD-OFF OF SAID WEB SEVERING MEMBER AND SAID BRAKE MEMBER IN RESPONSE TO THE AFOREMENTIONED MOVEMENT OF SAID PIVOTALLY MOUNTED GUIDE MEMBER.
US303113A 1963-08-19 1963-08-19 Jam sensing mechanism for a bottom wrap inserting machine Expired - Lifetime US3207018A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US303113A US3207018A (en) 1963-08-19 1963-08-19 Jam sensing mechanism for a bottom wrap inserting machine
US357917A US3229878A (en) 1963-08-19 1964-04-07 Jam sensing bottom wrap inserting machine
GB27940/64A GB1000345A (en) 1963-08-19 1964-07-07 Improvements in or relating to mechanisms for feeding webs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US303113A US3207018A (en) 1963-08-19 1963-08-19 Jam sensing mechanism for a bottom wrap inserting machine

Publications (1)

Publication Number Publication Date
US3207018A true US3207018A (en) 1965-09-21

Family

ID=23170598

Family Applications (1)

Application Number Title Priority Date Filing Date
US303113A Expired - Lifetime US3207018A (en) 1963-08-19 1963-08-19 Jam sensing mechanism for a bottom wrap inserting machine

Country Status (2)

Country Link
US (1) US3207018A (en)
GB (1) GB1000345A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1511715B1 (en) * 1966-01-05 1970-10-08 Metaverpa Maartensdijk Nv Device for feeding a sheet of packaging material to a stack, package or other object
US3680418A (en) * 1970-04-20 1972-08-01 John Franklin Phillips Fabric shearing apparatus
US3924497A (en) * 1975-02-19 1975-12-09 Du Pont Method of dispensing a microfoam sheet
US5074450A (en) * 1989-05-09 1991-12-24 Koenig & Bauer Aktiengesellschaft Transported web alignment apparatus
US5287802A (en) * 1992-12-14 1994-02-22 Signode Corporation Strap severing and ejecting mechanism for strapping machine
US6554223B1 (en) 2000-04-04 2003-04-29 The Procter & Gamble Company Apparatus and a method for aligning a web

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB107238A (en) * 1916-06-20 1917-06-20 Wagner Ab Fredr Improvements in and relating to Machines for Wrapping Up Newspapers and the like in Covers.
US1957711A (en) * 1932-07-06 1934-05-08 Robert F Heyman Clamp for cutting machines
US2273961A (en) * 1940-07-10 1942-02-24 Nat Bread Wrapping Machine Co Paper feed for wrapping machines
US2733062A (en) * 1956-01-31 Sprocket shoe for
US2860462A (en) * 1955-08-11 1958-11-18 Toronto Star Ltd Machine for wrapping bundles or stacks of newspapers
US3004728A (en) * 1959-12-01 1961-10-17 Gen Electric Oscillographic recorder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733062A (en) * 1956-01-31 Sprocket shoe for
GB107238A (en) * 1916-06-20 1917-06-20 Wagner Ab Fredr Improvements in and relating to Machines for Wrapping Up Newspapers and the like in Covers.
US1957711A (en) * 1932-07-06 1934-05-08 Robert F Heyman Clamp for cutting machines
US2273961A (en) * 1940-07-10 1942-02-24 Nat Bread Wrapping Machine Co Paper feed for wrapping machines
US2860462A (en) * 1955-08-11 1958-11-18 Toronto Star Ltd Machine for wrapping bundles or stacks of newspapers
US3004728A (en) * 1959-12-01 1961-10-17 Gen Electric Oscillographic recorder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1511715B1 (en) * 1966-01-05 1970-10-08 Metaverpa Maartensdijk Nv Device for feeding a sheet of packaging material to a stack, package or other object
US3680418A (en) * 1970-04-20 1972-08-01 John Franklin Phillips Fabric shearing apparatus
US3924497A (en) * 1975-02-19 1975-12-09 Du Pont Method of dispensing a microfoam sheet
US5074450A (en) * 1989-05-09 1991-12-24 Koenig & Bauer Aktiengesellschaft Transported web alignment apparatus
US5287802A (en) * 1992-12-14 1994-02-22 Signode Corporation Strap severing and ejecting mechanism for strapping machine
AU650398B1 (en) * 1992-12-14 1994-06-16 Signode Corporation Strap severing and ejecting mechanism for strapping machine
EP0604783A2 (en) * 1992-12-14 1994-07-06 Signode Corporation Strap severing and ejecting mechanism for strapping machine
EP0604783A3 (en) * 1992-12-14 1994-12-28 Signode Corp Strap severing and ejecting mechanism for strapping machine.
US6554223B1 (en) 2000-04-04 2003-04-29 The Procter & Gamble Company Apparatus and a method for aligning a web

Also Published As

Publication number Publication date
GB1000345A (en) 1965-08-04

Similar Documents

Publication Publication Date Title
DE2720255C2 (en)
US3776544A (en) Automatic loading apparatus
US3207018A (en) Jam sensing mechanism for a bottom wrap inserting machine
US3901138A (en) Turn table device
US3908985A (en) Method and means for stacking articles
US2403147A (en) Automatic winding machine
US4339118A (en) Cloth spreading method and apparatus
US3229878A (en) Jam sensing bottom wrap inserting machine
US3799320A (en) Turn table device
US3420387A (en) Blank handling apparatus
US3114308A (en) Automatic feeder for a bundle tyer
EP0611718B1 (en) Sheet stacking apparatus
US3271023A (en) Sheet collating apparatus
US2711792A (en) Veneer clippers
US3250054A (en) Bottom wrap inserter
US3410421A (en) Sheet stacker
US1957260A (en) Machine for separating maculate parts of sheet paper
US4548594A (en) Method and apparatus for severing sheets of material
US3079143A (en) Folding device for transverse folding laundry pieces behind laundry mangles and the like
CS239931B2 (en) Separating device for tobaco product machine
US3250053A (en) Bottom wrap inserter
US2698659A (en) Sheet tearing table
US3507428A (en) Dispenser for a continuous strip
US3643940A (en) Control attachment for sheet conveying, stacking and discharge equipment
US2761506A (en) Jaw for grasping sheet material therebetween and moving same to a new position